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Abstract—In this paper we present a strong coupling algorithm
for partitioned fluid-structure interactions which can be applied
to black-box field solvers. The coupling algorithm constructs an
approximate interface Jacobian of the coupled fluid-structure
problem using proper orthogonal decomposition (POD) reduced
order models of the interface tractions and displacements. The
coupling scheme is an augmentation of the IBQN-LS (interface
block-quasi-Newton with an approximation for the Jacobian from
least-squares) coupling scheme.

The performance of the original IBQN-LS method is strongly
governed by the number of previous time step histories that are
retained, where there exists a problem specific optimal choice.
In this paper we will demonstrate that this dependence on the
number of retained histories is due to a trade off between
increasingly ill-conditioned interface Jacobian, when too many
histories are retained, and sub-optimal coupling convergence
rates due to a loss of information when histories are discarded.

We will show that the POD augmentation allows for the re-
use of all observations from previous time steps by limiting
the matrix ill-conditioning while essentially retaining ‘all’ the
information. Retaining all histories improves the approximation
of the interface block-Newton Jacobian, which in turn improves
the coupling iterations’ convergence rates. We will demonstrate
on a flexible tube benchmark problem that once sufficient
information has been captured that the POD interface reduced
order model can produce near quadratic convergence rates.

Keywords—Fluid-structure interactions; partitioned; approxi-
mate interface Jacobian; proper orthogonal decomposition

I. INTRODUCTION

Fluid-structure interaction (FSI) has received a lot of at-
tention in recent years within the biomedical field. Due to
the incompressibility of the fluid and the close density ratios
between the fluid and solid domains common in biomedical
applications, a strongly coupled FSI code is necessary. There
are two predominant solution methodologies, namely a mono-
lithic solver or a partitioned solver with a strong interface
coupling algorithm. Monolithic solvers solve all equations
pertaining to the solid and fluid domains as well as the
interface simultaneously. They do however require a large
initial investment in terms of solver development. Partitioned
solvers on the other hand employ pre-existing structural and
fluid solvers and solve the two domains in a staggered fashion
towards convergence. Of particular interest are those algo-

rithms that treat each of the respective field solvers as “black-
boxes”.

One of the more promising “black-box” partitioned cou-
pling schemes is the ’Interface Block Quasi-Newton with an
approximation for the Jacobian from Least Squares Models’
(IBQN-LS) scheme introduced by Vierendeels et al. [1]. The
coupling scheme requires no access to either solver, and
builds up an approximate interface Jacobian based only on
historical observations of both the fluid tractions imposed
on the interface surface and the boundary deformation of
the interface based on these tractions. The method has been
applied successfully to strongly coupled FSI problems, outper-
forming Aitken’s relaxation method and compares favourably
to interface-GMRES [2] and interface artificial compressibility
[3]. Degroote et al. have also demonstrated how a similar
reduced order modelling (ROM) based coupling scheme IQN-
LS (Interface quasi-Newton with inverse Jacobian from a least
squares model) ranges between 1/2 to 4 times the required
computational cost of a full monolithic solver for a series of
benchmark problems [4].

The original authors of the IBQN-LS coupling scheme
have demonstrated that the number of time histories to be
retained for the construction of the interface reduced order
models (ROM) are problem dependent. However, in this paper
we demonstrate that for a certain class of problems all the
histories are important and should be retained. The perceived
dependence on the number of retained time histories is as a
result of increasing ill-conditioning of the ROM least squares
(LS) matrices.

To this end, we introduce a minor augmentation of the
original IBQN-LS method based on proper orthogonal de-
composition (IBQN-POD). Proper orthogonal decomposition
(POD) forms the optimal linear decomposition of any given set
of system observations. If all the histories are retained, and the
approximate Jacobian remains well conditioned, POD offers
no additional advantage over the original least squares solution
of the histories. It does however provide a mathematically
quantifiable way in which information can be truncated such
that the solution matrices remain well conditioned, while
essentially retaining all the information.
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II. PARTITIONED COUPLING ALGORITHMS

For most aero-elastic problems (for example flutter predic-
tion of an aircraft wing), weak coupling is often sufficient, i.e.
where a single fluid and solid computation suffices (often with
no convergence check). These type of problems are usually
characterized with fluid to solid density ratios Z—; > 1000.

For problems in biomedics however the flow is internal
with density ratios much closer to 1; this in addition to the
incompressibility of the fluid flow leads to increased numerical
effort. This phenomenon has been coined the ’added mass
effect’ [5], [6], where the solid deformation is often over
predicted leading to potentially severe instabilities when em-
ploying a staggered solution scheme. Problems of this nature
require the use of a strong-coupling algorithm, which in some
way iterates on the boundary displacement until convergence.

A. Coupled FSI problem

In this paper we will focus only on FSI coupling using
“black-box™ field solvers. Each of the field solvers operate
independently on non-overlapping fluid and structural domains
QF and Q° which share a common interface I'. We denote
each of the respective field solvers as interface operators which
map interface displacements and forces. The solid solver is
therefore an interface operator .S that maps a given interface

traction vector f1*! to interface displacements

dSmt =S¢ ( 1F7,n+1) (1)

where the interface boundary is denoted by I', and d’?“ is

the interface displacement vector at time step n+ 1. Similarly,
the fluid field solver is represented by F' such that

llf,nJrl — Fr (dg,nﬂ) . 2

The fluid field operator F' denotes both the solution step of
the fluid field variables as well as the mesh movement of the
fluid domain nodal coordinates.

For the FSI problem it is essential that both the kinematic
and dynamic continuity is satisfied at all times. In the case
of no-slip boundary conditions on the moving interface the
kinematic continuity states that the fluid flow velocity at the
interface ur equals the boundary velocity

odr

ot &

ur =

and dynamic continuity states that the traction forces are equal
at the interface,

fln=fln 4)

where n is the respective interface normals.

B. Fixed Point Iterations

Fixed point iteration schemes have gained a lot of popularity
due to their simplicity and have proven to be robust for a
large range of aero-elastic problems. The main idea of fixed
point iteration schemes is to iterate back and forth between the
two respective field solvers until the change in displacement
updates fall below some specified tolerance.

Given that the FSI problem requires satisfaction of an
interface equilibrium condition of

Fn+l S,n+1
Fn = Fn ; (5)

it implies that an approximation to the interface displacement
dp! may be obtained by

diiy = Se (Fr (di)'). ©)

The fixed point iteration scheme then iterates on the field
operators until the interface displacement residual drops below
some given tolerance e where the time step residual is defined
by

n+1 _ gn+1 n—+1
Trgt1 = Argyr —drys (7
and k denotes the time step coupling iteration count.

The convergence stability of fixed point iterations can be
augmented by including a relaxation factor wy such that

n+1 _ gn+1 aantl
dripn =dr) Fwirp ;. (8)

However, for the class of problems encountered in biomedical
problems, fixed point iterations with a constant relaxation
parameter remain insufficient to guarantee convergence.

To this end, Aitken’s A2 dynamic relaxation [7], which can
be likened to a secant method for vectors, is a useful aug-
mentation to the fixed point relaxation iterations. The overall
computational cost for strongly coupled aero-elastic problems
are very competitive; it facilitates the use of “black-box” field
solvers and has no additional overhead costs. Aitken’s method
recursively modifies w based on

T
e () ()
(rk+1 — pk)T (pht1 k)

)

w

C. IBON-LS

IBQN-LS (Interface Block Quasi-Newton with an approx-
imation for the Jacobian from Least-Squares model), is a
“black-box” coupling scheme introduced by Vierendeels et
al. [1]. The scheme attempts to solve the FSI problem with
block-Newton-Raphson iterations where the interface Jacobian
is approximated via a least squares (LS) reduced order model
(ROM).

If the FSI coupling problem is written as the following root
finding problem

fr—F(dr)=0 (10)

©SACAM 2012



175

dr —S(fr)=0 an

then the system can be solved by a block-Newton-Raphson
iterative scheme where the linear system is expressed as

_é?i % |: Adl",k ] :_[dnk_s(fl“,k)
gj; - % Afr Frp— F(drx)

(12)
Adr j, = dr 41 —dr , where k is the current block-Newton
coupling iterate. To solve the block-Newton problem requires
the computation of the various derivatives of the two field
solvers with respect to the interface boundary conditions. Since
we are dealing with "black-box’ field solvers obtaining these
field quantity sensitivities directly is not possible.

One alternative is to construct approximations to the vector
product of the interface Jacobian via finite differencing (see
for example [8]). It has however been demonstrated that these
gradients are sensitive to the choice of the finite difference step
size. Furthermore, approximating the gradients in this fashion
requires additional field solver calls which further reduce the
overall efficiency of the suggested coupling scheme.

The IBQN-LS method approximates the interface Jacobian
in (12) via reduced order models (ROMs), where the ROMs
are constructed using the interface information provided by
field solvers during the block-Newton coupling iterations.

Assume that k£ coupling iterations have been performed,
therefore the fluid solver has been called k times. Then we
have k corresponding interface displacements df fori =
1,2, ...k and k corresponding interface tractions ff fori =
1,2, ..., k. With the given observations we can construct two
observation matrices. The first observation matrix is associated
with historical displacement vectors

Adf,  AdE, Adfﬁm

v=| : (13)
AdF AdF

where N is the number of degrees of freedom (DOF) along
the interface, and Adf = df — d,f forj =1,2,....k — 1.
Similarly for interface traction observations

W= Affw..,Aff,...,Aff_l} (14)

where Aff = ff — fg forj = 1,2,..,k — 1. An
approximation of the interface displacement Ad” can then be
generated via the linear combination of previous observations:

AdF ~Va (15)

and the change in interface tractions can be approximated as

Aff ~Wa. (16)

Via least squares we can then make the following approxi-
mation:

a= (VTV)_1 vTAdF 17)

—1
Aff=w (VTV) vTad", (18)

Equation (18) can be used to approximate the total derivative
of the fluid field solver with respect to the interface displace-
ment, i.e.

OF _ w (VTV)_l vT.

ddr (19)

It is now possible to obtain an estimate of the interface force
f given a displacement guess d,

fzf,f+—r(&—d,§). (20)

In a similar fashion, we can construct a ROM of the solid
solver, such that, given an interface traction guess the ROM
provides a corresponding interface displacement guess:

—

. S, /-
_ g5 l S
a=df+ 52 (7 17) @D
where once again
55\11 - T -1 T
afF_G(Z z) zZ7, 22)

with G and Z being the corresponding observation matrices
associated with the interface for [ structural solver calls.

It is important to note that we use different iteration counters
k and [ because the ROMs are constructed out of sync.
It is also not necessary that an equal number of solid and
fluid solver calls need to be performed during each coupling
iteration.

Using the approximate sensitivities in (19) and (22) the
block-Newton linear system outlined in (12) can be expressed
as:

(I_a/s\la/fk> Adk:—(df—df)—a/g(ff—ff)

of od of
(23)
OF 081\ \ ok _ (s _ or\_OFk (1p s
<I_8daf>Af == (1 - 18) = g (af = ).
(24)

An alternative derivation is to combine the two ROMs in
(20) and (21) to form the following approximate block-Newton
linear system:
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Rt AV T
(25)
(26)

While the two sets of approximate linear systems are
mathematically equivalent, the approximate system described
in (23) and (24) can easily be implemented in a matrix free
implementation, and it is the version used in this paper.

In [2] Degroote et al. demonstrated that the performance of
IBQN-LS can be significantly improved by retaining informa-
tion from preceding time steps. Assuming that ¢ previous time
steps have been performed, the observations matrix V* can
be defined as:

Vk — n+1Vk’n ‘/v7 .“’71,—(1-&-2 V’n—q-&-l V:| (27)
where "t1V* is the current time step observation matrix
defined by (13) and "=tV for i = 1,2..¢ — 1 are the ob-
servation matrices at convergence in time step ¢. We similarly
retain histories for all observation matrices W, G and Z.

To summarize the order of the IBQN-LS coupling scheme:

1) At least two solver calls per ROM is required (necessary

for the least squares matrices to have information)

a) Use fixed relaxation as in (8) for the first iterations
until £ > 2 and [ > 2, or the number of retained
histories ¢ > 0.

2) Estimated interface displacement — Fluid solver call —

Interface tractions

a) Update fluid ROM observation matrices W and V'

(k=Fk+1).
3) Solve fluid ROM (24) or (26) — estimated interface
tractions

4) Estimated interface tractions — Solid solver call —
interface displacements

a) Update solid ROM observation matrices G and Z
(l=1+1).
5) Solve solid ROM (23) or (25) — estimated interface
displacement.
6) Return to 2, until convergence of interface displacement
and/or convergence of interface traction forces.

D. IBON-POD

In several publications Degroote et al. [2]-[4] have demon-
strated that the number of time histories ¢ to retain for the
construction of the IBQN-LS observation matrices in (27) is
problem dependent. This is certainly true for problem classes
where the interface response is relatively simple (e.g. a 1D
problem with near constant boundary velocity) or where the
interface response is near linear. For this class of problems,

the interface Jacobian can be approximated well by retaining
only the ¢ newest observation matrices in time.

There is however an equally large number of problems
where the interface response is a complex, non-linear be-
haviour. For this class of problems it becomes beneficial to
retain more histories in time, which in turn improves the in-
terface Jacobian approximations. Unfortunately, increasing the
number of retained history vectors in (27) leads to the potential

_ 95, 0F, _ 0F, 05,
I -5 8d)and (I od 8f)

becoming increasingly ill-conditioned.

The ill-conditioning is related to the close proximity of one
or more of the LS observation vectors. As such there is a
problem specific optimal choice for the number of history
vectors to retain. As we will demonstrate in Section III, if
q is chosen to be too large then the convergence properties
deteriorate due to increasing ill-conditioning, if convergence
does not fail altogether. Conversely, if ¢ is chosen to be too
small then a lot of valuable information is discarded and sub-
optimal convergence rates are once again achieved.

For this reason, we suggest a minor augmentation to the
IBQN-LS based on proper orthogonal decomposition (POD).
POD provably forms the optimal linear decomposition of
any given set of system observations. It therefore allows for
a mathematically quantifiable way in which to truncate the
observation matrices such that they essentially retain ‘all’ the
information while limiting the extent of ill-conditioning.

To facilitate the discussion on the POD augmentation,
we start with the ‘method of snapshots’, a solution method
introduced by Sirovich [9]. The method of snapshots is a
truncated solution procedure to solve for the POD basis
functions for a non-square observation matrix. Consider the
observation matrix V' which is of size M x N where M is
the number of observation vectors and N is the DOF of the
system (for the FSI problem, this would be the number of
DOFs along the interface boundary). The method of snapshots
requires the solution of the eigenvalue problem of an M x M
autocorrelation matrix of the form:

of the solution matrices (

1
R= MVVT, (28)
where the eigenvectors a of R are computed as an interme-
diate step to computing the basis modes, i.e.

Ra = \a, (29)

where the POD basis modes ¢ are then computed as the linear
combination

p=aV. (30)

The eigenvalues \; in (29) provide an indication as to
how much of the system information is contained in the
corresponding POD modes ¢,. Therefore by ordering the
eigenmodes ¢; based on the ranked eigenvalues (from largest
to smallest), it is possible to truncate the system to only the ¢
most dominant basis modes:
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C
~k __ k
S E oy pi 31D
i=1
. . . ~k .
where ¢ is the number of retained basis modes, £~ is an

approximation of the k™ vector of the observation matrix V'
and «; is the i eigenvector of a.

Let us now return to the approximations in (15) and (16).
Using the newly computed basis modes for V', we replace
(15) with

AdY =~ oy (32)
and using least squares we solve for g, such that
-1
o = (7 p) T AL (33)

Furthermore, the POD expansion coefficients oo, can be
related as a linear combination to the eigenvectors a. As such,
we obtain a new approximation for (16):

AfF ~Wa [(ga%)’l o AdF } : (34)

We now have the ability to truncate both a and ¢ in
accordance to the ranked eigenvalues \. By retaining only the
¢ most dominant modes, the conditioln number of the least
squares solution in (33) of (¢”¢) T is then provably

equal to /A\—l We therefore have strong control over the

condition number of the least square matrices, which in turn

limit the condition number of the interface system matrices
dS, OF OF 95,
(I—a—f’ P and (1 OEk081),
We do the same for the Solid ROM, and with the new POD

based approximations reconstruct the approximate interface
Jacobian in (23)-(24).

It should be noted that the dominant additional cost of the
proposed IBQN-POD model is the solution of an M x M
eigenvalue problem and the construction of the covariance
matrix R with associated cost N x M?2. Although in typical
problems M < N, it should be noted that if a large number
of historical observations are retained that M can quickly
grow to a non-trivial value. In such a scenario it might be
advisable to solve the eigenvalue problem using an iterative
algorithm solving for only the ¢ most dominant eigenvalues
and eigenvectors.

III. RESULTS

The test case considered here is the 3D simulation of
flow through a straight flexible tube presented in [10] and
is representative of the type of problems encountered in
hemodynamics. The tube has a length of 5Scm, an inner
radius of r; = 0.5cm and outer radius of r, = 0.6cm. The
structural density is p, = 1.2g/cm® with a Young’s modulus
and Poisson’s ratio of £ = 3 X 104dyne/cm2 and v, = 0.3
respectively. In this paper we make use of a hyperelastic
Neo-Hookean material property as opposed to a linear elastic
model used to analyse the IBQN-LS and its many variants in
previous publications [2]-[4]. Using a Hyperelastic material

Fig. 1. Flexible tube benchmark problem with the employed fluid (red, 1600
hexahedral finite volume elements) and solid (green, 96 twenty node quadratic
brick finite element) computational grids.

property increases the non-linear response of the solid field
solver which in turn significantly complicates the construc-
tion and performance of the IBQN-LS approximate interface
Jacobian. The fluid domain is modelled with a viscosity of
i = 0.03 Poise and density of py = 1.0g/cm®. The time step
size is At = 0.0001s.

The tube is fixed at both ends and the fluid and structural do-
mains are initially at rest. A traction of 1.3332 x 10*dyne/cm?
is applied for 3 x 10~3s which results in a pressure wave
propagating through the length of the tube. The fluid flow and
deformation of the tube at time steps 0.002, 0.0055 and 0.008
seconds is shown in Figure 2 for 10 times enlarged structural
deformation.

The structural and fluid field solvers employed for this
problem are the open-source solvers Calculix and OpenFOAM.
1600 eight node hexahedral finite-volume elements and 96
twenty node quadratic brick finite elements are employed
for each of the respective domains. The time step iteration
convergence tolerance used for this test problem is

n—+1

dn+1 -
| T S 10—7

T+l —

VN

The v/N is included to remove the dependency of the solution
residual to the interface mesh size, where NV is the DOF of
the interface.

We run the problem for a total of 100 time steps, which
is approximately the time required for the pressure pulse to
propagate through the length of the tube. In Figure 3 we
compare the number of coupling iterations required by the
three iteration schemes, namely Aitken’s A2, IBQN-LS where
the values in the brackets (-) indicate the number of retained
histories in time and the IBQN-POD where all the histories
are retained. The average number of iterations are summarized
in Table 1.

(35)
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TABLE I
SUMMARY OF THE AVERAGE NUMBER OF REQUIRED COUPLING
ITERATIONS. QUANTITIES IN BRACKETS (-) INDICATE NUMBER OF
RETAINED HISTORIES

Coupling Scheme Avg. number of iterations

Aitken’s A? 29.09
IBQN-LS(ALL) 8.32 (non-convergence time step 84)
IBQN-LS(5) 6.95
IBQN-LS(15) 5.26
IBQN-POD(AlI) 3.31

For Aitken’s relaxation, we make use of an approximation
of the boundary position at the start of each new time step.
The approximation is based on the interpolation of converged
interface position from two previous time steps [2]

ittt = gd” —2d" 4 %d"‘Q. (36)
While fixed point iteration schemes benefit from a good
initial guess we have observed that the block-Newton methods
investigated in this paper gain little to no improvement in the
coupling iterations by employing the interpolated approxima-
tion. Therefore, to remove any ambiguity when comparing
the coupling performance of the block-Newton methods we
start each new time step with the initial condition equal to the
converged displacement from the previous time step

ittt =d". (37)

Upon comparing the results in Table I and Figure 3 it
becomes apparent that Aitken’s dynamic relaxation method
is somewhat ill-suited to the problem. While convergence is
attained, the number of coupling iterations, and hence field
solver calls, is significantly higher than the results of the
approximate block-Newton methods.

If we now analyse the behaviour of the IBQN-LS algo-
rithm, the dependence on the number of retained histories in

time g becomes apparent. In Figure 4 a comparison of the
9F . 98,

bd Of ) is provided as a function
of the iteration count. By retaining too many histories, the
solution matrices for the IBQN-LS approximations become
ill-conditioned which in turn causes the coupling scheme
to struggle and eventually lead to non-convergence. On the
contrary retaining too few histories, while resulting in a well-
conditioned system, looses valuable system information. The
optimal ¢ for this current problem is approximately 15.

For the IBQN-POD coupling scheme, we selected the ¢ most
dominant modes based on the criteria of the ratio of maximum
to minimum eigenvalues

condition number of (I —

A1 11
— <10
)\ - )

(6]

(38)

which leads to a maximum condition number for the LS
matrices in (33) of 3.16 x 10°. The approximate interface
approximations therefore remain well-conditioned throughout
the simulation while essentially retaining all the system infor-
mation. The behaviour of the IBQN-POD is therefore more

Fig. 2. Pressure wave propagation plots at time step 0.002, 0.0055 and 0.008
seconds. Structural displacement magnified 10 times. Colour fields represent
the pressure (for the fluid flow) and displacement magnitude of the tube wall.

60

— IBQN-LS(All)
— IBQN-LS(15)
— IBQN-LS(5)
— IBQN-POD
Aitken A*

50 |-

40 H

30

20 |

Number of coupling iterations

10+

0 20 40 60 80 100
Time step

Fig. 3. Comparison of the number of solver coupling iterations.
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105 || — I1BQN-LS(15)
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Fig. 4. Condition number of the approximate interface Jacobian matrix

107 . . . . . . . .

~— Time Step:1
~— Time Step:5
~—— Time Step:20 |{
= Time Step:30
~— Time Step:50
Time Step:100|§

N

Interface displacement residual [(dp; ,,—dr )/

0 1 2 3 4 5 6 7 8 9
Coupling iterations

Fig. 5. Block-Newton coupling iteration convergence rates for IBQN-POD
coupling scheme.

predictable and the benefit of retaining all the histories is
highlighted in Figure 5, which illustrates the convergence rates
at 6 selected time steps. As more information is captured by
the system observation matrices the convergence rates continue
to improve, where from time step 20 onwards the convergence
rates are near quadratic.

A plot of the total number of retained history vectors along
with the number of retained POD modes for the solid and fluid
ROMs is shown in Figure 6. For both the fluid and solid POD
ROMs, the number of retained modes is far fewer than the
total number of retained observation vectors. This highlights
the extent of duplicated information within the respective
observation matrices and hence why ill-conditioning becomes
an issue.

The major limitation thus of the proposed POD augmenta-
tion is the necessity to retain all history vectors. For the current
flexible tube problem this is not a problem as the total number
of retained history vectors remain small. If however the prob-
lem requires a large number of time steps to run to completion

250

— Total number of observation vectors

— Number of retained solid POD modes
— Number of retained fluid POD modes

o 20 0 60 80 100
Time Step

Fig. 6. Comparison of the number of retained POD modes for the solid and
fluid ROMs compared to the total number of observation vectors

the numerical effort required to maintain the full set of history
vectors may become excessive. An important factor to consider
thus is the efficiency gained by the retention of more histories
as a function of the increased numerical effort. This will be the
focus of future work along with using the available subspace
information to predict which histories can safely be rejected
without sacrificing the combined information that is retained.

IV. CONCLUSION

In this paper we have outlined an augmentation to the
original IBQN-LS approximate block-Newton FSI strong cou-
pling scheme via the use of proper orthogonal decomposition.
The performance of the original IBQN-LS method is strongly
governed by the number of previous time step histories that
are retained, where the optimal choice is problem specific.
Maintaining too few historical observation results in sub-
optimal convergence rates, whereas retaining too many results
in increasingly ill-conditioned least squares matrices which
can lead to non-convergence.

The POD augmentation allows for the re-use of all ob-
servations from previous time steps by limiting the matrix
ill-conditioning. Retaining all histories improves the approx-
imation of the interface block-Newton Jacobian, which in
turn improves the coupling iterations’ convergence rates. Once
sufficient information has been captured, the IBQN-POD in-
terface ROM can produce near quadratic convergence rates.

The major limitation of the proposed augmentation is the
necessity to retain all previous history vectors which may lead
to a compromise in the computational cost of the simulation.
Future work will therefore focus on using the ROM subspace
information already available to determine which of the pre-
vious time step histories can be safely removed while limiting
the loss of information.
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