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 

Abstract— Underground mining robotics has not enjoyed the 

same technology advances as above-ground mining. This paper 

examines sensing technologies that could enable the 

development of underground autonomous vehicles. 

Specifically, we explore a combination of three-dimensional 

(3D) cameras (SR 4000 and XBOX Kinect) and a thermal 

imaging sensor (FLIR A300) in order to create 3D thermal 

models of narrow mining stopes. This information can be used 

in determining the risk of rock fall in an underground mine, 

which is a major cause of fatalities in underground 

narrow-reef mining. Data are gathered and processed from 

multiple underground mine sources, and techniques such as 

surfel modeling and synthetic view generation are explored 

towards creating visualizations of the data that could be used 

by miners to monitor areas of risk in the stope. Further work 

will determine this potential. 

 

Index Terms—underground mining robotics, perception 

sensors, sensor fusion, infrared camera, 3D laser scan.  

 

I. INTRODUCTION 

 

To date, robotics in the mining industry has seen much 

advancement in automation for above-ground applications 

where positioning can be achieved with GPS and often 

enhanced by a combination of Differential Global 

Positioning system(DGPS) and machine vision techniques. 

Underground mining, however, has not seen the same 

advancement due in part to the harsh conditions and inherent 

difficulties in navigating a robot through a rough, lightless 

environment.  The lack of infrastructure and communication 

channels across the mine has also hampered the development 

of autonomous stope systems.  Some progress has been made 

in tramming activities in tunnels with the application of wall 

following from load to unload points [1] but no level of 

autonomy has yet been achieved. This paper reports on 

attempts to address the significant challenges presented by 

the development of a mine safety robot that will enhance 

mine safety in the stopes of South African hard-rock mines 

[2]. A number of critical developments are required for 

enabling a robot to sense and navigate in the harsh 

underground stope environment [3]. 
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We discuss some of the issues and show the progress made to 

date. The current objective of the work is to identify the 

technical risk areas that are barriers to the implementation of 

underground robots.  We focus on a localization solution 

based on differential time-of-flight (dTOF) beacons, a 

combined multiple-sensor system for visualization in 

confined, lightless environments, and thermography for 

assessing the safety and stability of hanging walls. Over the 

last decade approximately 200 miners have lost their lives 

per year in South Africa in underground mining activities – 

with 128 of these deaths occurring in 2010 [4]. Fifty percent 

of those deaths occurred in the stopes and of those 70% 

occurred in rock fall-related incidents.  It is envisaged that a 

robot could be used to enhance mine safety by gathering data 

in the stope (e.g. after a blast) and warn miners, prior to their 

re-entry, of potentially unsafe areas to avoid. Furthermore, 

the collected data can be used to focus „making safe‟ 

activities on unstable hanging walls. Data will be gathered by 

the robot using, inter alia, a long-wave infrared (IR) 

(thermal) camera, a short-wave IR TOF camera, a 3D 

imaging device, and a sounding device for assessing hanging 

wall (roof) stability.  Data will then be combined and 

processed before being presented to miners prior to their 

entering the stope. As the eventual deployment of this 

technology will be on a mobile platform, the goal of realising 

real-time processing for 3D stope mapping must be kept in 

mind. While our current implementations process data off 

line, the real-time requirement was considered and continues 

to guide the direction of development. Section Error! 

Reference source not found. of this paper covers the 

localization techniques for determining where the data are 

collected. Sections Error! Reference source not found. and 

Error! Reference source not found. cover the thermal and 

3D sensors used, before Section Error! Reference source 

not found. discusses the combination of data sets and 

potential visualization techniques that could make the 

information about risk available to the miners.  

 

II. LOCALISATION 

 

Localizing a robot underground is a major challenge and 

the CSIR is pursuing the implementation of a difference in 

TOF beacon system [5]. Beacons are surveyed in the 

underground environment and simultaneously transmit 

ultrasonic and radio frequency (RF) signals. The differential 

TOF between the ultrasonic signal and the RF signal is used 

to estimate the distance between the beacon ( 

Figure 1) and the receiver [6]. 
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Figure 1: Multi-directional dTOF Beacon 

 

Resulting positions will be further refined with on-board 

inertial sensors, using an unscented Kalman Filter (UKF). 

This will allow the positional uncertainty of the robot to be 

bounded and will improve registration of sensor data for 

real-time navigation and mapping with large data sets and 

multiple sensors. 

 

III. 3.0 THERMAL IMAGING 

 

Electronic perception underground is hampered by 

adverse conditions, especially in the deep-level hard-rock 

mines of South Africa where humidity reaches saturation, 

temperatures are in excess of 40°C, and the threat of 

explosion requires intrinsically safe construction of 

equipment. There is also no ambient light available, so any 

illumination must be carried on board. To complicate 

matters, the vast distances underground require tetherless 

operation and all power must be supplied by battery. Finally, 

the presence of dust hampers the use of optical techniques, 

and the abundant use of water to combat the dust creates 

extreme conditions that are not conducive to the operation of 

most machinery. 

IR sensing poses a potential solution to some of these 

problems. IR light can penetrate dust very well due to its long 

wavelength. If the wavelength of an electromagnetic wave is 

larger than the diameter of an obscuring particle then the 

wave will tend to pass through it, instead of being reflected or 

scattered. The long wavelength (7 μm – 14 μm) of thermal IR 

allows it to penetrate airborne dust with smaller particle sizes 

[7].  All objects radiate IR at a wavelength that is dependent 

on their temperature. As the rock is already heated, the 

thermal emissions can be used to view the surroundings, 

which negates the need for a stand-alone illumination 

system. Past research [8] and [9-11] has explored the use of 

thermal imaging cameras in mining environments for the 

analysis of hanging wall stability. 

The use of thermal technology is made possible by the use 

of ventilation air, which is a vital component in most active 

South African hard-rock mines. Cooled ventilation air is 

used to keep the stope environment within acceptable limits, 

as the rock can reach temperatures in excess of 65°C. The air 

cools the rock surface, creating a thermal gradient through 

the host rock. If a crack exists, the heat flow is interrupted 

and the surface rock will cool preferentially. Analysis of the 

thermal gradient can therefore be used to identify potentially 

loose rocks that pose a danger to mine workers.  The same 

technology is applicable for mapping stope areas in order to 

create a virtual mine that could be used by a small machine to 

make operational decisions. Three experimental data sets of 

increasing size and complexity are discussed below. 

A. 3.1 Initial Data Set 

 A Wuhan Guide MobIR M2 hand-held thermal imaging 

camera was used for initial work. The field of view was 

limited for the application of inspection of a hanging wall in 

a 1m stope. Since the resolution of the camera is low 

(120x120 pixels) the resulting images do not provide 

sufficient coverage for robust detection of thermal features 

(associated with loose rock). Therefore, multiple overlapping 

images of an area of interest were collected and an automatic 

image-stitching method was used.  

 

Figure 2 shows the first data set collected at Driefontein 

Mine at a depth of approximately 3500m below surface.  

Stitching is achieved by extracting invariant features [12] 

for each image and finding a series of two-dimensional (2D) 

homographies (a 3x3 mapping between 3D planes) for pairs 

of images. Even though the camera is translated during 

capture, a 2D homography was found to be sufficient for 

stitching due to the approximately planar nature of the rock 

surface.  

Unlike visible-light images in indoor scenes, invariant 

features are very sparse in the thermal images. This 

motivated us to use a simplified camera model based on only 

four parameters: 2D translation, scale, and rotation about the 

optical axis. The approximation worked well, because the 

images were captured by moving the camera in a parallel 

manner over the surface. 

 

 
 

Figure 2: Stitched thermal images from first data set (Driefontein Mine) 

 

The experiment clearly showed how the ability to stitch 

thermal images together to create a larger data set could be 

used to aid analysis. Specifically, it allowed for the 

determination of a temperature gradient across areas of rock 

much larger than the field of view of the sensor. It was noted 

with this first data set that the sharp temperature gradient 

visible coincided with a step in the hanging wall profile, and 

not necessarily with an unstable area of rock mass. A larger 
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data set was subsequently captured.  

B. 3.2 Data Set 2 

 A second data set was captured with more overlap 

between images and more consistent camera motion (in 

accordance with our simplified model). Although the 

sequence was captured in an ordered manner, this was not 

used to determine the pairing relationships during stitching. 

Rather, robust feature matching is used to find matches 

between all possible image pairs. The stitched image is then 

generated by iteratively choosing the image pair with the 

highest number of matched features that has a common 

connection to the current merged set. Finally, the images are 

merged into a common reference frame using the pair-wise 

transformations and weighted blending function is used to 

remove the seams. 

It is apparent in Figure 3 that a metallic roof support 

(arrow shown) is visible in the image and is at a different 

temperature from that of the hanging-wall rock.  Since 

different materials have different thermal emissivity 

constants, this could be due to either a significantly different 

emissivity and similar temperature or a real difference in 

temperature. As the support is metallic and the rock 

quartzite, and the ventilation air would preferentially cool 

the support as it protrudes into the airflow, it is likely that 

both reasons are valid. On the other hand, the blue (cooler) 

area at the bottom left of the image represents a cooler rock 

mass and, therefore, indicates a potential threat where the 

rock mass is at risk of sudden separation. However, during 

the data collection it was noted that the cooler area 

represented an area that was protruding out of the hanging 

wall, and could be preferentially cooled and have additional 

surface area exposed to the cooled ventilation air. Therefore, 

the blue area was not conclusively a high-risk region. 

Additional data collection and verification are necessary to 

test this hypothesis in subsequent work. 

 

 
Figure 3: Stitched thermal image of mine hanging wall using 17 images,  

blue=cold and red=warm (Driefontein Mine) 

 

As a result of this data set it was concluded that 3D profile 

information is required in order to robustly assess risk from 

the thermographic data. This led to the development of a 

multi-sensor setup geared for both thermal and 3D 

acquisition.  This setup is discussed further in Section Error! 

Reference source not found.. 

C. 3.3 Subsequent Data Set (3rd)  

 The third data set was collected at Bafikeng Rasimone 

Platimum Mine (BRPM) at a shallow depth of 250m below 

surface; approximately eight hours after blasting and after 

cleaning had been completed. Drilling had commenced. The 

data was collected with the multi-sensor setup comprising a 

FLIR A300 thermal imaging camera and two 3D sensors. 

Section 4 discuss the 3D sensors and their use in producing 

combined thermal and 3D data respectively. 

 

IV. 4.0 3D MAPPING 

 

 To complement the thermal data with 3D rock structure, 

a logical step is to gather 3D data of the mine environment. 

Creating 3D maps of mines is not new: Baker et al. [13] and 

Huber and Vandapel [14] used a laser scanner to map a mine 

portion and Nüchter et al. [15] successfully mapped a tunnel 

section from an abandoned mine. 

The approach taken with this work was to use a high-end 

sensor (Riegl laser scanner) to generate a ground-truth data 

set. This demonstrated the potential of 3D data for our 

purpose, and resulted in an investigation into less expensive, 

more portable options for our multi-sensor setup. Ultimately, 

this led to the selection of a SwissRanger SR4000 TOF 

camera, and later this was compared with the Microsoft 

XBOX Kinect sensor. Follows a discussion on each sensor. 

A. 4.1 Riegl Data Set  

 A ground-truth data set was collected using the Riegl 

LMS-Z390i 3D laser scanner. It is large, heavy, cumbersome 

and scans slowly. While an impressive amount of data was 

collected, the process of transporting the sensor to the mine 

and moving it to new locations in the narrow stope 

environment made this a once-off activity. Newer 

alternatives that are more compact, such as the Faro focus 3D 

20 and 120 scanners, are available but they are still 

prohibitively expensive, large and slow for mobile 

applications. 
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Figure 4: Large-scale Riegl laser scanner data set representations 

 

Tunnel data and stope data were collected, and the 

visualizations in  

Figure 4 show the best level of detail that can be achieved 

with current technology. Images are textured by depth – blue 

for close and red for far away. From the data it is seen that 

there is indeed sufficient resolution for determining whether 

an area of wall is protruding into the ventilation air. 

Therefore, further sensors were evaluated for a mobile sensor 

head. 

B. 4.2 TOF Data Set  

A 5-m-range MESA Imaging SwissRanger SR4000 was 

used for the next data-set collection at a shallow (600m) 

disused gold stope.  The distance ambiguity problem 

(aliasing) [16] typically experienced with this type of sensor 

proved to be a significant issue for processing. In a tunnel 

environment this is a persistent problem since extreme points 

in the direction of the tunnel often exceed the range of the 

camera, resulting in aliased measurements. Similarly, in a 

stope environment the hanging wall (ceiling) and foot wall 

(floor) stretch continuously beyond the sensor range, which 

causes the same problem. Although this can be addressed by 

amplitude filtering, it adds unwanted post-processing and is 

not completely robust. As a consequence, another 3D sensor 

option was sought towards achieving a faster mapping 

solution for thermal data fusion.  

Figure 5 shows a 3D model generated from the TOF data. 

A median filter is used to reduce noise and iterative closest 

point (ICP) is used to register the 3D view of each range 

image. Following this, ray-carving is used to generate a 

triangular mesh model using Marching Tetrahedra 

polygonization [17]. As the surface is traversed, points are 

projected into each range image and those that project to 

points in front of the closest range image are removed. This 

effectively carves away parts of the volume that are 

inconsistent with the set of range images. The model is 

post-processed with an iterative smoothing technique [18]. 

 

 
 

Figure 5. SR4000 data visualization using a ray-carving technique (Gold 

Reef City Mine) 

 

C. 4.3 XBOX Kinect Data Set  

During the evolution of the project a new sensor (the 

Kinect) was released, which has quickly become popular in 

the robot community because of its low cost. The Microsoft 

XBOX Kinect has been successfully used in indoor mapping 

[19] using [20] and thus it was a natural progression to test 

the system underground. In contrast to TOF, Kinect uses a 

near-IR projector and camera to scan the environment. A 

colour camera is also built into the unit, but for 3D scanning 

using just the IR camera means that no external light source 

is required. 

 

 
 

Figure 6: Two perspectives of the Kinect stope data set (BRPM Mine) 

 

The sensor was tested in an office environment and then 

mounted together with the other sensors during acquisition at 

BRPM (details given below).  

Figure 6 shows two screen shots of different perspectives of 

the BRPM Kinect data set. As with the TOF data, ICP is used 

to register the sequence and obtain a global reference frame 

for each range image. However, instead of using ray-carving, 

which can be slow and memory intensive, a synthetic 

combined range image was generated, which allowed a 

triangular mesh to be quickly generated using the image 

connectivity. This method was found to be preferable as it is 

less processor intensive and lends itself well to our 

thermal-image-stitching problem. Occluded areas where the 

surface cannot be seen from the various 
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viewpoints is clearly seen by the empty sections. Merging 

more scans from different viewpoints can be used to create a 

full model and will be undertaken in subsequent work. 

 

V. 5.0 COMBINATION OF THERMAL AND 3D DATA FOR 

VISUALIZATION 

 

Preliminary results showed that although the uniformity of 

the rock temperature produces limited features, it is possible 

to stitch images together to form a single large image. The 

combined image extends the field of view of the thermal 

imaging camera and facilitates analysis of potentially 

unstable areas. 

A. 5.1 The Sensor Head  

Our multi-sensor setup thus consisted of the three 

aforementioned sensors, namely the FLIR A300, the 

SR4000, and the Kinect, which were all rigidly mounted on a 

tripod. Relative calibration between the sensors was achieved 

by collecting correspondences through the use of a 

calibration object.  

One of the difficulties of calibrating 3D and thermal 

cameras is that there is no common viewing spectrum. In one 

scenario, matching points were manually selected using the 

bottom of a beer crate. This worked well since the holes in the 

grid pattern create a depth difference as well as a thermal 

difference due to the varying background. However, manual 

calibration is slow so a more automated approach was sought 

in the form of a tennis ball mounted on a stick. A piece of 

backing card was mounted further back on the stick so that 

the ball could be clearly seen against its background. Thus, 

the sphere-like structure of the ball could be found in the 

range image and by flexing the ball several times its glowing 

counterpart could be detected in the thermal image. Finally, 

by waving the ball around the scene multiple 

correspondences were automatically detected and used to 

calibrate the sensors.  

Figure 7 shows images of the sensor head and calibration 

object. 

 

 

 
 

Figure 7: Multi-sensor setup with SR4000 TOF camera, FLIR A300 IR 

camera and XBOX Kinect rigidly mounted on a tripod (left), and tennis 

ball calibration object (right) 

 

During data capture, scans were taken from a single 

viewing position with the sensor head rotated about a pivot 

on a tripod. This provided a stable scanning path that 

facilitated ICP registration since the motion was less 

irregular. 

B. 5.2 Data Fusion  

Given the relative calibration between the thermal and 3D 

sensors, the correspondence between 3D points and their 

temperatures can be established by projecting into the 

thermal image. This enables texturing the model with the 

thermal data. One caveat: since the 3D camera streams 

approximately 10 times faster than the thermal imaging 

camera, it is important to ensure good synchronization so 

that the thermal texture is correctly aligned. Here, we used a 

simple time-stamping approach to obtain a global reference 

during capture. During texturing, the 3D and thermal images 

with the smallest time difference are selected (or rejected if a 

maximum threshold is reached).  

Figure 8 shows an example where a single Kinect range 

image is textured with its closest (temporally) thermal image. 

 

 
 

Figure 8: Single-frame alignment fusing XBOX kinect and FLIR A300 IR 

camera 

 

Extending the above case to multiple scans with 

multiple thermal images requires that the 3D scans be 

registered in a common reference frame. Using ICP, we 

obtained an alignment for the BRPM data set and used this to 

generate a combined model as described in Section 4. Since 

each thermal image can be linked to its closest range image, 

the set of thermal images can be addressed in the common 
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reference frame. Therefore, by projecting points from the 

combined model into the set of thermal images the combined 

model can be textured from multiple thermal images. We use 

a greedy approach, where points are assigned a temperature 

from the most recent thermal image. Once assigned, the 

point is removed from the processing queue and only the 

remaining points are textured in the following iteration. 

Once all points have been processed or all thermal images 

have been exhausted the process terminates. A number of 

other merging strategies could be applied, such as weighted 

average.  However, the FLIR camera produces extremely 

repeatable measurements and further filtering was not 

required. 

 

 
 

Figure 9: Merged 3D model textured with multiple thermal images 

(BRPM Mine) 

 

Combining thermal and 3D data in this manner therefore 

provides sufficient information for a machine-intelligence 

algorithm to determine potentially hazardous areas of the 

mine wall. The next phase of work will involve developing 

such an algorithm through the collection of multiple data sets 

that can be labeled by an expert. This will enable us to use the 

3D thermal model to estimate the likelihood of a cooler area 

of rock being loose as opposed to protruding and therefore 

having the potential to separate from the host rock. An 

annotated visualization can then be generated that can be 

used by miners to identify rocks that pose a danger. 

C. 5.3 Visualization  

Several visualization techniques were explored to allow 

humans to interact with data. Rendering a 3D textured model 

as shown in Figure 9 is one method of visualization. 

However, it may be better to present thermal and 3D structure 

as separate 2D images so that the distinction between 3D 

structure and temperatures can be readily seen.  

Figure 10 below shows an example where the textured 

model is re-projected into a virtual camera, creating a 

stitched thermal image similar to those that were generated 

for the initial data set. However, here we are not constrained 

by our original simplified assumptions of near planar scenes 

because actual 3D points are known. 

 
 

Figure 10: Wide angle visualization – planar projection into a synthetic 

view (BRPM Mine) 

 

As the model becomes larger it becomes more difficult to 

manage connectivity of the mesh. This is especially 

problematic when iteratively updating the model with new 

scans of a previously modeled region. One option is to simply 

plot the points. However, this creates a sparse structure that is 

difficult for visualization. Another alternative is to assign a 

small patch (surface element or surfel) to each point and 

allow the patch to adapt to new measurements. Essentially, 

this provides the flexibility of a point-cloud but with surface 

characteristics of a mesh. This is demonstrated in  

Figure 11, where an iterative model was generated using 

surfels [21]. Surfels are initialized when points occupying 

empty regions are added and updated as each range image is 

processed. Orientations are determined by estimating surface 

normals from the local pixel neighbourhood in the range 

images. A scale is assigned depending on the distance to the 

sensor. This allows model resolution to adapt appropriately 

when the camera is moved closer to a surface. Each surfel is 

modelled by a hexagon rendered with four triangles. In 

Figure 11, the surfels are coloured by distance from the 

sensor. 

 

 
 

Figure 11: 3D model of BRPM data set constructed using surfels (BRPM 

Mine) 

 

VI. 6.0 CONCLUSIONS 

 

We propose that functional technologies exist for enabling 

a robot to navigate in the stope environment (30m X 3m X 

1m) of South African hard-rock mines using a dTOF beacon 

system for sensor localization and an array of sensors to map 

the environment. Using thermal imagery and 3D structure 

we have shown that a reasonable approximation of the mine 

can be created as a 3D model. It remains to be shown whether 

this is sufficiently accurate or consistent for 

machine-intelligence algorithms to reliably generate 
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hanging-wall risk criteria. The initial work with only an IR 

camera to evaluate hanging-wall risk was insufficient for 

complete analysis, as rock mass protruding into the stope will 

also be cooled by the passing ventilation air. This indicated 

that 3D topographical information would be needed to assess 

the rock mass stability.  Additionally, the lack of features in 

the thermal data made stitching the data together unreliable.  

By rigidly mounting the thermal and 3D sensors, it was 

possible to register the 3D and thermal data such that the 

resulting 3D surface could be thermally textured.  This in 

turn could be used to determine rock mass stability. We have 

shown that once a risk criterion is achieved, the visualization 

of that risk can be achieved in a number of ways. Synthetic 

view and surfel representation are two likely candidates for 

use in the mining application. 

 

VII. 7.0 RECOMMENDATIONS 

 

The success of the fusing of thermal data and 3D structure 

provides a positive foundation for a mine-wall 

stability-assessment tool.  The development of robust 

machine-intelligence algorithms to determine a suitable 

approximation of stability from the thermal and structural 

information is the next step in development. The data 

discussed above were captured from a single point of view 

(POV), using only rotation and elevation to vary the sensor 

viewpoint.  This produced stable measurements and 

consistent features that aided registration.   

The next step is to combine multiple POV data sets to build 

a more complete stope model, and then progress to moving 

sensors using loop closure to limit the accumulation of 

incremental errors. Visualization of this information must be 

presented in such a way as to be useful to a miner.  The exact 

visualization technique should be explored further, taking 

into account potential use in the unfavourable mining 

environment.   
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