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ABSTRACT

There has been recent developments in the use of hyper-
temporal satellite time series data for land cover change
detection and classification. Recently, an Autocorrelation
function (ACF) change detection method was proposed to
detect the development of new human settlements in South
Africa. In this paper, an extension to this change detection
method is proposed that produces an estimate of the change
date in addition to the change metric. Preliminary results in-
dicate that comparable accuracy is achievable relative to the
original formulation, with the added advantage of providing
an estimate of the change date.

1. INTRODUCTION

Anthropogenic land cover change has a major impact on hy-
drology, climate and biodiversity [1]. The most pervasive
form of land-cover change in South Africa is human settle-
ment expansion. In many cases, new human settlements are
informal and occur in areas that were previously covered by
natural vegetation. There has been recent developments in
the use of hyper-temporal satellite time series data for land
cover change detection and classification in Southern Africa.
Specifically, an Autocorrelation Function (ACF) change de-
tection method was recently proposed to detect the develop-
ment of new human settlements in South Africa [2, 3, 4]. This
method is based on MODIS time-series data, which have been
proven to be separable for the land cover classes considered
in this study [5]. The method uses the ACF of this MODIS
time-series to indicate the level of stationarity of the time-
series, which is then used as a measure of land cover change.
It was previously shown that new settlement developments
could be efficiently detected using specific MODIS bands [6].
The appropriate band, ACF lag and correlation value that is
used as a change index is determined by means of simulation.
The method calculates the ACF of the entire time-series and
produces a single change index which, when compared to a

threshold value (determined by simulation) yields a change
or a no-change decision [6].

In the original formulation [6], the entire time-series
(spanning eight years) was used as input, resulting in a
change alarm for the entire period with no indication of when
the change occurred. The objective of this paper is to extend
this method by using a temporal sliding window approach in
order to determine the date of change. Apart from only pro-
viding a change alarm, the proposed method would then also
provide information on the timing of the change, i.e gives an
indication of when the change occurred. Preliminary results
show that by using the correct window length and threshold,
very comparable detection accuracy can be achieved relative
to that which was achievable using the original formulation,
with the added advantage of providing an estimate of the
change date.

2. DATA DESCRIPTION

2.1. Study Area

The Gauteng province is located in northern South Africa
and because of a high level of urbanization it has seen sig-
nificant human settlement expansion during the 2001 and
2008 period. A total area of approximately 17000 km2

(centered around26◦07′29.62′′S, 28◦05′40.40′′E) was con-
sidered. The time-series for all seven MODIS land bands,
as well as NDVI derived from 8-day composite, 500 m,
MCD43 BRDF-corrected, MODIS data was used for the
period 2001/01 to 2008/01. A dataset of no-change pixel
time-series (n=964) consisting of natural vegetation (n=592)
and settlement (n=372) pixels, were identified by means of
visual interpretation of high resolution Landsat and SPOT im-
ages in 2000 and 2008 respectively. Examples of confirmed
settlement developments during the study period were also
obtained by means of visual interpretation of high resolution
Landsat and SPOT images in 2000 and 2008 respectively.



Fig. 1. QuickBird image acquired in 2002 (left image) and 2007 (right image) respectively. The polygon on the left in both
images is the outline of a 500 m MODIS pixel in an area that changed from natural vegetation to settlement while the polygon
on the right in both images is the outline of a 500 m MODIS pixelin an area that remained naturally vegetated. (courtesy of
GoogleTMEarth)
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Fig. 2. Change (left) and no-change (right) MODIS band 4 time-series of the polygons shown in figure 1

All settlements identified in 2008 were referenced back to
2000 and all the new settlement polygons were mapped and
the corresponding MODIS pixels (n=181) were identified.
The real change pixels and remaining pixels of the no-change
dataset (n=482) were used in an unsupervised operational
mode to test the change detection capability of the method.

3. METHODOLOGY

3.1. Temporal ACF method

The Temporal ACF method proposed in [6] uses a two stage
approach. Firstly, the band, lag and threshold selection is
done using a simulated change dataset together with the no-
change dataset. Second, the aforementioned parameters are
used in an unsupervised manner to detect change. Assume
that a MODIS time-series is expressed as

X = Xn , n ∈ {1, 2, ..., N}, (1)

whereXn is the observation from an arbitrary spectral band

at timen andN is the number of time-series observations
available.

The ACF for time-seriesX = [X1, X2, ..., XN ] can then be
expressed as

R(τ) =
E[(Xn − µ)(Xn+τ − µ)]

var(X)
, (2)

whereτ is the time-lag andE denotes the expectation. The
mean ofX is given asµ and the variance, which is used for
normalization, is given asvar(X). Figure 1 shows an ex-
ample of a change and no-change MODIS pixel with figure
2 showing the corresponding MODIS time-series for each of
these pixels. The ACF of the time-series given in figure 2 is
shown in figure 3. It is clear that the no-change pixel has a
symmetrical form relative to theR(τ) = 0 axis, whereas the
change pixel shows a strong non-symmetrical property. The
reason for this is the stationarity requirement of the ACF in
(2). The mean and variance of the time-series ofX in (2)



Fig. 3. ACF of the change (left) and no-change (right) MODIS pixel’s time-series shown in figure 2.

is required to remain constant through time to determine the
true ACF of the time-series. The inconsistency of the mean
and variance typically associated with a change pixel’s non-
stationary time-series thus becomes apparent when analyzing
the ACF of the time-series. The change metric is thus sim-
ply equivalent to the temporal correlation at a specific lag (τ )
given as

R(τ) = δτ . (3)

It is clear that the distribution ofδτ in the case of change
and no-change,will vary for different values ofτ . The aim is
thus to determine the value ofτ in δτ that will result in the
most separable distributions betweenδτ for the change and
no-change case. The value of the optimal threshold (δ∗τ ) also
needs to be determined. The aim is to determine the time-lag
(τ ) and threshold (δ) which provide the best separation be-
tween the ACF of a change and no-change pixel time-series
taken from the simulated change and no-change datasets re-
spectively. After the off-line optimization phase is complete,
the resulting parameters are used to run the algorithm in an
unsupervised manner for the entire study area. A pixel is la-
beled as having changed by evaluating the following,

Change =

{

true if R(τ) > δ∗

false if R(τ) < δ∗

whereR(τ) is the ACF evaluated at lagτ andδ∗ is the deci-
sion threshold. The value ofτ andδ∗, was provided in the the
off-line optimization phase.

3.2. Sliding Window Temporal ACF method

The sliding window extension to (2) can be expressed as

R(τ, i) =
E[(Xn − µ)(Xn+τ − µ)]

var(X)
, (4)

whereX = Xn n ∈ {i, i+1, ..., i+w−1} , i ∈ {1, 2, ..., N−
w + 1} andw is the window length. Unlike the lag selection

done in [6], a summation of the first 23 lags was performed as
preliminary simulations showed only a marginal reduction in
accuracy when summing over the first 23 lags as opposed to
explicitly selecting a value ofτ . This also reduces the number
of parameters to be optimized, thus making the method more
general.

δi =

23
∑

τ=1

R(τ, i). (5)

A pixel is labeled as having changed by evaluating the follow-
ing,

Change =

{

true if max(δi) > δ∗

false if max(δi) < δ∗

If change is true, the change date then simply corresponds
to the index associated withmax(δi). The value ofδ∗ and
optimal window size is determined by means of simulation.

4. RESULTS

Figure 4 shows the overall accuracy as a function of the
change detection delay for different window sizes and thresh-
olds. The overall accuracy was determined by combining the
change detection accuracy with the false alarm rate to create
a single accuracy metric. The false alarm rate was determined
by running the algorithm on a no-change dataset, whereas the
change detection accuracy was determined by means of an
instantaneous change from natural vegetation to a settlement,
effectively splicing a natural vegetation pixel’s time-series
with a close proximity settlement pixel’s time series. It is
clear that the window size that is chosen has a dramatic effect
on the overall change detection accuracy and detection delay.
A choice of which window size and threshold to choose is
based on the specific user requirement. If, for example, a high
overall accuracy is more important than the detection delay,
a larger window should be selected. For example, a greater
than 75% overall accuracy will require a window length of 80



O
v
e
ra

ll
 A

c
c
u
ra

c
y

Detection Delay [days]

Fig. 4. Overall accuracy as a function of the detection delay usinga range of window sizes and threshold values, the color of
the dots indicate the window size measured in number of 8-dayMODIS samples.

or 85 MODIS 8-day samples yielding a best case detection
delay in the order of 87 days (figure 4). When detection delay
should be minimal, a smaller window size can be chosen at
the expense of the change detection accuracy. For example,
a shorter than 70 day detection delay will require a window
length in the order of 70 MODIS 8-day samples yielding a
best case overall accuracy of 50% (figure 4). The simulated
change framework presented here gives the operator an idea
of the window-size, detection delay and detection accuracy
trade-off by measuring the the delay from the point at which
the simulated change was induced.

5. CONCLUSION

In this paper, an extension is proposed to the work done in [6].
The original formulation is a threshold based change alarm
that uses an ACF of an entire time-series to infer a change
index and uses a simulated change and no-change dataset to
determine an optimal band lag and threshold. The method
proposed in this paper is an extension to the aforementioned
which provides an estimate of the change date using a tempo-
ral sliding window ACF approach. The optimal window size
and threshold is obtained by means of simulated change and
can be selected based on the users specific requirements.
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