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ABSTRACT
In this paper the Bias Variance Search Algorithm is proposed
as an algorithm to optimize a candidate set of initial para-
meters for an Extended Kalman filter (EKF). The search algo-
rithm operates on a Bias Variance Equilibrium Point criterion
to determine how to set the initial parameters. The candi-
date set is then used by the EKF to estimate state parameters
to fit a triply modulated cosine function to time series of the
first two spectral bands of the MODerate-resolution Imaging
Spectroradiometer (MODIS) land product. The state para-
meters are then used for land cover classification. The results
of the search algorithm was tested on classifying land cover
in the Limpopo province, South Africa. An improvement in
land cover classification was observed when the method was
compared to a robust regression method.

Index Terms— Hellinger distance, Kalman Filter, Time
series analysis, Spatial information

1. INTRODUCTION

Reliable land cover and land cover change data are essential
to environmental monitoring and regional development plan-
ning. The Limpopo province located in South Africa is expe-
riencing rapid growth in informal settlement. Proper know-
ledge of land cover is critical to effectively manage the re-
sources with such sparsely distributed settlements.

Kleynhans et al. [1] proposed the triply modulated cosine
model which jointly estimates the mean and seasonal compo-
nent of a NDVI time series to improve land cover separation.
The EKF models the NDVI time series by updating a set of
state parameters for each time index. Salmon et al. [2] ex-
panded on the idea by modeling the spectral bands separately
and introduced a meta-optimization method for the EKF that
will be called the Bias Variance Equilibrium Point (BVEP) in
this paper.

The objective of this paper is to introduce an unsuper-
vised search algorithm called the Bias Variance Search Al-

gorithm (BVSA), which will appropriately search for initial
parameters using the BVEP criterion to improve the perfor-
mance of the EKF.

The paper is organized as follows. Section 2 discusses the
study area and data set. In section 3 the BVEP is discussed
and the new BVSA method is presented. Section 4 presents
the results by comparing several approaches to the new pro-
posed search algorithm. Section 5 presents the conclusions.

2. STUDY AREA AND DATA DESCRIPTION

The Limpopo province is largely covered by natural vegeta-
tion which is used as grazing for cattle and wildlife. Develop-
ment of settlements across the province potentially has detri-
mental effects on the environment, but the formation of these
settlements is monitored only on an ad hoc basis. A study
area of approximately 808 km2 area was selected for valida-
tion, which is predominantly covered by vegetation and set-
tlements. Land cover type (vegetation and settlement) in the
validation area was obtained through visual inspection. The
EKF that is set using the BVSA, was then applied to the entire
Limpopo province, covering an area of 147553 km2.

MODIS spectral bands 1 and 2 time series data were ex-
tracted from the 8-day composite MCD43A4 bidirectional re-
flectance distribution function (BRDF) adjusted MODIS land
surface reflectance product, with a spatial resolution of 500 m
for the time period January 2001 to January 2009.

3. METHODOLOGY

An EKF estimates a set of state parameters for an underlying
model. These state parameters are used to separate a set of
time series into different classes. The triply modulated cosine
function is used to model the two spectral bands, and is given
as

xi,k,b = µi,k,b + αi,k,b cos(2πfsampi+ θi,k,b) + vi,k,b. (1)



The variable xi,k,b denotes the observed value of the bth spec-
tral band’s time series, b ∈ {1, 2}, of the kth pixel, k ∈
[1,Kmax], at time index i, i ∈ [1, Imax]. The noise sam-
ple of the kth pixel at time i for each spectral band is de-
noted by vi,k,b. The noise is assumed to be additive, with
a normal distribution on all the spectral bands. The cosine
function model is based on several parameters; the frequency
fsamp which is computed on the annual vegetation growth cy-
cle and the sampling rate of the MODIS sensor, fsamp is set
to 8

365 . The non-zero mean of the bth spectral band of the kth

pixel at time index i is denoted by µi,k,b, the amplitude by
αi,k,b and the phase by θi,k,b. The values of µi,k,b, αi,k,b and
θi,k,b are dependent on time and must be estimated for each
pixel k, ∀k ∈ [1,Kmax], given the spectral band observation
vectors xi,k,b for i, ∀i ∈ [1, Imax], and b, b ∈ {1, 2}. The
MODIS spectral bands were assumed to be uncorrelated and
were treated independently. The index b is omitted for con-
venience with no loss of generality in the description of this
method. As stated earlier, a state vector is estimated by the
EKF at each time increment i, and is expressed as

~Wi,k = [Wi,k,1 Wi,k,2 Wi,k,3] = [µi,k αi,k θi,k]. (2)

For the present case of land cover classification, it was as-
sumed that the state vector ~Wi,k does not change significantly
through time; hence, the process model is linear. The mea-
surement model, however, contains the cosine function and,
as such, is evaluated via the standard Jacobian formulation,
through linear approximation of the non-linear measurement
function around the current state vector.

The method of operation for an operator is to set the ini-
tial parameters using a training set, which include the initial
state vector, process noise covariance matrix and observation
noise covariance matrix. Section 3.1 summarizes the BVEP
criterion presented in [2] and in section 3.2 a novel unsuper-
vised search algorithm termed as the BVSA is introduced to
automate the initialization of the EKF parameters.

3.1. BVEP criterion to setting the initial parameters

The general approach to estimating and initializing state vec-
tors, as well as the observation noise covariance matrixR and
process noise covariance matrix Q for the EKF, is for an ana-
lyst to determine these parameters offline.

The BVEP method uses temporal and spatial information
to design a parameter space where desirable system behaviour
is expected [2]. Let the uncorrelated observation covariance
matrix’s diagonals be placed into a vector called the obser-
vation candidate vector ΥR, ΥR ∈ υR, which is expressed
as

ΥR = 10 ζ/10 = E[(xk−E[xk])2]. (3)

Let the uncorrelated process covariance matrix’s diago-
nals be placed into a vector called the process candidate vec-
tor ΥQ, ΥQ ∈ υQ, which is expressed as

ΥQ = 10~ςs/10 = E[(Wk,~s−E[Wk,~s])
2]. (4)

The first desired behaviour is the tracking of the observa-
tion vector with minimal residual. The minimal achievable
sum of absolute residuals σE is computed as

σE = min
ΥR,k∈υR,ΥQ,k∈υQ

{
Kmax∑
k=1

Imax∑
i=1

∥∥x̂i,k − xi,k∥∥}, (5)

then

[RσE ,QσE ] = argmin
ΥR,k∈υR,ΥQ,k∈υQ

{
Kmax∑
k=1

Imax∑
i=1

∥∥x̂i,k−xi,k∥∥}.
(6)

The set [RσE ,QσE ] represents the parameters required to
achieve this value. The second criterion is to have internal
stability of the state vector. The minimal achievable absolute
deviation σs for each state variable is computed the same way
as σE in (5). The set [Rσs ,Qσs ] represents the parameters
required to achieve this condition.

The spatial information is included through the use of the
set of Kmax time series for a geographical area, which is de-
noted by {xi,k}. Let qi,E denote the probability density func-
tion derived at time index i from the residuals given over the
set of observations {xi,k}k=Kmax

k=1 such that P [a ≤ E ≤ b] =∫ b
a
f(e)de =

∫ b
a
f(e,R,Q)de, i.e.,

P [a ≤ E ≤ b] =

∫ b

a

q(e,R,Q)de =

∫ b

a

qi,Ede. (7)

A conditioned observation probability density function
q∗i,E is defined as the probability density function qi,E in
equation (7) using the set [RσE ,QσE ] to minimize σE as

P [a ≤ E ≤ b] =

∫ b

a

q(e,RσE ,QσE )de =

∫ b

a

q∗i,Ede. (8)

The conditioned state variable probability density func-
tion q∗i,s and corresponding qi,s is computed in the same way.
The performance of the current estimate ΥR and ΥQ is de-
fined by a performance metric that evaluates how well σE and
σs, ∀s are satisfied. The current estimates are recursively up-
dated and are denoted by Υ̂ι

R and Υ̂ι
Q, where ι denotes the

iteration number. The current estimates Υ̂ι
R and Υ̂ι

Q are used
to derive the set of probability density functions {q̂ιi,E}, ∀i,
and {q̂ιi,s}, ∀i. A f-divergent distance known as the Hellinger
distance is used to measure the similarity between the proba-
bility density functions q̂ιi,E and q∗i,E . The modified Hellinger
distanceHi,E ,Hi,E ∈ [0, 1], is computed as

Hi,E = 1−

√√√√1−

√∫ ∞
−∞

q̂ιi,E q
∗
i,Ede, (9)

where a value of Hi,E → 1 means high similarity between
q̂ιi,E and q∗i,E , while Hi,E → 0 means low similarity. The
hellinger distanceHi,s for each state variable is computed the
same way.



Let IT denote the number of time steps required to ensure
the EKF converges to a stable state. The performance metric
Γ defined in [2] is deemed accurate at IT , which is defined as

ΓIT = min
{
{HIT ,s} {HIT ,E}

}
. (10)

3.2. Bias Variance Search Algorithm

The BVSA method is proposed that will attempt to estimate
Υ̂ι
R and Υ̂ι

Q to satisfy the performance metric ΓIT . The
search algorithm starts by creating ideal operating condi-
tions for each parameter in the EKF; followed by using a
hill-climbing algorithm to search for a set of Υ̂ι

R and Υ̂ι
Q

that will attempt to satisfy the ideal operating conditions for
all the parameters within the EKF. The first ideal condition
is a system that employs perfect tracking of the observation
vectors and is obtained by setting

q∗i,E =
{
qi,E : {ζ} → −∞; {ςs} → ∞,∀ s

}
. (11)

The second ideal condition is a system that employs a stable
state variable and is obtained by setting

q∗i,s =
{
qi,s : {ζ} → ∞; {ς{s}\s} → ∞; {ςs} → −∞

}
.

(12)
After the probability density functions q∗i,E and q∗i,s are com-
puted, a hill-climbing search algorithm is applied to find a
set of initial parameters that will satisfy these conditions.
The BVSA iteratively searches the parameter space and is
described below.

Step 1: The search algorithm starts with an unbiased EKF
where ζ0 = 0dB, and ς0s = 0dB, ∀s.

Step 2: Compute the state vector ~WIT ,k using the same Υ̂ι
R

and Υ̂ι
Q for every time series in the set.

Step 3: Obtain the probability density functions qιIT ,E and
qιIT ,s over the Kmax time series.

Step 4: Compute the Hellinger distanceHIT ,E andHIT ,s.

Step 5: Determine the best performing conditionHbest as
Hbest = max

{
{HIT ,E} {HIT ,s}

}
. (13)

Step 6: Determine the worst performing conditionHworst as
Hworst = min

{
{HIT ,E} {HIT ,s}

}
. (14)

Step 7: Adjust the new ζι according to its relative position
to the best and worst performing parameters using a
threshold ρH, ρH ∈ [0, 1], ρH ∈ R. The adjustment
is made as

ζι+1 =

 ζι + γι if
(
HIT ,E−Hworst

Hbest−Hworst
> ρH

)
ζι − γι if

(
HIT ,E−Hworst

Hbest−Hworst
≤ ρH

)
(15)

The variable γι is a decreasing scalar measured in deci-
bels and is a non-negative real number.

Step 8: Adjust the new ςι according to its relative position
to the best and worst performing parameters using a
threshold ρH, ρH ∈ [0, 1], ρH ∈ R. The adjustment
is made as

ςι+1
s =

 ςιs + γι if
(
HIT ,s−Hworst

Hbest−Hworst
> ρH

)
ςιs − γι if

(
HIT ,s−Hworst

Hbest−Hworst
≤ ρH

) (16)

The variable γι is a decreasing scalar measured in deci-
bels and is a non-negative real number.

Repeat steps 2–8 until one of the parameters ζ or ςs stabilizes.
After the search algorithm converges, the estimates Υ̂ι

R and
Υ̂ι
Q are used to initialize the EKF.

4. RESULTS

4.1. Meta-optimization of EKF parameters

Fig. 1. Average standard deviation for both mean and ampli-
tude parameters computed as a function of epoch.

In this section the standard deviation of the state para-
meters and the average residuals are reported as a function
of epoch produced by the BVSA. In figure 1 the standard de-
viations of the mean and amplitude parameters are shown and
it is observed that with each passing epoch the parameters be-
come more stable (reduced standard deviation).

Fig. 2. The average residual computed as a function epoch.

In figure 2 the average measured residual between the esti-
mated observations and actual observations is reported. It was



Table 1. Comparison between an M-estimate and BVEP.
Spectral Mode
Band M-estimate BVEP
Band 1 σE 118.7 87.1

σµ 28.1 0.04
σα 36.1 0.02

Band 2 σE 144.7 95.7
σµ 37.4 0.01
σα 57.6 0.36

observed that with each passing epoch the residual become
smaller until an overfit is observed after 21 epochs.

The observation noise covariance matrix and process
noise covariance matrix used in the 21st epoch are then used
to initialize the EKF. In table 1, a comparison is made be-
tween the initialized EKF and an M-estimated model fit. The
M-estimate is obtained using the Nelder-Mead algorithm to
fit the triply modulated cosine function. The comparison
shows a significant reduction in standard deviation of the
state parameters and residuals when comparing the initialized
EKF to the M-estimate.

Fig. 3. Classification of the entire Limpopo province, South
Africa in January 2009. The settlement are coded in red and
vegetation are coded in green.

4.2. Limpopo province – case study

The BVSA uses the BVEP criterion to set the initial para-
meters of the EKF. The optimized EKF is then applied to
time series and produces a stream of state vectors. These state
vectors are classified after clustering with the K-means algo-
rithm. A silhouette graph was used to determine the optimal
number of clusters for partitional clustering [3]. The clusters
were evaluated and grouped into settlement and vegetation.

Table 2. Classification accuracy of K-means on the labelled
data set. Each entry gives the average classification accuracy
and corresponding standard deviation.

Method
M-estimator BVEP

Vegetation 81.5% ± 3.6% 84.4% ± 0.2%
Settlement 80.6% ± 3.0% 82.3% ± 0.2%

The classification accuracy on the labelled data set is re-
ported in Table 2, as class separability is not solely based on
a decrease in the parameters’ standard deviation [2]. An im-
provement of more than 2% is observed in the classification
accuracy when the BVEP criterion is used on the labelled data
set.

The optimized EKF was then applied to the entire Limpopo
province, which covers an area of 147553 km2 (Figure 3).
The clusters allocated to the settlements had a total land
coverage of 10.3% (15198 km2).

5. CONCLUSIONS

This paper demonstrated that improved features can be ob-
tained by using the BVEP criterion [2]. The proposed BVSA
is not dependent on acquiring a labelled training data set. It
was shown that with proper selection of the initial state para-
meters, observation noise and process noise covariance ma-
trix, the class separability of features extracted with the EKF
is improved.
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