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Abstract—Despite the fact that image texture features ex-
tracted from high-resolution remotely sensed images over urban
areas have demonstrated their ability to distinguish different
classes, they are still far from being ideal. Multiresolution gray-
scale and rotation invariant texture classification with Local
Binary Patterns (LBPs) have proven to be a very powerful texture
feature. In this paper we perform a study aiming to improve
the performance of the automated classification of settlement
type in high resolution imagery over urban areas. That is, we
combined the LBP method based on recognising certain patterns,
termed “uniform patterns” with the rotational invariant variance
measure that characterises the contrast of the local image
texture, then combined multiple operators for multiresolution
analysis. The results showed that the joint distribution of these
orthogonal measures improve performance over urban settlement
type classification. This shows that variance measure (contrast)
is an important property when classifying settlement types in
urban areas.

I. INTRODUCTION

Rapid and massive growth of population and migration to
urban areas results in a rapid and random spread of formal
and informal physical infrastructure. Effective and regular
monitoring of this spread of infrastructure is vital in delivering
basic engineering services such as water, sewerage and solid
waste removal, and providing essential services such as health
and education. For a successful monitoring system, an effective
detection method of this infrastructure is crucial. Traditional
methods such as census, gathering demographic data, and
mapping using samples are impractical and unsatisfactory for
urban management [1]. However, using remote sensing tools
an automated system can be used as a detection tool of phys-
ical infrastructure [2]. Using high resolution imagery (e.g.,
QuickBird, a high-resolution commercial earth observation
satellite), texture feature algorithms have been shown to be
effective in detecting and describing settlement types in urban
areas [3].

In a study to compare texture algorithms in urban settle-
ment classification, the Local Binary Pattern (LBP) texture
feature algorithm proved to be most effective in classifying
the low-income and informal settlement types [4]. A 2-D
surface texture has two properties, spatial structure (pattern)

and contrast (“amount of texture”). The LBP is simple to
compute and by definition is gray scale invariant, that is, it
neglects contrast properties which makes the LBP algorithm
an excellent measure for spatial structures. However, due to
viewing- and illumination-geometry effects, the LBP algorithm
was shown to offer less than ideal generalization performance
[3]. For settlement classification one would think neglecting
the contrast measure would improve performance, but this
does not appear to be the case for generalization performance.
Contrast may have a significant effect in the classification of
settlements.

Ojala [5] showed that combining spatial structure with the
gray level contrast can improve performance in classifying
texture features. In an attempt to improve performance for ur-
ban settlement classification, we apply this theory and evaluate
the significance of contrast in urban settlement classification.
The proposed algorithm uses the same rotational gray scale
and rotational invariant LBP and combines it with a rotational
invariant Variance measure which characterises the contrast.

In this paper (using Van den Bergh’s [3] work on cross-
date imagery for comparative results), we show that adding
the rotational invariant variance measure to the gray-scale
and rotational invariant LBP improves performance. The per-
formance of the extended LBP algorithm then depends on
the number of bins (features) used to calculate the Variance
measures.

Section 2 briefly discusses prior and related urban set-
tlements classification algorithms, and a brief derivation of
the algorithms used. Section 3 discusses the experimental
procedure i.e., extraction of the input images, LBP features
extraction, extended LBP feature extraction and classification
of the settlement types. Results with discussion are discussed
in section 4, followed by conclusions in section 5.

II. PRIOR AND RELATED WORK

Image texture analysis methods have been broadly divided
into three categories: statistical methods (here a texture image
is described by a collection of statistics of the selected feature,
e.g., Co-occurence Matrix), model based methods (a texture



image is modeled as a probability model or as a linear
combination of a set of basis functions, e.g., Wavelet transform
[6] and Markov model [7]) and structural based methods
(a texture image is viewed as consisting of many textural
elements called texels, arranged according to some placement
rules, e.g., Morphological Profiles [8]) [9].

In urban area images stuctural based methods have been
shown to be successful in setting apart different settlement
types [2]. The LBP (structural method) appeared to be most
effective when compared to other known texture algorithms
(e.g. Gray-level Co-occurrence Matrix (GLCM), Granulomet-
rics and Discrete Wavelet Transform (DWT)) [4]. The LBP
was used for cross-date Quickbird image (Soweto, located
in Gauteng, South Africa as study area) urban settlement
type classification and the results were not as impressive due
to effects of varying viewing- and illumination geometry of
satellite images [3].

The cross-date images study [3] involved the classification
of two scenes of the same area acquired under different
conditions. The images were acquired at different times of the
year, which altered the orientation and length of the shadows.
An ideal texture feature is one that is insensitive to such
changes whilst being sensitive to settlement type. The addition
of a contrast component to the LBP features does not directly
effect the desired invariance to shadow orientation and length,
but it is expected that the richer features will nevertheless
improve settlement classification accuracy. The same data set
(Soweto case study) will be used as basis for comparison with
the extended LBP algorithm.

The extended LBP is a joint distribution of gray-scale
and rotational invariant LBP with the rotational invariant
Variance measure. We do not go into detail in the derivation
of the algorithms but only report the equations used. The full
derivations can be found in [5].

A. Gray-Scale and Rotational Invariant Local Binary Patterns

LBPs by definition are invariant with respect to any mono-
tonic transformation of the gray scale. This is achieved by
considering just the signs of differences instead of the exact
values of the gray scale. Consider texture T

T ≈ t(s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc)) (1)

in a local neighbourhood with gray levels of P (P > 1) image
pixels. Where gP (p = 0, . . . , P − 1) gray values, gc being the
centre gray value (see figure 2a), and

s(x) =

{
1, x ≥ 0
0, x < 0

(2)

the sign is 1 if positive and 0 if negative. The above is
transformed into a unique P-bit pattern code by assigning
binomial coefficient 2P to each sign s(gP − gc):

LBPP,R =

P−1∑
p=0

s(gP − gc)2P (3)

LBP features are then calculated using the rotational invariant
LBP with “uniform patterns” (uniform circular structures,
illustrated in figure 2b):

LBPriu2
P,R =

{ ∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(4)

where

U(LBPP,R) =
|s(gP−1 − gc)− s(g0 − gc)|
+
∑P−1

p=0 |s(gP − gc)− s(gP−1 − gc)|.
(5)

U(“pattern”) is a uniformity measure, which corresponds to
the number of spatial transitions in the “pattern” and super-
script (riu2) is rotation invariant “uniform” binary patterns
that have a U value of at most 2.

B. Rotational Invariant Variance Measures

Local gray level variance can be used as a contrast measure
and can be derived as follows:

VARP,R =
1

P

P−1∑
p=0

(gp − µ)2,where µ =
1

P

P−1∑
p=0

gp. (6)

VARP,R is invariant against shifts in gray scale and rotation
along the circular neighbourhood.

To improve performance of the LBP we consider
its joint distribution with the local variance denoted as
LBPriu2

P,R/VARP,R

III. EXPERIMENT

The data consisted of two QuickBird images over the
Soweto area: one acquired on 2005-10-18 (early summer, rain
season, called d1), and another on 2006-05-30 (early winter,
called d2) [3]. QuickBird is a sun-synchronous polar-orbiting
remote sensing satelitte with a panchromatic sensor with a
0.6 m ground sampling distance. This high resolution band,
together with four multispectral bands at 2.4 m resolution,
makes QuickBird ideal for urban monitoring. The study area
contains a large variety of formal and informal settlements.
Four settlement types are investigated: formal suburbs(FS),
formal settlements with backyard shacks (FSB), ordered
informal settlements (OIS), and a non-built-up (NBU) class to
represent vegetation and bare areas. Figure 1 provides some
samples of what these settlement classes look like.

The experimental procedure was as follows:
1) Extract input images

Two QuickBird images (Panchromatic images with a
resolution of 0.6 m) over the same area at different times
with different viewing- and illumination geometries
were acquired. From each image, polygons containing
examples of different settlement types were extracted,
from which multiple non-overlapping examples of each
type were extracted. From each polygon, square tiles
(120 m × 120 m) from random locations entirely within
the demarcated polygons were extracted. Tiles were



(a) formal settlement (b) formal settlement with back-
yard shacks

(c) ordered informal settlement (d) non-built-up

Fig. 1. Examples of the settlements classes found in Soweto

paired, so that the same location is extracted from both
dates (images) [3].

2) Extract LBP features
We construct regular circular neighbourhoods with
P (P > 1) image pixels and radius R (R > 0),
with the coordinates of the gray values gP being
(−R sin (2πp/P )),(R cos (2πp/P )) at gc(0, 0). Gray
values that do not fall exactly in the centre pixel are
estimated by interpolation, see figure 2a. From the
circular neighbourhood we measure the LBPs using
equation 3. We construct a look-up table that contains all
the uniformity measures corresponding to the number of
image pixels used, see figure 2b. Using the look-up table
LBPs with uniform patterns are extracted. Uniformity
measures U with the value of at most 2 are stored as
uniform patterns with bin labels (0→ P− 1) while the
non-uniform patterns are stored as bin label (P + 1),
where bins 0 → P − 1 correspond to a texture feature
from equation 5, see figures 2b and 2c.

3) Extended LBP features extraction
Using the circular neighbourhoods as mentioned above
we calculate the Variance measure using equation 6.
Since Variance measures have continuous outputs, quan-
tization is needed. The bin breaks are constructed such
that they are evenly spaced according to the variance
percentiles, that is, by adding up all the feature distribu-
tions for every single model image in a total distribution
and using R1 we calculate the bin breaks for different
number of bins (3 → 20 bins in this case). We then
constructed a simple 2D joint distribution histogram

1http://www.r-project.org/
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(a) Local circularly symmetric neighbourhood set (P =
8) of radius R, where g1, g3, g5, g7 are estimated by
interpolation.
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(b) The Look Up Table (LUT): To achieve rotation invari-
ance the LUT is used to store all the posible the uniform
patterns to their unique code i.e., for P = 8, nine “uniform”
patterns with the numbers (0 – 8) corresponding to their
unique LBPriu2

8,R codes.

9

(c) A sample of nonuniform patterns, all of which are
labeled as code 9.

Spot Spot/flat Line end Edge Corner

(d) Different texture primitives detected by the uniform
patterns of LBP.

Fig. 2. Black and white circles correspond to bit values of 0 and 1 in the
8-bit pattern of the operator.

i.e LBP/VAR for each bin size for different P and R
values. Multiresolution features are obtained by simply
concatenating LBP features extracted at multiple radii
(R parameter in equations 4 and 6).

4) Training (Subset A) and Testing (Subset B)
We determine the generalization performance for the
different texture features algorithms by evaluating the



LBP code = 8

LBP code = 6

LBP code = 5

LBP code = 5

Fig. 3. Extraction of LBP features for P = 8.

performance of the Support Vector Machine (SVM)
classifier over the six possible combinations (i.e. Ad1 ⇀↽
Bd1, Ad2 ⇀↽ Bd2, Ad1 ⇀↽ Ad2, Ad1 ⇀↽ Bd2, Bd1 ⇀↽
Ad2, Bd1 ⇀↽ Bd2 sets). We use Weka’s2 Sequential
Minimal Optimization (SMO) algorithm for training the
support vector classifier.

IV. RESULTS AND DISCUSSION

In a comparative study investigating the best algorithm for
settlement classification, the LBP algorithm showed excellent
performance [4]. However, it did not perform well when it
was tested for cross-date imagery over the same area as
the study mentioned above [3]. A study extending the LBP
by adding variance measures (contrast properties) for texture
classification, showed the extended LBP to be very powerful.
We repeated the cross-date study for LBP [3] and implemented
this new extended LBP with variance measures for urban
settlement classification where the details are reported in
table I.

TABLE I
THE NUMBER OF PATTERNS IN EACH CLASS, FOR EACH SUBSET.

FS FSB OIS NBU Total

Subset A 557 2820 2059 1358 6794
Subset B 496 3915 1969 1180 7560

To obtain the standard deviations on various classifica-
tion results, the following procedure was used to evaluate a
given configuration using data sets X and Y (where X =
Ad1

and Y = Bd1
):

1. Train a support vector machine (SVM) using the whole
of set X .

2. Partition set Y in 10 folds using stratified sampling to
preserve related class frequency.

3. Evaluate the SVM (trained on X) on each of the 10
folds of Y , obtaining the one accuracy figure for each
fold.

2www.cs.waikato.ac.nz/ml/weka/

4. Exchange X and Y , and repeat 1–3.
This process, denoted by X ⇀↽ Y , produces 20 individual
values for each accuracy metric, which were then used to
calculate a mean and standard deviation for each metric. We
distinguish between two classes of test, namely same-date
(when both training and test sets are derived from the
same-date satellite image) and cross-date (when two different
satellite scenes were used). The difference in performance
between these to classes highlights the degree to which
a particular classifier is invariant to changes in shadow
orientation and length.

From figure 4 it is clear that the extended LBP outperforms
the LBP with no variance measures, achieving accuracies
close to 95% and more for same-date experiments
(e.g., Ad1 ⇀↽ Bd1). Even for cross-date data set (i.e.,
Ad1 ⇀↽ Bd2, Ad2 ⇀↽ Bd1) the LBPriu2

P,R/VARP,R achieved
close to 90%.
Overall performance is slightly improved by using
the multiresolution features (see figure 4(a) and
4(b)), with the improvement being higher for
LBPriu2

8,1 /VAR8,1 + LBPriu2
16,2/VAR16,2 + LBPriu2

24,3/VAR24,3

achieving accuracies close to 95% on cross-date performance.

A more detailed comparison of the LBP and extended
LBP with multiresolution is reported in table II, where we
can clearly see the effects of adding the variance mea-
sures, bin sizes, and multiple resolutions. In all cases the
LBPriu2

P,R/VARP,R features outperform the LBPriu2
P,R features.

The performance drastically improves with the increase of bin
sizes (3–6) but then fluctuates slightly as the number of bins
are increased. Table II also shows a slight improvement from
LBPriu2

P,R/VARP,R (8,1) to LBPriu2
P,R/VARP,R (8,1 + 16,2) but

for LBPriu2
P,R/VARP,R (8,1 + 16,2 + 24,3) we observe slightly

higher increase on accuracies. On all the figures in figure 4
we observed a peak around bin 7, and as the number of
bins increased the performance was not meaningfully better.
We then took bin 7 as the optimum number of bins and
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Fig. 4. Boxplots showing the overall performance(%) for LBPriu2
P,R (LBP) and LBPriu2

P,R/VARP,R (Bins) over same date and cross date imagery with
multiresolution data sets (b) and (c).

investigated its accuracies in terms of per-class true positive
(TP) rate (see table III). It is clear that the performance of
the algorithm is depended on the settlement type, where we
see that for formal settlements with backyard shacks (FSB)
and non-built up (NBU) classes the TP values are much
higher than those of formal settlements (FS) and ordered
informal settlements (OIS) classes. The standard deviations

for Ad1 ⇀↽ Bd2 are high in all cases except for the NBU class
where its standard deviation is high at Ad1 ⇀↽ Ad2. Table III
also reveals that 100% classification accuracy was attained for
certain classes, which is too good to be true, and calls for
further investigation of the algorithms with a larger data set.



TABLE II
A SAMPLE OF THE RESULTS IN FIGURE 4 IN TABLE FORMAT, WHERE THE HIGHEST PERFOMANCE IS HIGHLIGHTED IN EACH DATA SET.

Data set LBPriu2
P,R LBPriu2

8,1 /VAR8,1

P,R=8,1 3 6 8 10 12 14 16 (bins)

Ad1 ⇀↽ Bd1 92.44 (1.185) 93.91 (1.507) 95.99 (0.708) 95.83 (0.814) 95.36 (1.658) 95.75 (0.932) 95.53 (1.537) 94.85 (1.096)
Ad1 ⇀↽ Ad2 78.48 (3.610) 84.80 (5.675) 93.30 (0.864) 92.81 (1.982) 93.89 (1.259) 92.85 (1.891) 93.67 (1.453) 93.77 (1.552)
Ad1 ⇀↽ Bd2 71.44 (15.932) 81.09 (3.921) 90.06 (1.745) 85.68 (5.302) 88.89 (1.909) 85.50 (5.274) 87.02 (3.251) 86.78 (2.553)
Bd1 ⇀↽ Bd2 78.44 (14.956) 79.81 (1.549) 87.89 (6.545) 88.08 (6.537) 87.70 (7.207) 88.42 (6.309) 88.25 (6.814) 88.58 (6.372)
Ad2 ⇀↽ Bd1 75.90 (3.820) 82.45 (5.730) 90.79 (3.757) 91.29 (3.227) 90.11 (4.327) 89.82 (4.720) 90.20 (4.571) 90.12 (4.843)
Ad2 ⇀↽ Bd2 91.99 (2.149) 95.22 (3.294) 98.02 (2.055) 98.33 (1.656) 98.00 (2.053) 98.01 (2.027) 98.08 (1.946) 97.73 (2.257)

P,R=8,1+16,2 LBPriu2
8,1 /VAR8,1 + LBPriu2

16,2/VAR16,2

Ad1 ⇀↽ Bd1 92.26 (2.831) 93.92 (2.624) 96.21 (1.625) 96.11 (1.141) 96.17 (1.358) 95.80 (1.033) 96.51 (0.970) 95.92 (0.715)
Ad1 ⇀↽ Ad2 79.90 (6.158) 87.33 (5.677) 94.62 (1.088) 95.20 (0.699) 94.53 (1.148) 95.89 (1.359) 95.24 (1.277) 94.68 (1.445)
Ad1 ⇀↽ Bd2 73.58 (9.492) 87.48 (6.647) 94.00 (3.186) 94.01 (1.717) 91.59 (0.761) 90.17 (0.987) 90.30 (0.962) 90.46 (0.800)
Bd1 ⇀↽ Bd2 81.26 (12.159) 87.32 (2.321) 92.24 (2.311) 93.96 (1.207) 92.60 (2.442) 92.98 (2.227) 92.88 (2.608) 93.99 (1.657)
Ad2 ⇀↽ Bd1 82.30 (7.146) 85.04 (6.422) 93.67 (1.498) 94.51 (2.046) 94.14 (2.461) 93.55 (2.978) 94.04 (2.370) 94.08 (2.505)
Ad2 ⇀↽ Bd2 95.22 (0.544) 95.93 (2.999) 98.99 (0.991) 98.83 (1.178) 98.88 (1.143) 98.87 (1.111) 98.96 (1.070) 98.82 (1.204)

P,R=8,1+16,2+24,3 LBPriu2
8,1 /VAR8,1 + LBPriu2

16,2/VAR16,2 + LBPriu2
24,3/VAR24,3

Ad1 ⇀↽ Bd1 94.03 (2.553) 96.16 (1.956) 97.64 (0.826) 97.45 (0.540) 97.61 (0.559) 97.69 (0.280) 97.96 (0.433) 97.39 (0.420)
Ad1 ⇀↽ Ad2 86.50 (0.658) 92.05 (2.222) 94.21 (1.594) 93.92 (0.699) 93.96 (0.548) 94.16 (0.673) 93.41 (0.361) 94.05 (0.785)
Ad1 ⇀↽ Bd2 77.95 (4.768) 90.85 (4.571) 94.00 (4.330) 92.89 (2.253) 91.85 (2.182) 91.05 (1.842) 91.79 (2.069) 91.44 (2.051)
Bd1 ⇀↽ Bd2 79.43 (1.220) 92.57 (0.624) 96.36 (1.469) 97.23 (1.561) 95.74 (0.640) 96.61 (0.693) 96.31 (0.553) 96.76 (0.645)
Ad2 ⇀↽ Bd1 86.83 (4.893) 87.36 (5.396) 95.67 (0.708) 96.09 (0.430) 95.85 (0.543) 96.16 (0.636) 96.04 (0.541) 96.09 (0.545)
Ad2 ⇀↽ Bd2 96.00 (0.693) 97.05 (1.797) 98.93 (1.069) 98.89 (1.083) 98.98 (1.027) 98.81 (0.904) 98.99 (0.973) 98.94 (0.972)

TABLE III
OVERALL CLASSIFICATION ACCUARACY FOR MULTIRESOLUTION LBPriu2

P,R/VARP,R AT LOWEST BIN SIZE THAT YIELDS OPTIMUM PERFORMANCE.

P,R Bins Data set Overall FS FSB OIS NBU
Accuracy(%) TP(%) TP(%) TP(%) TP(%)

8 7 Ad1 ⇀↽ Bd1 95.782 (1.584) 87.170 (12.486) 96.330 (3.662) 96.060 (4.370) 100.00 (0.000)
Ad1 ⇀↽ Ad2 94.061 (0.885) 82.255 (20.412) 98.910 (0.485) 86.870 (3.202) 95.895 (4.277)
Ad1 ⇀↽ Bd2 89.658 (0.798) 76.580 (24.491) 97.615 (0.767) 65.725 (3.179) 99.900 (0.205)
Bd1 ⇀↽ Bd2 87.194 (7.331) 79.032 (20.347) 94.340 (3.273) 62.645 (37.457) 99.950 (0.154)
Ad2 ⇀↽ Bd1 91.641 (3.418) 79.412 (19.230) 95.675 (3.214) 82.310 (15.862) 97.905 (2.224)
Ad2 ⇀↽ Bd2 98.029 (2.050) 96.817 (5.791) 99.985 (0.067) 90.085 (10.299) 100.00 (0.000)

8+16 7 Ad1 ⇀↽ Bd1 96.643 (1.343) 88.608 (10.171) 96.535 (3.387) 99.380 (0.763) 100.00 (0.000)
Ad1 ⇀↽ Ad2 95.244 (0.598) 91.088 (12.430) 99.175 (0.505) 85.685 (5.515) 96.220 (3.924)
Ad1 ⇀↽ Bd2 93.680 (2.471) 83.285 (18.089) 94.890 (1.558) 87.390 (10.179) 99.900 (0.205)
Bd1 ⇀↽ Bd2 92.882 (1.954) 82.093 (16.429) 96.550 (0.839) 84.915 (14.865) 99.950 (0.154)
Ad2 ⇀↽ Bd1 94.572 (1.676) 80.125 (18.795) 98.275 (1.166) 91.720 (7.774) 98.350 (1.913)
Ad2 ⇀↽ Bd2 99.054 (0.987) 96.537 (5.980) 99.850 (0.199) 97.255 (2.874) 100.00 (0.000)

8+16+24 7 Ad1 ⇀↽ Bd1 97.765 (0.476) 90.170 (10.245) 98.650 (1.402) 99.080 (1.123) 100.00 (0.000)
Ad1 ⇀↽ Ad2 94.312 (1.702) 83.343 (17.415) 99.890 (0.180) 82.685 (14.843) 97.100 (3.007)
Ad1 ⇀↽ Bd2 93.842 (2.980) 76.737 (22.774) 98.735 (1.323) 85.930 (14.559) 99.950 (0.154)
Bd1 ⇀↽ Bd2 96.107 (0.904) 85.737 (18.993) 97.970 (0.683) 95.630 (3.977) 99.975 (0.112)
Ad2 ⇀↽ Bd1 95.398 (0.482) 83.028 (18.519) 98.530 (1.249) 92.940 (2.316) 99.470 (0.983)
Ad2 ⇀↽ Bd2 98.995 (1.047) 95.340 (7.982) 99.665 (0.367) 98.440 (1.693) 100.00 (0.000)

V. CONCLUSION

This paper presented a settlement classification experiment
involving two scenes of the same area, acquired under different
conditions, including seasonal changes in vegetation and the
length and orientation of shadows cast by the buildings. The
results indicate that adding the rotational invariant variance
measure to the rotational and gray-scale invariant LBP does

improve performance in classifying settlement types in urban
areas. We can then conclude that contrast properties are
significant in the task of classifying settlement type. Some
differences remain between the classification performance in
same-date experiments vs cross-date experiments; this is not
entirely unexpected, since the addition of the contrast features
is unlikely to provide robust invariance to the influence of



shadows. The good news, however, is that the gap between
same-date and cross-date classification performance closed
somewhat with the addition of contrast features, rather than
widen.

Improvements to image features that result in better clas-
sifier generalization performance brings us one step closer
towards operational implementation of a fully automated
settlement type classification system. Once such a system
has achieved adequate classification accuracy, the goal of
automated change detection in urban areas is within reach.

REFERENCES

[1] D. Maktav, F. S. Erbek, and C. Jürgens, “Remote sensing of urban areas,”
International Journal of Remote Sensing, vol. 26, no. 4, pp. 655–659,
2005.

[2] J. Benediktsson, M. Pesaresi, and K. Amason, “Classification and fea-
ture extraction for remote sensing images from urban areas based on
morphological transformations,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 41, no. 9, pp. 1940–1949, 2003.

[3] F. van den Bergh, “The effects of viewing- and illumination geometry
on settlement type classification of quickbird images,” in Geoscience and
Remote Sensing Symposium (IGARSS), 2011 IEEE International, July
2011, pp. 1425 –1428.

[4] L. Ella, F. van den Bergh, B. van Wyk, and M. van Wyk, “A comparison
of texture feature algorithms for urban settlement classification,” in
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE
International, vol. 3. IEEE, 2008.

[5] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 7,
pp. 971 –987, July 2002.

[6] S. Arivazhagan and L. Ganesan, “Texture classification using
wavelet transform,” Pattern Recognition Letters, vol. 24,
no. 910, pp. 1513 – 1521, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865502003902

[7] G. Rellier, X. Descombes, F. Falzon, and J. Zerubia, “Texture feature
analysis using a Gauss-Markov model in hyperspectral image classifica-
tion,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 42,
no. 7, pp. 1543–1551, 2004.

[8] M. Pesaresi and J. Benediktsson, “A new approach for the morpholog-
ical segmentation of high-resolution satellite imagery,” Geoscience and
Remote Sensing, IEEE Transactions on, vol. 39, no. 2, pp. 309–320, 2001.

[9] J. Zhang and T. Tan, “Brief review of invariant texture analysis methods,”
Pattern Recognition, vol. 35, no. 3, pp. 735–747, 2002.


