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Abstract—This paper presents a comparison of several es-
tablished and recent image feature-descriptors to register long
wave infra-red images in the 8–14 µm band to visual band
images. The feature descriptors were chosen to include robust
algorithms, SURF and SIFT — and fast algorithms, BRISK
and BFROST. To evaluate the feature-descriptors a ground
truth was created by determining the intrinsic and extrinsic
camera calibration parameters for the cameras and using this to
photogrammetrically relate pixel positions between the images.
The inlier results of each feature descriptor for the top 20%,
50% and 100% of the matches (based on match strength) were
used to create a homography. The average pixel error between the
homography reprojected feature points and the photogrammetric
reprojection was used as the error. The results show that none
of the descriptors perform well in standard form, with BFROST
faring slightly better than the other algorithms. This suggests
a need to modify the algorithms to detect physical/structural
features and de-emphasise textural features.

I. INTRODUCTION

A. Relevance of cross spectral registration

Long Wave Infra Red (LWIR) imagery in the 8–14 µm
wavelength band, also known as thermal imagery, has several
advantages over visual band imagery [1]. Among these are
decreased sensitivity to atmospheric aerosols and scintillation,
superior performance in low (visual) light conditions and easy
detection of many objects of interest such as vehicles with an
internal combustion engine. This is due to the majority of light
in this spectrum being emitted by the objects being surveyed
rather than being reflected light.

There are several disadvantages to LWIR imagery too. Of
particular interest is that intensity of objects in LWIR imagery
is solely due to their surface temperature and emissivity, this
implies that distinguishing marks such as colour, insignia and
serial/licence numbers are generally not visible. In addition,
current LWIR cameras typically have significantly lower res-
olution than visual cameras (e.g. see Sections III-A and III-B)
yet cost significantly more. To illustrate these phenomena
Figure 1 shows LWIR photos of the authors, it is much more
difficult to distinguish between them.

Registering the images of the two bands, that is determining
the pixel correspondence between a LWIR and visual image,
would allow both the easy determination of objects of interest
(using the LWIR band) and their identification (in the visual
band). Other benefits may be found such as the haze mitigation

of visual images via incorporating a Near Infra-Red (NIR)
channel [2].

B. Related Work

Many examples of image feature detector/descriptors have
been developed for matching features between visual images.
The Geographical Information Systems (GIS) field yields
some papers on cross-spectral feature detection. Firmenich
et al. [3] describe how the Scale-Invariant Feature Transform
(SIFT) [4] was modified to perform better in matching between
the visual and NIR channels by making it insensitive to rever-
sal in the image gradient. Hasan et al. [5] also improved upon
SIFT for visual-NIR matching by constraining the portion in
the second image on which a match for a feature in the first
image is searched. This was done by using two strong matches
— which include both spatial and orientation information —
to predict where each other feature will be and their scale.
Teke and Temezel [6] applied this scale restriction method to
the Speeded Up Robust Features (SURF) [7] algorithm. Their
results show a worst case matching between the NIR and Blue
channels, with results of between 77% and 85% depending on
the implementation of SURF and whether or not the scale
restriction is applied. Equivalent results for red channels are
86% through 91%.

Brumby et al. [8] investigate the supervised evolution of
feature extraction kernels by combining primitive image pro-
cessing operations in order to extract the desired features (such
as roads, crop types and rivers) from pre-registered hyper-
spectral images extending from the visual to short wave infra
red (SWIR).

This work is different from that described above in that
LWIR is used instead of NIR, a difference of over tenfold
in wavelength. This results in a further decrease in feature
mapping performance due to the greater dissimilarity between
the bands.

C. Axis and notation definition

The mathematical notation used in this paper is as follows:
A 3D vector, Vbac, is a vector from point a directed towards
point b expressed in terms of its projections on orthogonal
coordinate system c’s axes. Vbac is used when the magnitude
of the vector is unknown or unimportant. Tbac represents the
translation or displacement of point b relative to point a.



(a) Author 1 (b) Author 2

Fig. 1. LWIR images of the authors
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Fig. 2. Axis definition.

Rab is a 3-by-3 Euler rotation matrix expressing the rotation
of an orthogonal axis system a relative to (and in terms of
its projections on) an orthogonal axis system b. Individual
elements of 3 dimensional vectors are referred to as x, y or z
whereas 2 dimensional (2D) vector’s elements are referred to
as horizontal (h) and vertical (v) to avoid confusion. Figure
2 defines the axis system used and the directions of positive
rotation.

D. Paper organisation

The rest of this paper is organised as follows: Section II
describes the basic workings of the feature detectors. Section
III describes the equipment used in this comparison. Section
IV details procedure used to objectively compare the different
feature metrics. Section V provides the results of the compar-
ison. Section VI summarises the results and places them in
context.

II. FEATURE DESCRIPTOR

This section describes the feature detectors used in this
comparison. Two floating point and two binary feature point
descriptors were evaluated.

A. Scale-Invariant Feature Transform

The SIFT [4] detector searches for stable features across
multiple scales by searching for local extrema features over a
set of Difference-of-Gaussian (DoG) images. An orientation

histogram is constructed by sampling gradient orientations
around the feature. The highest peak in the histogram is used
as the feature orientation.

The region around the feature is divided into 4 by 4 sample
areas. An orientation histogram is calculated for each of the
sampling areas. A Gaussian weighting is then applied to the
magnitudes before they are accumulated into the histogram.
The values of all the histograms are placed into the feature
vector. The normalised feature vector forms the 128 floating
point value feature descriptor. SIFT is robust to almost all
common image transformations.

The match strength between two SIFT features is defined
as the L2-Norm: i.e. the length of the difference between the
two feature vectors. Smaller values are better.

B. Speeded Up Robust Features

SURF [7] was inspired by SIFT [4], with the main goal to
improve the execution speed of the detector and descriptor.
SURF depends mainly on an integral image to approximate
and speed-up the execution time.

The detector relies on the determinant of the Hessian matrix.
The Hessian matrix is approximated by sampling rectangular
regions that approximate the Gaussian derivatives. The local
extrema from the approximate determinant of the Hessian
matrix is located across different scales. Haar wavelets are
used to calculate the orientation of sampling points around the
feature. The feature orientation is detected by examining the
magnitude of the orientations within a sliding arc window. The
arc direction with the highest resulting magnitude is chosen
as the dominant orientation.

The region surrounding the feature is divided into 4 by 4
sub-regions. Haar wavelet responses for each sub-region are
accumulated to form the 64 element floating point feature
vector.

The match strength between two SURF features is also
defined as the L2-Norm: the length of the difference between
the two feature vectors.

C. Binary Robust Invariant Scalable Keypoints

Binary Robust Invariant Scalable Keypoints [9] (BRISK) is
a binary feature extractor, the feature detection part uses the



improved version of the Features from Accelerated Segment
Test [10] (FAST) detector, namely Adaptive and Generic
Accelerated Segment Tests [11] (AGAST) to detect key-
points. The feature detection phase tries to detect features
by searching in different scale-spaces. Local image gradients
are calculated between sampling point pairs surrounding the
feature. The sum of all gradients is used as the feature rotation.

The binary descriptor is built by comparing pairwise,
smoothed pixel intensities from sampling points surrounding
the feature. Each bit is set when the first pixel intensity is
greater than the second pixel intensity. The resulting bits are
concatenated to form the 512 bit descriptor.

The match strength between two binary features is defined
by the number of elements that differ between the two binary
vectors, i.e. the Hamming distance. Smaller values are better.

D. Binary Features from Robust Orientation Segment Tests

Binary features from robust orientation segment tests [12]
(BFROST) is a fast feature extractor designed for the Graphics
Processing Unit (GPU). BFROST uses the same continuous
pixel-set criteria as the FAST detector to detect features with
an additional 16 possible feature rotation estimations based on
the median of the continuous pixel-set segment.

The feature descriptor describes an area around a detected
feature point with a 256 bit binary vector. The descriptor is
built by comparing the average pixel intensities of regions
surrounding the feature. An integral image is used to speed-up
the intensity calculations performed on the sampling pattern.

BFROST is scalable, rotation and translation invariant and
robust to noise. The match strength between two features is
also defined as the Hamming distance.

III. EQUIPMENT

One visual and one LWIR camera, as described below, were
rigidly mounted relative to each other. Their intrinsic and
extrinsic parameters were then determined (see Section IV-A)
to allow for photogrammetric registration.

A. Visual Cameras

Prosilica GT1920 cameras, which have a 3MP resolution of
1936×1456, were used in this work. Pentax lenses with 8mm
focal length were used, and provided a field of view (FOV)
of ±50◦ horizontally by ±40◦ vertically.

B. Long Wave Infra Red Cameras

Xenics Gobi 640GigE microbolometers were used in this
comparison. The cameras have a large 10.88mm by 8.17mm
Charge Coupled Device (CCD) offering a resolution of 640×
480 pixels. Combined with a 10mm lens, this provided an
FOV of ±60◦ horizontally by ±48◦ vertically.

IV. EXPERIMENTATION METHODOLOGY

A. Generating the ground truth

In order to quantifiably compare the different feature de-
scriptors, a ground truth registration was sought. This was
obtained by photogrammetrically calibrating the cameras.

The lens distortion and inverse distortion was determined
as described de Villiers et al. [13] using five radial, three
tangential parameters and the optimal distortion center. The
focal length and the extrinsic parameters of the camera were
then determined as per de Villiers [14].

Once these parameters are known, the position that a pixel
from Camera B should be placed in Camera A’s image is de-
termined by first calculating the the point where the distortion-
corrected vector associated with each pixel of Camera B meets
the stitching surface (assumed here to be a sphere [14]). This
point is then back projected through to Camera A’s image
plane, where it was redistorted and scaled to determine the
pixel position.

In order to calculate the point on the stitching sphere
associated with each pixel, one first recalls the cosine rule:

a2 = b2 + c2 − 2bc cos θbc (1)
where:
a, b, c = the lengths of the side of a triangle, and
θbc = the angle between sides b and c.

Now for a pixel i of Camera B, assign the corners of a
triangle to be the known center of the sphere in some reference
system (i.e. TSRR), the position of camera B expressed in the
same reference system (i.e. TCBRR) and the point where the
pixel’s vector intersects the sphere. This then infers that side a
is equal to the stitch radius (R), and that side b is the distance
between the camera and sphere center, or ‖TSCBR‖ where
TSCBR = TSRR−TCBRR. All that is required is to determine
the vector associated to each pixel and the cosine between it
and TSCBR.

First one creates a vector in Camera B’s axis using the focal
length and intrinsic distortion parameters:

Iui = fundistortB (Idi ),

VPiBB =

 FLenB
(PB

h − Iuih)pix wB

(PB
v − Iuiv )pix hB

 ,
UPiBB =

VPiBB

‖VPiBB‖
,

UPiBR = RBRUPiBB (2)
where:

Idi = the image coordinate of pixel i,

fundistortB = the predetermined lens undistortion
characterization function [14] for camera B,

(PB
h , P

B
v ) = the principal point of camera B,

(Iuih , I
u
iv ) = the undistorted pixel position of pixel i,



pix wB = the width of the pixels on camera B’s CCD,
pix hB = the height of the pixels on camera B’s CCD,
RBR = rotation of camera B relative to the ref. axis

(known from the extrinsic parameters), and
UPiBR = desired pixel unit vector in reference axis.

Now, recalling that the dot product of two vectors is equal
to the product of their magnitudes multiplied by the cosine of
the angle between them, Eq. 1 can be rewritten as:

R2 = ‖TSCBR‖2 + c2 − 2c× TSCBR • UPiBR (3)
which can be rewritten as:

0 = c2 + c(−2× TSCBR • UPiBR) + ‖TSCBR‖2 −R2

(4)

This is a quadratic in standard form, and if the camera is
inside the stitch sphere will yield a positive and a negative real
solution. The positive solution is the desired answer, which
yields the point on the stitch radius as

TiRR = TCBRR + c× UPiBR (5)

Once this point is known it is projected onto camera A’s
image plane, scaled to the pixel domain and then converted
from the undistorted to distorted pixel domains to determine
the corresponding pixel from Camera A. This process is
exactly the same as that described in Sections III-B through
III-D of de Villiers [14].

B. Creating the homography

OpenCV [15] was used to perform the homography cal-
culation using the specified top percentage of the matches.
The Random Sample Consensus option was selected to reject
outlier matches. The percentage of inlier matches was recorded
and used as further indication of the robustness of the homog-
raphy determined with that particular feature descriptor and
match strength.

C. Comparison metric

The metric used is the average error of the inlier features
used to create the homography as described in Section IV-B.
The error is the distance in pixels between the features in
camera B reprojected onto camera A as determined by the
homography of Section IV-B and photogrammetric calibration
of Section IV-A. This is expressed mathematically as:

Error =
1

N

j<N∑
j=0

(
‖PH

j − PP
j ‖
)

(6)

where:
N = the number of inlier features used,

PH
j = homography based pixel position of feature j, and

PP
j = photogrammetrically based coordinate of feature j.

D. Image Scenes

Figure 3 shows the first scene used for this evaluation, it is
an urban outdoor scene containing man-made structures with
strong edges and texture. Figure 4 shows the outdoor scene
used which contains natural vegetation. Both scenes appear,
subjectively, to contain rich texture in the visual band.

V. RESULTS

A. Intra-band registration

Table I provides the results of registering between visual
images, the values are the number of inliers that agree with
the best fit homography. Each scene is registered three times
using only the top 20%, 50% or 100% of the matches
respectively. The inlier percentage is the percentage of these
top matches that were used. Table II provides the same results
for registering the LWIR images.

The high percentage of agreement gives confidence on the
correctness of the implementations of the four feature-detector
algorithms. This is further supported by Figures 5 and 6, which
show features correctly being matched within each band. Inlier
matches are shown with a green line, while outliers are shown
by the blue lines.

The BRISK algorithm performs poorly when 50% or 100%
of the matches are used as many of the matches are weak and
erroneous. It performs comparably to SIFT and BFROST when
only the top matches are used. BFROST performs poorly on
the LWIR Urban scene, but is comparable to SIFT in terms of
performance when only the top 20% of the matches are used.
SURF is consistently worse than SIFT and only marginally
better than BRISK.

TABLE I
VISUAL TO VISUAL REGISTRATION INLIER PERCENTAGES

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 95.00 99.34 88.15 96.01 99.26 78.86
SURF 65.05 73.60 73.84 94.44 91.26 75.50
BRISK 96.89 85.33 51.75 91.61 71.59 44.12

BFROST 94.11 93.02 86.58 98.92 86.69 65.23

TABLE II
LWIR TO LWIR REGISTRATION INLIER PERCENTAGES

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 100.00 100.00 81.48 92.30 94.11 66.17
SURF 75.00 68.47 66.30 87.17 85.71 75.00
BRISK 91.48 81.19 64.25 100.00 69.29 50.78

BFROST 71.42 77.35 81.13 100.00 80.00 70.37

B. Inter-band registration

Table IV provides the results of registering the LWIR im-
ages onto the visual images, the values are as per Eq. 6. Table
III provides the percentage of inlier features from generating
the best fit homography. Figure 7 helps put these numbers



(a) LWIR image 1 (b) LWIR image 2

(c) Visual image 1 (d) Visual image 2

(e) Photogrammetrically stitched image

Fig. 3. Scene 1, Urban landscape



(a) LWIR image 1 (b) LWIR image 2

(c) Visual image 1 (d) Visual image 2

(e) Photogrammetrically stitched image

Fig. 4. Scene 2, Natural landscape



Fig. 5. SIFT feature matches between visual and visual of Scene 1.

Fig. 6. BRISK feature matches between LWIR and LWIR of Scene 1.

Fig. 7. SIFT feature matches between visual and LWIR of Scene 1.



in context by displaying the features matched between the
thermal and visual bands.

Inspection of the values clearly shows that none of the
descriptors were able to successfully register the LWIR and
visual images. All the algorithms obtained errors of several
hundred pixels (expressed in the 3MP AVT Camera’s image
space) in Table IV, this is further shown by the extremely low
agreement percentages in Table III. Often it was not possible
for OpenCV to find more than 6 points (the minimum is 4)
that agreed to create a consensus homography.

SIFT and BFROST had the greatest number of inliers in
the urban and natural scenes respectively, and the second
greatest agreement in the other scene. However BFROST had,
in almost all the tests, a noticeably lower error than all the
other feature descriptors.

A final verification of the correctness of the photogrammet-
ric procedures (in addition to generating Figures 3(e) and 4(e))
was performed. Ten points were crudely selected in each band
in each scene, and their equivalent error was calculated. These
results are given in the final row of Table IV and confirm the
correctness of the photogrammetric procedures. These errors
being in the order of 10 pixels, are due to the non precise
manual feature selection (which is magnified by the difference
in resolutions) and the poor image quality of the Pentax lenses,
whose soft focus in the peripheries of the FOV adversely
affected the calibrations.

LWIR–visual registration based on canonical features does
not perform well. This is due to different keypoints being iden-
tified in each band which is compounded by the descriptions
of correctly identified matching keypoints frequently being
different too.

Further work on feature based matching ma focus on
contour alignment and modification of feature descriptors to
better cater for cross band matching.

VI. CONCLUSIONS

This paper tested four popular feature descriptors for the
purpose of registering LWIR and visual imagery. The feature
descriptors were used in unmodified canonical form6 to fa-
cilitate the selection of which descriptor should modified for
LWIR-visual registration. In addition to the standard calcula-
tion of number of inlier matches, a quantified error based on
comparison to photogrammetric calibration and stitching was
performed.

It was found that none of the algorithms were able to register
across the two bands, although all the algorithms registered
well within either of the bands. This finding is consistent with
Firmenich et al. [3] who speculated that a new feature extractor
may need to be developed for LWIR imagery registration.

SIFT and BFROST significantly outperformed SURF and
BRISK for inter band registration. BFROST was significantly
quicker than SIFT, and so it is recommended for future
modification for LWIR-visual registration.
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TABLE III
LWIR TO VISUAL REGISTRATION INLIER PERCENTAGES

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 57.14 27.77 16.21 33.33 15.21 7.60
SURF 23.07 12.30 5.38 12.00 4.80 1.99
BRISK 28.57 17.75 9.81 25.80 23.22 12.25

BFROST 44.44 22.72 13.33 37.50 17.07 8.43

TABLE IV
LWIR TO VISUAL REGISTRATION ERRORS

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 926.6 488.6 638.2 604.8 812.2 611.4
SURF 743.1 599.1 798.7 471.8 810.1 574.2
BRISK 888.8 765.3 781.9 531.3 763.4 741.0

BFROST 684.6 438.0 620.7 929.2 371.3 441.0
Manual 11.0 11.0
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