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Non-cooperative detection of weak spread-spectrum

signals in AWGN
J.D. Vlok and J.C. Olivier

Abstract—A semi-blind method based on principal component
analysis (PCA) and sequence synchronisation is proposed to
detect direct sequence spread-spectrum (DSSS) signals in a non-
cooperative setting under low signal-to-noise ratio (SNR) condi-
tions. The intercepted signal is segmented to form a detection
matrix from which a feature is extracted through cyclic shifting.
Signal detection is then performed using a test statistic based on
this feature. The carrier frequency and sequence duration of the
signal to be detected are assumed known. Theoretical analysis
and a computer simulation study show that the performance of
the new detection method is superior to classic energy detection
(ED) in an additive white Gaussian noise (AWGN) channel.

I. INTRODUCTION

Cooperative detection techniques are used in communication

systems where the receiver has perfect knowledge of all

the parameters used by the transmitter. The receiver then

uses detection and estimation of the parameters as necessary

to identify the beginning of the transmission (e.g. in asyn-

chronous communication) or to identify inactive channels (e.g.

in cognitive radio). However, in non-cooperative applications

such as spectrum surveillance and electronic interception, the

receiver has no knowledge of the parameters used by the

transmitter. Under these conditions blind detection and estima-

tion techniques are used. If the receiver has some information

on the parameters available or is able to estimate some of

the parameters, semi-blind detection techniques may be used.

This paper is concerned with the performance of semi-blind

detection techniques, specifically for the detection of weak

spread-spectrum signals.

In this paper new results and a new method for the detection

of weak unknown deterministic signals in an additive white

Gaussian noise (AWGN) channel are presented. The class

of signals investigated is direct sequence spread-spectrum

(DSSS) where a large transmission bandwidth is employed

to hide the signal below the noise level. Several techniques

addressing DSSS detection are available in the literature.

Energy detection (ED) of spread-spectrum signals is presented

in [1]. Techniques based on higher order spectral analysis

are presented in [2], and cyclostationary analysis where the

autocorrelation of segments of the intercepted signal is used as

basis of detection is presented in [3]. Approaches to estimate

the spreading sequence from the intercepted signal include

signal correlation of synchronised sequences [4], principal

component analysis (PCA) [5] and neural network techniques

[6].
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The new method presented in this paper is based on spread-

ing sequence synchronisation [4] and PCA [5] which are

used to extract the largest eigenvalue sequence as detection

feature from the sample covariance matrix (SCM) of the

intercepted signal. Two detection techniques are presented; the

first technique uses the eigenvalue sequence directly and the

second technique uses the frequency content of the eigenvalue

sequence to perform detection. The techniques are semi-blind

since certain aspects of the signal to be detected and the

noise are assumed known. Signal knowledge assumed known

include the carrier frequency and the sequence duration. These

two parameters can be estimated using correlation techniques

[3], [4] or the detection algorithm can sweep through a certain

predefined range of these two parameters in order to search for

signal activity. The noise statistics (including the probability

density function (PDF) and power level) are assumed known

in order to calculate the detection threshold. Noise statistics

can be estimated by observing the surveillance band over long

periods of time assuming that the signal of interest is not

always present.

In this paper the performance of the detection techniques is

evaluated and compared using the binary hypothesis testing

approach (see [7]) over a range of signal-to-noise ratios

(SNRs). Although the detection algorithms do not assume

knowledge of the SNR, the detection performance is expressed

in terms thereof. This paper compares the performance of the

two new techniques with classic ED, assuming the signal of

interest is a baseband binary phase shift keying (BPSK) DSSS

communication signal. It is shown that the new detection

techniques have superior performance to classic ED under

AWGN channel conditions.

The paper is organised as follows. Section II considers the

target communication system and intercept receiver. Section

III describes the new feature extraction technique and Section

IV evaluates the performance thereof in an AWGN channel.

Section V reviews ED and presents the two new detection tech-

niques. Section VI investigates the computational complexity

and Section VII presents simulated detection performance

results for each detection technique. The paper is concluded

in Section VIII.

II. COMMUNICATION AND DETECTION SYSTEMS

This section considers the target communication system and

the intercept receiver used to detect communication activity

originating from the target system in the surveillance band.

A. Target communication system

The target communication system considered in this paper is

a BPSK DSSS system employing a Walsh spreading code of
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length N = 64. In order to establish the required SNR level at

which non-cooperative detection must be performed, the error

probability achievable by the intended receiver (the receiver of

the target communication system for which the communication

is intended) should be investigated. The error probability of

BPSK in AWGN is well known as [8]

Pe = Q

(
√

2ǫb

N0

)

(1)

with Q(·) the tail probability of the standard normal distribu-

tion, ǫb the energy per bit and N0 the single-sided noise power

spectral density. The error probability can be expressed from

(1) as

Pe = Q
(

√

Ns SNR
)

(2)

with Ns the number of samples used to represent a single

transmitted bit. Although (1) and (2) are equivalent, (2) is

preferred in the non-cooperative context since the signal and

surveillance bandwidths are not necessarily equal and (2) is

required to illustrate the relation between the DSSS processing

gain and the SNR advantage obtained by spreading.

If a single sample is used in the receiver to represent one

chip of the spreading sequence then Ns = N . The bit error

probability curves for the unspreaded BPSK case (N = 1)

and the spreaded case (N = 64) are shown in Figure 1. The

processing gain PG = 10 log10N ≈ 18 dB (for N = 64)

is the SNR advantage obtained by spreading and corresponds

to the SNR difference between the two curves for any Pe

value in Figure 1. The intended receiver would therefore

be able to despread a DSSS signal with SNR = −10 dB

(before despreading) to SNR = 8 dB (after despreading) to

achieve communications at Pe ≈ 6 × 10−3. Assuming the

distances between the transmitter and intended receiver and

the same transmitter and the intercept receiver are equivalent,

the intercept receiver (not knowing the spreading code) is now

faced with the challenge of detecting DSSS signal activity

using a received signal with SNR = −10 dB. If the intercept

receiver is further off in distance, an even lower SNR will

result. Powerful detection algorithms are therefore required

to enable the intercept receiver to compete with the target

communication system and detect DSSS signals at very low

SNR levels.

B. Intercept receiver

The detection algorithms presented in this paper are envisaged

to be implemented on a system with a receiver architecture

similar to the one presented in [9]. The received radio fre-

quency (RF) signal is filtered using a wideband front-end filter,

mixed down and then sampled with a high-speed (greater than

twice the surveillance bandwidth) analog-to-digital converter.

The resultant baseband signal is then analysed without further

filtering stages. For this receiver architecture, the signal model

presented in [4] can be used to develop the detection algo-

rithms. For simplicity of analysis, perfect timing and carrier

synchronisation are assumed such that one sample is used

to represent a single chip of the spreading sequence in the
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Fig. 1. Bit error probability for unspreaded (N = 1) and spreaded (N = 64)
BPSK DSSS in AWGN.

intercept receiver. The intercepted discrete DSSS signal can

then be expressed as

y(nTc) = σxd(nTc)c(nTc) + σww(nTc) (3)

with the chip number n = 1, 2, . . . , N and Tc the chip interval.

c is the length-N (N >> 1) pseudo-noise code sequence

with period Tsym = NTc and d the data sequence assumed

to be invariant over Tsym. Since the target communication

system is a BPSK DSSS system, both c and d are sequences

with values ±1. The noise sequence is represented by w ∼
N (µ = 0, σ2 = 1). The code, data and noise sequences are

also assumed independent of each other. The constants σx

and σw are included to scale the signal and noise sequences

respectively in order to obtain different SNR values, using

SNR =
σ2

x

σ2
w

(4)

which is the SNR before despreading.

Before the detection feature can be extracted from the inter-

cepted signal, some signal formatting is required. The inter-

cepted signal is firstly divided into non-overlapping segments

of length equal to N . Secondly, these segments are stacked to

form the N × N detection matrix given by

Y = σxX + σwW (5)

with X the data and W the noise matrices. The detection

technique presented in this paper then takes Y as input and

decides whether a DSSS signal is present or not.

III. FEATURE EXTRACTION

The detection feature is the largest eigenvalue sequence of

the SCM of the intercepted signal stacked in the detection

matrix Y. The feature is extracted by performing PCA on Y

while cyclically shifting the matrix. This section considers the

noise-free scenario with σx > 0 and σw = 0 such that Y =
σxX. The scenario with σw > 0 is considered in Section IV.

Although this section considers real binary data and spreading
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sequences, the result can easily be extended to the complex

case.

A. Constructing the data matrix

The spreading sequence c = [c1, c2, . . . , cN ] containing N
chips is used to spread the data sequence d = [d1, d2, . . . , dN ]
containing N bits. If the receiver started intercepting at the

beginning of a new sequence, the data matrix can be denoted

as

X0 =















d1c1 d1c2 . . . d1cN−1 d1cN

d2c1 d2c2 . . . d2cN−1 d2cN

...
...

. . .
...

...

dN−1c1 dN−1c2 . . . dN−1cN−1 dN−1cN

dNc1 dN c2 . . . dNcN−1 dNcN















(6)

which will be referred to as the aligned data matrix since the

code sequence elements are aligned to the columns of X0; i.e.

c1 is in column 1, c2 in column 2, and so on.

B. Principal component analysis

To perform PCA on the aligned data matrix, the covariance

matrix of X0 is computed and then eigen decomposition is

performed. The N × N covariance matrix is defined as (see

[10]–[12])

COV(X0) = E
[

XT
0 X0

]

(7)

with [·]T the matrix transpose. The covariance matrix can be

estimated using the SCM

R(X0) =
1

N

N
∑

n=1

xT
n xn =

1

N
XT

0 X0 (8)

with xn the nth row of X0. The SCM of the aligned data

matrix can therefore be expressed as

R(X0) =

[

1

N

N
∑

n=1

d2
n

]

cT c = cT c (9)

which is a positive-semidefinite (and by definition symmetric)

matrix [13]. The simplification in (9) follows from the fact

that d2
n = 1 for all values of n. By performing elementary row

operations on R(X0) it can be shown that the row echelon form

Rech(X0) is an N × N matrix with only the first row being

nonzero. R(X0) therefore has a rank of one and thus only one

nonzero eigenvalue [7]. This can be expected since X0 has N
linearly dependent rows. The nonzero eigenvalue of R(σxX0)
can therefore be expressed as

λX,1 = tr(R(σxX0))

= σ2
x

[

N
∑

n=1

c2
n

]

= σ2
xN (10)

since the trace of a matrix equals the sum of its eigenvalues

[13] and c2
n = 1. Furthermore, λX,1 is nonnegative and

real, since the eigenvalues of positive-semidefinite matrices

are nonnegative and real [7].

C. Cyclic shifting

Shifting is performed by discarding the first received sample

and appending a new sample at the end of the sample

sequence. The data matrix X0 after k ∈ [0, N) shifts can then

be written as

Xk =














d1ck+1 . . . d1cN d2c1 . . . d2ck

d2ck+1 . . . d2cN d3c1 . . . d3ck

...
. . .

...
...

. . .
...

dN−1ck+1 . . . dN−1cN dNc1 . . . dNck

dNck+1 . . . dNcN dN+1c1 . . . dN+1ck















(11)

Xk for k ≥ N can be obtained in a similar way by noting that

Xk will be in aligned form for any nonnegative multiple of N
shifts starting from X0. XN will therefore have the same form

as X0 though the contents of the entire matrix are shifted up

one row with the top row removed and the bottom row replaced

by a new sequence. The effect of a single sample shift on the

data matrix is a cyclic left shift of all the columns followed by

a cyclic upwards shift of the last column and finally replacing

the bottom right element with the new sample. The resultant

effect on the SCM is a shift diagonally upwards (in a North

West direction) such that the first row and column are removed

and the last row and column are replaced by new values due

to the new data sample in the last row and column position of

the data matrix. The SCM of Xk, k ∈ [0, N) can be given as

R(Xk) = Ak ◦
[

cT
k ck

]

(12)

where ◦ denotes the Hadamard product operator. ck is the

spreading code c cyclically left-shifted k times given as

ck = [ck+1, ck+2, . . . cN , c1, . . . ck] (13)

such that the first Nk = N − k elements in ck correspond to

the last Nk elements in c. Ak is an N ×N coefficient matrix

Ak =

[

α11JNk,Nk
α12JNk,k

α12Jk,Nk
α22Jk,k

]

(14)

consisting of four submatrices where Jm,n denotes the m×n
matrix of ones. The coefficient values are

α11 =
1

N

N
∑

n=1

d2
n = 1

α12 =
1

N

N
∑

n=1

dndn+1

α22 =
1

N

N+1
∑

n=2

d2
n = 1

since d2
n = 1. The form of the coefficient matrix Ak arises

from the fact that the first Nk columns of each row of Xk

have the same data bit value as the corresponding row of X0.

The last k columns of each row of Xk contain the data bit that

overflowed from the row beneath (e.g. the last k columns of

the first row of Xk contain d2).

By performing elementary row operations on R(Xk) it can be

shown that the row echelon form Rech(Xk) is an N×N matrix
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with only the first two rows being nonzero (except when the

data matrix is aligned - only the first row is then nonzero).

The second row of Rech(Xk) contains Nk zeros followed by k
nonzero elements and therefore Rech(Xk) contains a maximum

of only two nonzero rows for all values of k. R(Xk) therefore

contains a maximum of two nonzero (also nonnegative real)

eigenvalues and the data matrix Xk consequently has a maxi-

mum of only two principal components.

D. Largest eigenvalues

Since R(σxXk) has a maximum of only two nonzero eigen-

values, its trace can be expressed in terms of the eigenvalues

as

tr(R(σxXk)) =

2
∑

p=1

λX,p = λX,1 + λX,2 (15)

with the largest eigenvalue λX,1 ≥ λX,2. Note that λX,p

depends on the shift parameter k but this dependence is

omitted for the sake of simplifying notation. Using (12)-(14)

the trace can be expressed in terms of the matrix elements as

tr (R(σxXk)) = σ2
x

N
∑

n=1

[R(Xk)]nn

= σ2
x

(

α11

Nk
∑

n=1

[

cT
k ck

]

nn
+ α22

N
∑

n=Nk+1

[

cT
k ck

]

nn

)

= σ2
xN (16)

with [·]nn denoting the diagonal entries of each matrix. The

simplification in (16) follows from the fact that α11 = α22 =
1 and c2

n = 1. The sum of the eigenvalues therefore has a

constant value irrespective of the value of k, assuming the

signal power σ2
x remains constant. (15) can thus be stated as

tr(R(σxXk)) = λX,1 + λX,2 = σ2
xN ∀ k. (17)

Whenever Xk is aligned, λX,1 = σ2
xN as in (10) and λX,2 =

0. λX,1 therefore exhibits a pattern with period N as Xk is

cyclically shifted, since λX,1 ≥ λX,2 for all values of k. λX,1

therefore reaches its maximum value σ2
xN once during every

complete cycle of shifting.

1) Eigenvalue bounds: Though it is possible to develop

analytic expressions for λX,p, such equations would not be

tractable since they are functions of all the elements of c and

d. Instead, in order to describe the behaviour of the largest

eigenvalue, bounds on its variation are provided in this section.

Since R(Xk) has a maximum rank of two, its eigenvalues

are the roots of a quadratic polynomial. By evaluating the

eigenvalues of R(σxXk) with d2
n = c2

n = 1, it can be shown

that the two nonzero eigenvalues can be expressed in the form

λX =
N2 ±

√
∆

2N
σ2

x (18)

with the discriminant of the quadratic polynomial ∆ ∈ [0, N4].
From (18) the largest eigenvalue of R(σxXk) is bounded

according to

Nσ2
x

2
≤ λX,1 ≤ Nσ2

x (19)
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Fig. 2. Example temporal representation of λX,1 for σ
2
x = 1 and N = 64.

Figure 2 shows an example of the temporal variation of λX,1

when BPSK data is spread using the Walsh N = 64 code with

σ2
x = 1. The bounds in Figure 2 are given in (19). Note that

the minimum bound for λX,1 is not necessarily reached during

every cycle; the actual minimum value depends on the input

data bits. From (17) the maximum bound for λX,1 is however

reached during every cycle irrespective of the input data bit

values.

IV. ANALYSIS IN NOISE

This section considers the effect of noise on the feature

extraction technique. The detection matrix can be written as

Yk = σxXk + σwWk (20)

with the noise matrix in a similar form to Xk given by

Wk =














w1,k+1 . . . w1,N w2,1 . . . w2,k

w2,k+1 . . . w2,N w3,1 . . . w3,k

...
. . .

...
...

. . .
...

wN−1,k+1 . . . wN−1,N wN,1 . . . wN,k

wN,k+1 . . . wN,N wN+1,1 . . . wN+1,k















(21)

containing real independent and identically distributed (i.i.d.)

zero mean unity variance Gaussian samples.

A. Noise-only scenario

If σx = 0, the intercepted signal will contain only noise. For

any cyclic shift performed on Wk, the SCM R(σwWk) is a

Wishart matrix. The normalised largest eigenvalue of a Wishart

matrix is distributed according to the Tracy-Widom law [11],

which can be approximated using the Gamma distribution

[12], [14]. The distribution of the largest eigenvalue λW,1 of

R(σwWk) can therefore be approximated using the Gamma

PDF [12]

γ(x) =
(x − x0)

α−1

θαΓ(α)
exp

[−(x − x0)

θ

]

(22)
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Fig. 3. Example temporal representation of λW,1 for σ
2
w = 1 and N = 64.

with support region [x0, x0 + 2αθ]. The parameter values of

(22) for Wk with real elements are

α = 46.5651

θ = 0.1850 σ2
w σN/N

x0 = σ2
w (µN − 9.8209σN) /N

with the center and scaling parameters

µN =
(√

N − 1 +
√

N
)2

σN =
√

µN

(

1√
N − 1

+
1√
N

)
1

3

.

Although R(σwWk) is always a Wishart matrix, all SCMs of

Wk for shifts from k to k+N−1 (starting from any value of k)

will contain some identical elements, though not in identical

positions. This is due to the diagonal shift on the SCM as

explained in Section III-C. It can therefore be expected that

a pattern with period N will arise in the eigenvalue sequence

of the SCM as the noise matrix is cyclically shifted.

Figure 3 shows an illustration of the temporal variation of

λW,1 as Wk is cyclically shifted for σ2
w = 1 and N = 64. The

bounds of λW,1 afforded by the support region

x0 ≤ λW,1 ≤ x0 + 2αθ (23)

and the measured mean value of λW,1 are also shown in Figure

3. It can be shown that the PDF of λW,1 illustrated in Figure 3

is accurately predicted by the Gamma approximation of (22)

(see [12]).

B. Signal and noise scenario

The SCM of Yk can be expressed as

R(Yk) = R (σxXk + σwWk)

= σ2
xR(Xk) + σ2

wR(Wk) + Ek (24)

with the error matrix expressed as

Ek =
σxσw

N

[

XT
k Wk + WT

k Xk

]

. (25)

This section considers bounds on the largest eigenvalue λY,1

of R(Yk) using the Weyl inequalities [15]–[17]. Although it is

often assumed that Ek = 0 (see for example [15]), the effect

of the error matrix is also considered here.
1) Weyl inequalities: The eigenvalue spectrum of the sum of

two N × N Hermitian (or real symmetric) matrices A and

B can be described using the Weyl inequalities. Arranging

all eigenvalues in decreasing order (λ1 ≥ · · · ≥ λN ) the

pth largest eigenvalue of the matrix sum A + B is bounded

according to

Lp ≤ λp(A + B) ≤ Up (26)

with the upper and lower bounds respectively given by [18]

Up = min{λi(A) + λj(B) : i + j = p + 1} (27)

Lp = max{λi(A) + λj(B) : i + j = p + N} (28)

with the eigenvalue index values i, j ∈ [1, N ]. Note that any

eigenvalue sum combination in (27) and (28) is respectively

a valid upper and lower bound. Taking the minimum in (27)

and the maximum in (28) will however result in the tightest

bounds. The upper bound for the largest eigenvalue (p = 1)

can be obtained from (27) as

U1 = λ1(A) + λ1(B) (29)

since there is only one solution (i = j = 1) to the index

equation i+j = 2. The lower bound for p = 1 can be obtained

from (28) as

L1 = max{[λ1(A) + λN (B)], [λ2(A) + λN−1(B)], . . .

. . . , [λN (A) + λ1(B)]} (30)

since i+j = 1+N . In order to use the Weyl inequalities, it can

easily be verified mathematically that the matrices σ2
xR(Xk),

σ2
wR(Wk), σ2

xR(Xk) + σ2
wR(Wk) and Ek are all symmetric.

2) Eigenvalue bounds of Ek: When N is small or correlation

exists between the signal and noise sequences, the error matrix

Ek given in (25) cannot be neglected in (24). This section

considers the upper and lower limits, respectively, of the

largest eigenvalue λE,1 and the smallest eigenvalue λE,N of

Ek in order to derive bounds for λY,1. Each element of Xk

in (11) equals ±1 and each element of Wk given in (21) is

independently drawn from N (0, 1). Each element of XT
k Wk

(and WT
k Xk) is therefore the sum of N random variables

drawn independently from N (0, 1) such that each element is

distributed according to N (0, N). The sum XT
k Wk + WT

k Xk

will therefore result in a matrix with main diagonal elements

distributed according to N (0, 4N) and all other elements dis-

tributed according to N (0, 2N). Since Ek is a real symmetric

matrix with all entries symmetrically distributed around 0, the

eigenvalue limits can be given as [19]

λ(Ek) ∈ [−Nb, Nb] (31)

with the entries of Ek in the range [−b, b]. Since the elements

of Ek are normally distributed and [19] requires a fixed range,

the support region of the matrix entries should be truncated.

The loss in tail probability mass of N (0, σ2) due to truncation

can be described in terms of the Q-function [8] as

Q

(

b

σ

)

= Q(β) (32)
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with

b = βσ{(Ek)ij} (33)

where β is the factor of the standard deviation at which

N (0, σ2) is truncated. The standard deviation in (33) is

denoted by σ{(Ek)ij} with i = j for the diagonal entries and

i 6= j for the off-diagonal entries. Although all entries of Ek

are confined to the interval of the diagonal entries ((Ek)jj has

twice the variance of (Ek)ij ), using i = j in (33) will result

in very conservative bounds. It can be shown that the lower

and upper bounds in (31) would only be attained if all entries

of Ek were, respectively, −b and b (see [20]). The standard

deviation of the majority of the matrix elements (i.e. the off-

diagonal entries) is often used to calculate eigenvalue bounds

(see for example [21], [22] for the case where all matrix

elements are i.i.d.). Using (25) and the standard deviation of

the off-diagonal entries in (33), the eigenvalue bounds of Ek

can therefore be expressed using (31) with

Nb = βσxσw

√
2N. (34)

The tightness of the bounds further depends on the value of

the factor β in (34). Empirical results indicate that choosing

β =
√

2 results in valid bounds such that

λ(Ek) ∈ [−2σxσw

√
N, 2σxσw

√
N ]. (35)

Simulated sequences of the largest and smallest eigenvalues of

Ek for σ2
x = σ2

w = 1 and N = 64 and the bounds of (35) are

shown in Figure 4. The PDF of each sequence is also shown

in the figure; λE,1 seems to have a Gamma PDF and the two

PDFs are mirror images.

3) Bounds of λY,1 when Ek = 0: This section considers the

bounds of the largest eigenvalue of R(Yk) for the scenario

where the data and noise are uncorrelated (when N is large)

such that (24) can be written as

R(Yk) = σ2
xR(Xk) + σ2

wR(Wk). (36)

The eigenvalue bounds of R(Yk) can be expressed using (26)

to (28) with A = σ2
xR(Xk) and B = σ2

wR(Wk). According to

(29) the upper bound U1 of λY,1 is

U1 = λX,1 + λW,1

= Nσ2
x + x0 + 2αθ (37)

obtained by summing the upper bounds of (19) and (23).

According to (30) the lower bound L1 can be expressed as

L1 = max{[λX,1 + λW,N ], [λX,2 + λW,N−1],

[λW,N−2], . . . , [λW,1]}
= max{λX,1, λW,1} (38)

using the fact that λX,i = 0 for i > 2, since R(σxXk) has a

maximum of only two nonzero eigenvalues (see Section III-D)

and the fact that the smallest eigenvalue λW,N approaches zero

(even for small values of N [15], [23]) since the detection

matrix is square (From [23] the asymptotic lower bound of the

eigenvalue spectrum of the SCM of an M ×N noise matrix is

b− =
(

1 −
√

N/M
)2

. In the case considered here N = M ,

such that b− = 0.). By substituting the lower bounds of (19)

and (23) into (38), the lower bound can be expressed as

L1 = max

{

Nσ2
x

2
, x0

}

(39)

with Nσ2
x/2 > x0 if SNR > 2(µN − 9.8209σN)/N2 using

the value of x0 from Section IV-A.

4) Bounds of λY,1 when Ek 6= 0: In this section new bounds

L1E and U1E for the largest eigenvalue of R(Yk) in (24) are

derived for the case when the error matrix is nonzero. The

same method used in Section IV-B3 is applied, though with

A = σ2
xR(Xk) + σ2

wR(Wk) and B = Ek. Using (29) and the

upper bounds given in (35) and (37) the new upper bound can

be written as

U1E = U1 + 2σxσw

√
N. (40)

Similarly, using (30) and the lower bounds given in (35) and

(39) the new lower bound can be shown to be

L1E = L1 − 2σxσw

√
N. (41)

Figure 5 shows an example of the temporal variation of λY,1

with the bounds from (37), (39), (40) and (41) for σ2
x = σ2

w =
1 and N = 64. The bounds U1 and L1 are exceeded in the

figure since they neglect the error matrix.

V. DETECTION TECHNIQUES

The detection of an unknown DSSS signal can be cast as a

binary hypothesis testing problem

H0 : y(nTc) = σww(nTc)

H1 : y(nTc) = σxx(nTc) + σww(nTc)

using the intercepted signal of (3) with the unknown determin-

istic signal x(nTc) = d(nTc)c(nTc). H0 signifies the signal

absent (noise-only) case and H1 the signal present case. The

task of the detection receiver is to decide whether the signal

of interest is present or not, based on a detection threshold

derived from a test statistic under the H0 hypothesis.
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This section considers three techniques that can be used to

detect DSSS signals. The techniques are classic ED and two

new detection techniques based on eigen analysis presented in

Sections III and IV. For ED the theoretical false alarm proba-

bility PFA and detection probability PD are derived in terms

of the threshold. For the other two techniques, PFA is derived

in terms of the threshold and PD is then determined using

computer simulation with the results presented in Section VII.

A. Energy detection

Using the generalised likelihood ratio test, it can be shown

that hypothesis H1 should be chosen if [7]

T (y) =

V
∑

n=1

[y(nTc)]
2

> ζ (42)

with T (·) signifying the test statistic function calculated over

V samples and ζ the detection threshold which can be calcu-

lated from the required PFA according to the Neyman-Pearson

(NP) criteria. Clearly, (42) signifies ED. Assuming perfect

knowledge of the unknown signal, a performance upper bound

of the NP detector can be determined [7]. Assuming the signal

of interest is BPSK with x(nTc) = ±1, the hypothesis test can

be stated as

H0 : T (y) =
N
∑

n=1

[σww(nTc)]
2

H1 : T (y) =
N
∑

n=1

[±σx + σww(nTc)]
2 .

It can then be shown that

H0 :
T (y)

σ2
w

∼ X 2
N

H1 :
T (y)

σ2
w

∼ X ′
2

N (pnc)

with X 2
N the central and X ′

2

N the non-central Chi-square

distributions with noncentrality parameter

pnc =
Nσ2

x

σ2
w

= N × SNR.

The false alarm probability can then be expressed as

PFA = p {T (y) > ζ;H0}

= p

{

T (y)

σ2
w

>
ζ

σ2
w

;H0

}

= QX 2

N

(ζ′) (43)

with QX 2

N

(ζ′) the right tail probability of X 2
N and the scaled

threshold ζ′ = ζ/σ2
w . Likewise, the detection probability can

be expressed as

PD = Q
X ′

2

N

(ζ′) . (44)

B. Eigen detection technique 1

The first eigen detection algorithm is based on the feature

extraction technique presented in Section III. The algorithm

contains three phases. Firstly, the intercepted signal is seg-

mented and stacked to form the detection matrix. Secondly, the

principle component of the detection matrix is calculated and

thirdly the detection matrix is cyclically shifted. The principle

component is calculated for every cycle, such that the largest

eigenvalue sequence λY,1 is generated. A detection is declared

if λY,1 exceeds a given threshold ζ. This threshold can be

calculated from the right tail probability

PFA = Qg(ζ) =

∫ ∞

ζ

γ(x)dx (45)

with γ(x) the PDF of λW,1 given in (22). The threshold is

therefore

ζ = Q−1
g (PFA) . (46)

The SNR limit at which perfect detection (PFA = 0 and PD =
1) is achieved can be calculated using the upper bound on λW,1

given in (23) and the lower bound on λY,1 given in (41). For

SNR values above this limit, λW,1 will always be less than

λY,1 such that

x0 + 2αθ < L1 − 2σxσw

√
N (47)

with L1 = Nσ2
x/2 from (39). The SNR limit can be calculated

by solving the quadratic inequality for σx/σw that results

when the parameter values x0, α and θ from Section IV-A

are substituted into (47). For example, perfect detection for

N = 64 using technique 1 can be shown to be possible if

SNR > −2.828 dB. For nonzero values of PFA, PD = 1 will

be achieved below this SNR limit.

C. Eigen detection technique 2

As illustrated in Sections III and IV, λY,1 exhibits a strong

pattern with period N (or Tsym) as the detection matrix is

cyclically shifted (if a DSSS signal is present). Detection could

therefore be based on the frequency content I(f0) of λY,1 at

f0 = 1/Tsym. Eigen detection technique 2 uses sinusoidal
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detection to isolate I(f0) and declares a detection if a given

threshold ζ is exceeded. The test statistic is therefore given by

T (λY,1) = I(f0) =

[

1√
V

V
∑

n=1

λY,1(nTs)cos(2πf0nTs)

]2

+

[

1√
V

V
∑

n=1

λY,1(nTs)sin(2πf0nTs)

]2

(48)

which is the periodogram equation [7] for sinusoidal detection

of unknown amplitude and phase over V samples. In order to

calculate I(f0) for λY,1 formed by the content of a single

detection matrix, the number of samples should be V = N2.

V can however be chosen even longer, since the repetition

pattern continues beyond N2. Under H0, the PDF of I(f0) is

related to the central Chi-square distribution with two degrees

of freedom [7], since each term of the sum in (48) is normally

distributed before squaring. The false alarm probability can

therefore be given as

PFA = QX 2

2

(ζ′) = exp

(

−ζ′

2

)

(49)

similar to (43), from which the threshold can determined using

ζ′ = −2 ln (PFA) . (50)

VI. COMPUTATIONAL COMPLEXITY

Computational complexity can be measured in terms of the

total number of elementary arithmetic operations (+, −, ×,

÷) required to execute an algorithm. The complexity of other

operations can also be expressed in terms of the elementary

operations. It will be assumed that the complexity of square

rooting and division is the same as that of multiplication [24].

Likewise, addition and subtraction will be assumed equivalent.

The complexity of an algorithm is typically dominated by

the number of multiplications required, since multiplication

is more complex than addition. This section considers the

computational complexity of the three algorithms presented

in Section V in terms of the number of arithmetic operations

required to extract the test statistic from the intercepted

data. Additional processing, such as memory allocation and

movement of data values, is not taken into account. The

equivalent number of multiplications and additions required

for each algorithm are summarised in Table I and measured

execution times are given Section VII-C.

A. Energy detection

ED is implemented in this paper using (42) with a fixed size

window moving over the intercepted data. The window size

V is equal to the size of the detection matrix N2. The energy

in a single window can therefore be calculated using N2

multiplications and N2 − 1 additions.

B. Eigen detection technique 1

The most computationally intensive step of the first eigen de-

tection algorithm (described in Section V-B) is the calculation

of the principle component, which involves calculating a SCM

and its largest eigenvalue. The computational complexity of

this step will subsequently be considered for a single cyclic

shift of the detection matrix.

1) Calculation of the SCM: Equation (8) indicates that the

SCM is calculated by performing matrix multiplication on two

N×N matrices and scaling the resultant matrix by N . It might

be more economical to rather scale the detection threshold

value (see [12]) than to scale each of the N2 elements of

the resultant matrix (if the hardware platform allows large

numbers). For the analysis presented here, it will be assumed

that calculation of the SCM is equivalent to a single matrix

multiplication operation. The matrix multiplication operation

F = GH can be implemented through the conventional

approach [13] using

fij =

N
∑

k=1

gikhkj (51)

where [·]ij is the ijth matrix element. Calculation of each

element of F therefore requires N multiplications and N − 1
additions. Since there are N2 elements to be calculated, the

overall matrix multiplication operation requires N3 multipli-

cations and N2(N − 1) additions.

2) Calculation of the largest eigenvalue: Eigenvalues are

usually approximated using iterative numerical methods, such

as the power method [13], [25]. The power method is used

to determine the dominant eigenvalue (or simply the largest

eigenvalue, if the eigenvalues are nonnegative real) and associ-

ated eigenvector of the N×N matrix F. The algorithm takes as

input a nonzero column vector v0 (with unit Euclidean norm)

which could be an approximation to the associated eigenvector

or a random vector. If F is symmetric, the algorithm can be

simplified and the largest eigenvalue λm and eigenvector vm

can then approximated using [25]

um = Fvm (52)

λm = vT
mum (53)

vm+1 =
um

||um||2
(54)

ε = ||vm+1 − vm||2 (55)

for each mth, m ≥ 0 iteration, with || · ||2 signifying the

Euclidean norm. The convergence of the algorithm depends

on F and the choice of v0. Although bad choices of v0

may result in slow convergence or division by zero errors

(the algorithm will then not converge and will need to be

restarted with a new v0), the algorithm will converge for

almost all initial guesses of v0 if F has a single dominant

eigenvalue (see [26]). The algorithm should therefore check at

each iteration whether ||um||2 = 0. The number of iterations

can be limited to a specified maximum or the algorithm can

stop when the tolerance ε decreases below a predefined value.

The computational complexity of the symmetric power method

is considered below, assuming the algorithm will converge.
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TABLE I
COMPARATIVE COMPUTATIONAL COMPLEXITIES OF THE THREE DETECTION ALGORITHMS.

Algorithm Multiplications Additions

ED N
2

N
2
− 1

Tech 1 N3 + M(N2 + 4N + 2) N3
− N2 + M(N2 + 3N − 3)

Tech 2 2V + 3 2V − 1

(52) is a matrix-vector multiplication which is the same as

(51) with j = 1. Since only N elements are calculated, (52)

requires N2 multiplications and N(N − 1) additions. (53) is

a dot-product operation and requires N multiplications and

N −1 additions. (54) requires N divisions and the calculation

of the Euclidean norm, which requires N multiplications,

N − 1 additions and one square root calculation. Lastly,

(55) requires N subtractions and again the calculation of an

Euclidean norm. Assuming M iterations are required to reach

a certain ε, calculation of the largest eigenvalue therefore

requires the equivalent processing time of M(N2 + 4N + 2)
multiplications and M(N2 + 3N − 3) additions.

3) Possible simplifications: A more efficient (though with

reduced numerical stability) method to perform matrix mul-

tiplication is Strassen’s algorithm [13], [27]. The algorithm

recursively splits the matrices to be multiplied into smaller

submatrices and performs matrix multiplication using less

multiplications, but more additions than the conventional ap-

proach. The multiplicative cost of the Strassen algorithm is

O(N log
2
7) ≈ O(N2.807), instead of O(N log

2
8) = O(N3) of

the conventional approach.

An alternative method to approximate the largest eigenvalue

is the trace method [28] using

tr (F r) =

N
∑

i=1

λr
i . (56)

If λ1 >> λ2 it follows from (56) that tr (F r) ≈ λr
1 such that

λ1 ≈ [tr (F r)]
1

r . (57)

The larger the difference between the largest and other eigen-

values, the better the approximation. Computation of (57)

requires r − 1 matrix multiplications, N − 1 additions to

calculate the trace and the calculation of the rth root of a real

number. If F could have negative eigenvalues, r should be odd

in order to retain the correct eigenvalue sign and the minimum

value is then r = 3. However, when F is positive-semidefinite

(all eigenvalues are nonnegative real) the minimum value is

r = 2. Although the trace method will not produce accurate

eigenvalues for the matrices considered in this paper, it can be

used to produce a periodic eigenvalue sequence.

C. Eigen detection technique 2

Technique 2 calculates the frequency content of λY,1 produced

by technique 1. The complexity can be calculated by writing

(48) as

T (λY,1) =
1

V





(

V
∑

n=1

λY,1(nTs)fcos(nTs)

)2

+

(

V
∑

n=1

λY,1(nTs)fsin(nTs)

)2


 (58)

with fcos and fsin representing cosine and sine function

values which can be calculated once and stored in memory.

Each term within the square brackets of (58) requires V + 1
multiplications and V − 1 additions. The total complexity of

(58) is therefore equivalent to 2V + 3 multiplications and

2V − 1 additions. To calculate the total processing time to

produce a single value of T (λY,1), the time required to produce

the V samples of λY,1 used in (58) should also be included.

VII. SIMULATION STUDY AND RESULTS

The performances of the three detection techniques were

evaluated through Monte Carlo computer simulation with the

target communication system a baseband BPSK DSSS system

employing a length N = 64 binary Walsh spreading code

(taking row 32 of the Walsh matrix as code sequence). The

intercept receiver used 1 sample per code chip such that

Ts = Tc to perform detection. The number of samples used to

calculate a single test statistic value (for a single cyclic shift)

for each detection technique was Ns = N2 = 642 = 4096
corresponding to the size of the detection matrix. Since eigen

technique 2 calculates the frequency content of the eigenvalue

sequence and is not confined to the size of the detection

matrix, the value 10N2 = 40960 was also considered for this

technique. This section presents the simulated false alarm and

detection performance results where 106 data bits were con-

sidered per simulation run. A single simulation run consisted

of calculating the probability of detection for a given SNR
value. Measured average execution times for each technique

are also presented.

A. Calculation of false alarm rates

The false alarm performance of each technique was measured

by calculating the theoretical threshold ζ from set values of

PFA using the equations in Section V. The false alarm or

detection probability for the noise-only scenario was then

obtained by setting σx = 0 and σw = 1 in (3). The results

are given in Table II. To obtain improved accuracies of these

values or to measure even lower probabilities, larger values

of Ns would be required. The measured values in Table II

however correspond closely to the set values, confirming that

the threshold equations in Section V are correct.
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TABLE II
MEASURED FALSE ALARM PROBABILITY VALUES.

Set PF A ED Tech 1 Tech 2

0.001 0.0010205 0.0012686 0.0009245

0.003 0.0030093 0.0034905 0.0027469

0.005 0.0050614 0.0056225 0.0046470

0.010 0.0101522 0.0107803 0.0099211

0.030 0.0302207 0.0307656 0.0309257

0.050 0.0504181 0.0505104 0.0514241

0.100 0.1007815 0.0997421 0.1010004

0.300 0.3005873 0.2995871 0.2995768

0.500 0.5012642 0.5045618 0.4978770

B. Probability of detection performance

Using the theoretical threshold values calculated from the

set values of PFA and setting σw = 1 in (3) and σx

according to (4) for a given SNR value, simulated values

for PD were obtained. The simulated detection performances

for PFA = 0.1 and PFA = 10−6 are shown respectively

in Figures 6 and 7. At PFA = 10−6 technique 1 exhibits a

maximum performance gain of approximately 3 dB over ED.

Technique 2 exhibits additional gains over technique 1 of 1.5
dB for V = N2 and 4 dB for V = 10N2.

Figure 7 shows that for PFA = 10−6, technique 1 achieves

PD = 1 at SNR = −10 dB. The SNR value at which PD =
1 is reached increases with decreasing PFA. Technique 1’s

theoretic limit for perfect detection (see Section V-B) however

predicts the value at which PD = 1 is reached will not increase

beyond SNR = −2.828 dB.

The receiver operating curves (ROCs), displaying the PD vs.

PFA performance, for SNR = −14 dB and the reference 45◦

line are shown in Figure 8. For values of PFA approaching

one, the three techniques have the same detection perfor-

mances, though for values of PFA approaching zero both eigen

detection techniques are superior to ED. At SNR = −14 dB,

technique 2 (V = 40960) exhibits perfect detection. As the

SNR value decreases, the ROC curves moves closer to the

45◦ reference line.

C. Evaluation of execution time

Although the number of arithmetic operations required to

execute an algorithm (as derived in Section VI) predicts

execution time, several other factors should also be considered.

Two most important factors determining execution speed are

hardware platform specifications (processing speed, memory

size, etc.) and the efficiency of the implementation (how well

the code is written to exploit the hardware).

The measured average execution times matching Table I are

given in Table III for different code lengths N . The three

techniques were implemented using ANSI C on a computer

platform with an Intel Core 2 Duo T9600 (2.80 GHz) pro-

cessor. The average execution time was measured by counting

the number of processing cycles required by the section of C

code that calculates the test statistic. The implementation of

technique 1 was also enhanced using basic linear algebra sub-
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TABLE III
AVERAGE EXECUTION TIME IN SECONDS OF THE DETECTION ALGORITHMS FOR DIFFERENT VALUES OF N .

Algorithm N = 32 N = 64 N = 96 N = 128

ED (C) 3.2928 × 10−6 1.2870 × 10−5 2.9118 × 10−5 5.1695 × 10−5

Tech 1 (C, -5 dB) 2.4120 × 10−4 1.4825 × 10−3 4.9252 × 10−3 1.2397 × 10−2

Tech 1 (GSL, -5 dB) 7.7575 × 10−5 3.5204 × 10−4 1.1936 × 10−3 2.5524 × 10−3

Tech 1 (C, -25 dB) 4.8001 × 10−4 2.8274 × 10−3 1.0530 × 10−2 2.5837 × 10−2

Tech 1 (GSL, -25 dB) 1.8533 × 10−4 8.1181 × 10−4 3.0881 × 10−3 6.5832 × 10−3

Tech 2 (C, V = N
2) 5.7688 × 10−6 2.3089 × 10−5 5.2298 × 10−5 9.2508 × 10−5

Tech 2 (C, V = 10N2) 5.7705 × 10−5 2.3179 × 10−4 5.2073 × 10−4 9.2447 × 10−4

programs (BLAS) [29] through the C Gnu Scientific Library

(GSL) [30].

For ED, the complexity only depends on N and the values

in Table III clearly indicates that the execution time is related

to N2 as predicted in Table I. The complexity of technique 1

depends both on N and the number of iterations M required

by the symmetric power method. M is a function of SNR and

the tolerance value ε; the power method converges slower for

smaller values of both SNR and ε. The detection performance

results presented in this paper can be obtained using ε = 10−4

(smaller values do not improve performance) which is reached

on average after M = [11, 70, 111] iterations respectively for

SNR = [−5,−15,−25] dB.

Table III contains execution time results for technique 1 for

SNR = −5 and −25 dB. The results of both the C and C

with GSL implementations are shown. All four technique 1

cases indicate a growth in execution time greater than N2.

However, using GSL reduces the execution times and growth

rates. Lastly, the execution times of technique 2 are strongly

related to N2 in each case (as predicted in Table I). By

increasing the window length N2 by a factor 10, the execution

times increase by the same factor.

Comparing the different techniques using Tables I and III, it

is clear that ED is the least complex. Although technique 2 is

faster than technique 1, technique 2 needs the output sequence

produced by technique 1.

VIII. CONCLUSION

This paper considered the detection of weak DSSS signals

using PCA. Two new semi-blind detection techniques with

superior performance to classic ED were presented. If the

carrier frequency is known, the techniques only require the

sequence length of the spreading code to construct a detection

matrix which forms the basis of detection. It was shown

that a DSSS signal can be detected using a function of

the largest eigenvalue of the shifted detection matrix as test

statistic. The performance improvement is due to the large

difference between the largest eigenvalues of the detection

matrix under the H0 and H1 hypotheses even at low SNR

values. The computational complexity of each algorithm was

also evaluated. Although this paper focussed on real signals,

the techniques can also be applied to complex signals since

the eigenvalues of the SCM of a complex detection matrix will

also be real.
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