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Abstract

In this paper, a user-defined inter-band correlation filter funcitias used to resample
hyperspectral data and thereby mitigate the problem of miitieatity in classification
analysis. The proposed resampling technique convolves theamiitendence information
between a chosen band-centre and its shorter and longer wavelegbthones. Weighting
threshold of inter-band correlation (WTC, Pearsai)'&/as calculated, wherebyy= 1 at the
band-centre. Various WTG € 0.99,r = 0.95 and = 0.90) were assessed, and bands with
coefficients beyond a chosen threshold were assigref. The resultant data were used in
the random forest analysis to classifyd@hd G grass species. The respective WTC datasets
yielded improved classification accuracies (kappa = 0.82, MdD&6) with less correlated
wavebands when compared to resampled Hyperion bands (kappa = 0.76l), ecrasults
obtained from this study suggested that resampling of hyperdpeataashould account for
the spectral dependence information to improve overall cleetsific accuracy as well as

reducing the problem of multicollinearity.

Keywords: Spectral resampling; Inter-band correlation; Grass spe@ssifitation; Random

forests
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1. Introduction

Discriminating grass species, which correspond to the 3-cai®g)nof 4-carbon (@)
photosynthetic pathways, is consistent with the plant functiopal iyFT) approach used in
land surface modelling schemes (Tieszen et al., 1997; Ustin andrG&2010). In general,
C; and G grasses differ significantly in a number of physiological andtamical
characteristic features. The §pe of grass species has more compact leaf mesophyll, higher
proportion of vascular tissue and a lower interveinal distane, tthose of g grasses. In
addition, several biochemicals such as intercellular aistu@ and nitrogen concentration
are relatively lower in €grass, compared tos@rass species (Oyarzabal et al., 2008). Such
differences can manifest in the composition @f &d G grasslands, with the dominant
species strongly constituting the canopy reflectance. The fundamentaple is that @and
C, grass canopy reflectance is directly dependent on theirrappobperties, which are in
turn, controlled by the biophysical and biochemical characterisfiwegetation (Mutanga et
al., 2004). Several empirical evidences have shown thatpietral variability betweensC
and G grass species or groups of grasses is greater than ktie gvitup spectral information
(Irisarri et al., 2009; Liu and Cheng, 2011; Smith and Blackshaw, 2@@8).example,
reflectance at 531 and 570 nm have been proposed as a set ofl fip@risasensitive to
differences in @and G species (Gamon et al., 1997). Slaton et al. (2001) modelled @he ne
infrared (NIR) region and found that the reflectance around 800 nmnisicantly different
among species, which differ in intercellular structure. In amom garden experiment,
Irisarri et al. (2009) demonstrated that it is possible, usifigctance centred around 820 nm
to differentiate betweens@&nd G grass compositions.

The major challenge, however, is that spectral refleetalata obtained over many narrow

contiguous channels (i.e. hyperspectral data) can represenplencliisses that are often
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mixed for a limited training-sample size (i.e. n < P: Gid 8ruzzone 2007). The problem of
n < P is associated with the well-described “curse of dimergignar the Hughes
phenomenon (Hughes, 1968). This phenomenon causes a decrease in ar cagdgyi to
generalize accurately (Ham et al., 2005; Pal and Foody, 2010). Hengelarge training-
samples are required to achieve a good description of datebutistni (Dalponte et al.,
2009). Besides, the Hughes phenomenon often introduces high degree cbllimaiéirity,
caused by the use of highly-correlated predictor variablesvé@eet al., 2007).
Multicollinearity is a prominent problem in processing hyperspéatata for vegetation
applications, due to similarities in the reflectance pragef biophysical and biochemical
characteristics (Ferwerda et al., 2005; Knox et al., 2010; Zékal, 2011). The problem of
multicollinearity in the matrix of input spectral bands ofteade to highly unstable
parameter estimates and thus generalization error for afielagBruzzone and Serpico,
2000; Clevers et al., 2007).

Attempts to solve the problems associated with spectrardimnality and the related co-
linearity include the use of feature reduction and featuectsen techniques. The feature
selection approach includes those based on a search strategly arskparability measure.
The Sequential Forward Floating Selection (Pudil et al.,, 1994) andbtthepest Ascent
(Serpico and Bruzzone, 2001) are commonly used search strategygteshrvhereas the
Bhattacharyya distance (Djouadi et al., 1990), Jeffries—Matusstance (Bruzzone et al.,
1995) and the transformed divergence distance (Su et al., 199®xaneples of the
separability measures used in processing hyperspectral datavéfothese feature selection
techniques require estimation of some statistical properties! a@imensionality, in order to
select optimum subset of the input spectral bands for a gilessifecation task. If the
training samples are insufficient, the parameterization nmybe reliably adequate for the

feature selection process (Chi and Bruzzone, 2007).
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The studies by Schmidt & Skidmore (2003) and Becker et al. (2007) usegpteach of
analysing the most sensitive wavebands, considering the physispécroscopic meaning
of each band across the spectrum. This approach often involvess#mptieg of high-
dimensional spectra to wider bandwidths around a few chosen bandsaarioethe spectral
configuration of existing sensors. In this respect, the semsspective spectral response
functions or spectral resolutions (i.e. Full Width at Half Ntaxim, FWHM) are simulated.
The major limitation of existing resampling methods is thatirmerent property of
vegetation spectral response is not considered. That is, thenasyoal nature of correlation
between a given wavebarid @nd its shorter and longer wavelength neighbours are not fully
accounted for. In this regard, a more innovative approach can beddllovhereby the
researchers consider the inter-band correlations around eachcéaind of interestThe
approach has the advantage of linking the physical properties @irtfeg vegetation and its
characteristic spectral response function across the spe@aimidt and Skidmore, 2003).
When hyperspectral data are processed in this way, classiicaare based on the
spectroscopic interpretability of each set band (Beckal,62007; Faurtyot and Baret, 1997).

From this background, the present study sought to classin€ G grass canopies using
resampled hyperspectral data obtained through an approach that centh@vepectral
information around a chosen given band-centre. The resultant datasetanalysed using
the random forest (Breiman, 2001) algorithm. Random forests aeme&ty non-parametric
classifiers, which are increasingly becoming recognizedeimote sensing applications
involving classification of vegetation (Chan and Paelinckx, 2@#8mire et al., 2010; Ismail
and Mutanga, 2010; Lawrence et al., 2006). Included in the random ¢oraputation are
embedded methods of assessing the generalization error and vampbféance measures

and the computation does not require tuning of many parametemsyérand Cutler, 2004).
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2. Data acquisition and methods
2.1. Field spectral data measurements

Field data collection was conducted in the Cathedral Peak regidme dbrakensberg
Mountain Range, South Africa. The region consists of vegetatiodedivinto altitudinal
zones, which correspond closely with the physiographic featuretheofDrakensberg
Mountains (Hill, 1996; Killick, 1963). Three zones namely, the Maoatbelt (1280 — 1829
m), the Sub-alpine belt (1930 — 2865 m) and the Alpine belt (2866 — 3353 rdgfmed.
These zones also coincide with three terraces in the Draken3thexge include the river
valley system, the foothills (also known as the Little Berghd the summit areas,
respectively. The sub-alpine belt, which is composed pa@l G grass species, is also
known as theThemeda-Festucaub-alpine grassland (Hill, 1996). This zone is further
divided into three grass communities denoted ad ltemeda triandraFestuca costatand
the ‘Mixed’ grasslands. The so-called mixed community consisisniyn of variable
proportions of G grasses, although the occurrence R¥ndlia alteraseems prevalent.
Nonetheless, within the sub-alpine zone there are consociations Tof ttrendra and theF.
costataspecies occurrence on warm, northerly and cool, southerlgsslogspectively.

Reflectance measurements were collected during the Decet@hérsummer growing
season, using a 2150 band (350-2500 nm resolution) Analytical Spectra¢ R&SD), field
spectroradiometer (FieldSpec®3 ASD, Inc., Boulder, CO, U3A)s device uses a fibre
optic cable set at 25ield of view (FOV) to record reflected canopy radiation, ahivas
individually calibrated against a barium sulfate (BaS@hite reference panel. Canopy
reflectance measurements were collected to charactbazepectral separability among 1x1
m sample plots, represented Bycostata(Cs), R. altera(C4) andT. triandra (Cs) dominant

grass species. Spectral reflectance for these dominanegrass in the 1x1 m plots) was



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

measured at full canopy cover. Although the dominant grasses coagtkistther species,
their respective canopy cover was consistently estimate8@fo in each target 1x1 m plot.
The field spectral measurements were consistently recoradedsidering the
recommendations in Thenkabail et al. (2000). The ASD optic sensdreihat about 1.5 m
directly above the sampling plots, generating an instantaneousffiiev of about 0.35 f
A minimum of three positions were randomly chosen within each 1xdlamnand five
spectral measurements were consistently acquired for each dthesef positions. This
process resulted in a minimum of 15 reflectance measuremermikperhere were no major
issues with background effects, since average spettaimeasurements for each plot(
15) were taken at full canopy cover. A total of 110 plots were meadar each of the three
categories of grass species. This process resulted in 330 gaatplevhich were considered
representative of the spectral variability within and amadhg grass species under

investigation.

2.2. Resampling the spectral data

Spectral resampling of the ASD reflectance was conducted uUsigl's spectral
resampling routine (ENVI Version 4.7, 2009 Edition, Copyright © ITiEWI Information
Solutions). Initially, an ASCII file containing 10-nm-wide bammsing was created and used
to aggregate the 1-nm-wide spectral data, across the 400-2500 nm spectrum. The ENVI's
resampling routine fits a Gaussian model with an FWHM equaleepecified band spacing
to resample the data. This initial sampling of the data caased to aid calculation of the
inter-band correlation coefficient matrix of the input spectral hamtie degree of linear
relationship between a band and its shorter and longer wavelendthagig) was calculated,
using the well-known Pearson'soefficient of correlation. The linear spectral dependence

between two sample wavebands (Xi, Yi) was assessed, ngsultvalues between 0 and 1:
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n — 1 i1 Sy Sy (Eq 1)

X — X _
= - X, and sx
where  sx * are the standard score, sample mean, and samplardtand

deviation, respectively (Eg. 1). The Pearsanterrelation coefficient was used, since in this
experiment the data assume multimodal normal distributioneofesponse variables (Chi et
al., 2008). The inter-bandcoefficient matrix was computed using the R statisticaivsot

(R Development Core Team, 2010). The R routines output a spreafilshieemat and an x

. y axis contour plot of the inter-band/alues.

Spectral response curves were simulated for the predefinezbth{t3) band-centres. The
band-centres were chosen on the basis of their known sensitivitbe tbiaphysical and
biochemical characteristics of vegetation. Table 1 showsahsal reflectance or absorption
features associated with the chosen bands-centres. In adth&éomavelengths (i.e. band-
centres) were selected, considering the observed pattern inathi& of the data points, as
depicted in Fig. 1a. Moreover, the chosen band-centres have peeeddn the literature to
be useful for @ and G grass species discrimination. For example, Smith andk&iaov,
(2003) reported high frequencies (>15 out of 20 times) for the band-cehtssn within the
visible and near infrared regions. Irisarri et al. (2009) foinad the spectral channels around
820 nm were important for differentiating @d G grass compositions. Further, Noble et al.
(2002) noted that the chosen bands-centres in the shortwave regigefuefor G and G
crop/weed species discrimination.

The inter-band Pearsorrsorrelation coefficient between each of the chosen band-centres
and their shorter and longer waveband neighbours was calculatedhamtiecentres were
located at the meeting point of the x: y axis (Fig. 1a), wherel, and bandwidths were
estimated by considering the vertical or the horizontal distac@ss a given band-centre, as

a function of wavelength. It is important to note that the intedbaorrelationy values are
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asymmetrical across the horizontal or the vertical linesyTare only symmetrical across the
diagonal. Therefore, it was possible to capture the spectpangs information around each
band-centre, using a chosen weighting threshold of inter-band correlaioous weighting
thresholds of user-defined inter-band correlation (WF3.99, WTCr = 0.95 and WTQC =
0.90) were assessed. Fig. 1b illustrates the sizes ofeHipedative user-defined inter-band
correlations, using the 660 nm band-centre as an example. The shdrtenger wavelength
sides of the sample band-centre (i.e. 660 nm) were caldubat the basis of > 0.99,r >
0.95 and > 0.90, whereby bands with coefficients beyond a specified WTC agsigned

= 0. The procedure was simulated for all the chosen 13 bandsentre

The resultant user-defined inter-band correlation filter functwegr® used in the ENVI's
spectral resampling routine. The ENVI's routine assumesieatrépectral resampling when
FWHM values are not provided by fitting a Gaussian model with\8&HM equivalent to
specified band spacing. However, if a user-defined filter fanas incorporated, the routine
uses it to simulate each line of wavelengths as a multipécéictor (i.e. weighting between
0 and 1) to resample the data (RSI, 2009). The size of thebeme correlation for each
band-centre varies depending of the chosen WTC and this accounted fepeitieal
dependence information in the original reflectance data.

In addition, conventional approach of resampling reflectancetadatatch the response of
an existing instrument was assessed for comparative purpesbhsthe proposed user-
defined inter-band correlation filter technique. This involves mgdiag the ASD data to
match the Hyperion sensor’s (on-board the Earth Observing-li®atgtiectral resolution or
FWHM function. The procedure is analogous to that of the user-dgfieetral resampling
described. However, the ENVI routine uses the pre-definedrapbiotary developed for the
Hyperion sensor to resample the data. Since the canopy aefiectneasurements were

conducted under field conditions, the strong noisy incident radiatib850-1460 nm, 1790 -
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1960 nm and inconsistent spectra below 400 nm were removed fronalgBia (Thenkabail

et al., 2004).

2.3. The Random forestmriable importance, classification and accuracy assessment

All the datasets were randomly split into 70% training and 80@%out test sets (n = 77
and n =33 subsets, respectively), using the R statisticaheotthe random forest algorithm
was constructed to grow a large ensemble of classificaties. tfehe resultant trees in the
ensemble were used to assign each input spectral bands tomefalssrship of the response
variables:F. costata, R. altera or T. triandraEach tree is grown from a randomly and
independently selected bootstrap sample of the training databaot @ne-third, excluded
samples, called the out of bag (OOB) samples were usetttdata an unbiased assessment
of the classification accuracy (i.e. the OOB error). Sittee OOB error is an unbiased
assessment of the classification accuracy (Breiman, 20@%adPret al., 2006), it provides
theoretical guarantee for the groups afadd G grass species detection and classification.
Further to using the OOB error samples to assess the oeksdification accuracy, the
kappa coefficient analysis was performed. This was necessiane the study involves a
multiclass application and the goal is to account for actuakaggent specified by each class
versus the chance agreement. That is, it was importanteovdeé if one OOB error matrix
is significantly different from another (Stehman, 1997).

The random forest algorithm is easy to implement, becausesiretunes only two
parameters: (i) the number of treesr¢e) to grow and (ii) the number of variables to split at
each nodengtry). The default value of thentry parameter in the context of classification
applications is denoted by the square root of the total number of iapables (Liaw and

Wiener, 2002). In the current analysis, the OOB error saniple=ach class membership of
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the input spectral bands were used to optimizenthee and mtry hyper-parameters (Ismail
and Mutanga, 2011).

The random forest-based variable permutation mean decreaseuira@c (Strobl and
Zeileis, 2008) was used to calculate the importance of eaclciamedariable. The variable
rankings were calculated using all variables (i.e. 70%itrgiset) and optimizentry value
based on the specifigdree (i.e.10 000 for all datasets) value. To decrease computing time
the routine starts with the defaunfitry value for each dataset and then calculates to the right
of the value; and then to the left of the value. For exantpdegdefaulimtry for the resampled
Hyperion dataset (n = 197) is 14, so the routine ngegvalues of 2, 7... to the left (deflate)
of the default value; anthtry values of 28, 42... to the right (inflate) of the defaulry
value. It then runs the random forest based on the optinm#edand ntree values and

determines variable rankings and the test dataset error.

2.3.1. Random forest-based fast forward variable selection

To calculate the greedy fast forward variable selectios)fising the OOB error rates
(Adam et al., 2009; Dye et al., 2011), the routine uses the optimandom forest variable
rankings calculated above to create different subsets of \@sidbinvolves iteratively fitting
the random forest model on the 70% training datasets, and atte@atton building a new
model by adding the band with highest importance. Consequentisgutiee optimizes the
mtry andntreevalues for each step of the variable selection process. Teaseccomputing
time the routine was set to terminate at the iteration witbset OOB error less than the
overall OOB error calculated when using all the variablégs can be calculated to include a
percentage improvement of the overall OOB error. Howeverusecthe input Hyperion
bands (n = 197) are high in dimension (more than 100 predictors vayjablespercent

improvement approach was not exploited for the current application.

10
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Several empirical evidences have shown that the random forgstittah shows
significant preference towards highly correlated predictoatées (Nicodemus et al., 2010;
Strobl et al., 2008). The authors reported that traditional randoests preference for
highly-correlated predictor variables can be carried forwardnip significance test or
variable selection processes constructed from the importancsureeaIn this respect,
researchers have suggested the use of conditional vamabietance approach to mitigate
the problems associated with traditional random forest varssdetion process. Despite the
recommendation, in the current experiment assesses the randmtbiased FvS process on
the highly dimensional resampled Hyperion bands, for comparnatirgoses with the WTC

datasets.

3. Results
3.1. The user-defined inter-band correlation filter technique aftspleresampling

The results obtained indicate that large portions of thand G grass canopy reflectance
exist in highly correlated wavelengths. In general, a dser@a spectral resolutions was
observed for each of the 13 band-centres in relation to the userebefighting thresholds
of inter-band correlation filter. = 0.99, r = 0.95 and r = 0.90, respectively. For each derived
waveband, the inter-band correlation coefficient 1 at the band-centres and generally
decreases across the shorter or longer wavelengths neighbogrsardisied by a chosen
WTC filter. Overall, the WTQ = 0.99 filter yielded higher spectral resolutions, among the
three filters assessed. In addition, it appeared that titedentres of specific regions (i.e. the
visible, red-edge, near infrared and shortwave infrared spesticaved varying degrees of
inter-band correlations, resulting in variable spectral reisolsit for each of the spectral
regions. Table 2 shows the results of the various spectraltiess| obtained for each band-

centre of the WTC datasets.

11
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3.2. G and G grass species classification using the WTC and resample ldypsaiasets

The random forest hyper-parameters were optimized using the @Q@Bates. The WTC,
r = 0.99 filter yielded the highest classification accuracyorgnthe three user-defined
thresholds of inter-band correlation filters assessed. Taldkows the overall accuracies
(OOB error rates) and the kappa coefficients obtained fordatfsets, including the
resampled Hyperion. The OOB error and kappa coefficients setlesubstantially when the
WTC of r = 0.90 filter dataset was analyzed. However, the resbtned showed that the
proposed user-defined thresholds of inter-band correlation filteroagiprto resampling
Hyperspectral data produced higher classification accurachen veompared with the
conventional technigue of resampling data to match the Hypensomsespectral resolution.

Although the WTC datasets yielded significantly variable diaation accuracies, a
similar variable importance ranking was obtained for these etataSonsequently, only the
variable importance ranks of the WTIC= 0.99 dataset is presented in Fig. 2. Since the
random forest algorithm was initially run using all the resachplgperion bands (n =197),
the variable importance measure (Fig. 3) was then exploitedalmate whether the FvS
process could improve the classification accuracy. This procedeldegian optimal subset
of 22 bands (Table 4), which were subsequently used to classify;th@dCG response
variables. The results obtained showed that the resampled étygmnd B7 yielded the
highest mean decrease in accuracy (11.13%), and that was sulblyecaied over to the
variable (1/197 bands) selection process. It should be noted thaherdptimum subset of
the best ranked bands are reported in Table 4. Inter-band correlaidicient matrix (Table
5) of the optimal subset of bands selection through the random fosest-BaS process was
exploited. As expected, the results showed clearly that tlse pgfecedure yielded highly
correlated resampled Hyperion bands and that the majority of tketesklbands were

concentrated in specific regions of the spectrum.

12
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4. Discussion

Hyperspectral data are suitable fog &d G grass species classification, since spectral
fine features characteristic of vegetation is more disikr from narrowband sensors.
However, it can be challenging to classify énd G grass species using their spectral
reflectance data, due to the problem of hyper-dimensionality ssutiated multicollinearity
phenomena (Pal and Foody, 2010). Among other factors (e.g. Phenoddfgctd and solar
illumination conditions), spectral similarity betweep &d G grasses and their co-existing
species can have significant impacts on the classificaagability of canopy reflectance
data (Schmidt and Skidmore, 2001). Despite these challenge®, sagdies have shown that
subtle differences in structural and physiological properties, sutioas described forsC
and G grasses may be detected by leaf or canopy reflectanseriilet al., 2009; Liu and
Cheng, 2011).

Although previous studies have used narrow-band spectral data ity dessslands of €
and G species composition, the present investigation explores thatipbtese of a user-
defined inter-band correlation filter to resample hyperspectath, dfor subsequent
classification analysis. This study demonstrated the tradebeffseen retaining narrow
bands spectral data vs. the optimal reduction in spectral diomatisy for improved
classification. The results obtained explained the spectrostupipretability of the chosen
band-centres, in reference to their sensitivity to leaf oopg surface properties, internal
structure and biochemical concentrations. These charactefesicres are known to
significantly vary between £and G grass species. Hence, variations in pigments content,
nitrogen, carbon compounds (lignin and fibre) and water components daflidar air-
moisture or leaf liquid water content) can be attributed to thad gspectral separability

obtained for the target grasses assessed in this studgnéral, the results have shown that

13
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the proposed user-defined inter-band correlation filter technique yieidgaoved
classification ofF. costata R. alteraandT. triandra grass canopies. More detailed analyses
of the results are presented next: the weighting thresholdstestband correlation filter
approach to resampling hyperspectral data; the random foresticddiss and band subset
selection of resampled Hyperion dataset, using a traditiondlochets. prior dimensionality-
reduction, using the WTC filter technique and; implications ef ghesent investigation for

applications involving @and G grass species.

4.1. The weighting thresholds of inter-band correlation filter approach

On the basis of the proposed resampling approach, this study ¢vaa #imat highly
correlated hyperspectral wavebands in specific regions can Ipeatiptaggregated to reduce
spectral dimension of the input spectral bands. The proposed spestiaipling technique
takes advantage of the inherent property of vegetation reftagtthe asymmetrical nature of
the inter-band correlation matrix of the collected wavebands. @hsdted presented in Table
2 show the extent of spectral convolution using the highly correlate®@lengths around
each of the selected band-centres across the 400 — 2500 nm speb&wmegdtation spectral
response property used to calculate the various WM&ues (i.e. 0.99, 0.95 and 0.90) can be
attributed to reflectance or absorption features characteoistite target @and G grasses
(Ferwerda et al., 2005; Knox et al., 2010). In a previous studptdl et al. (2001) found
800 nm wavelength contained very strong discriminating power for pieties at the level
of leaf internal structure. Further, Irisarri et al. (2009oréed that vegetation reflectance at
the 820 nm spectral range is sensitive to even subtle difieseamong grass species or
between groups of{and G grasses. Hence, in the present experiment, the usedlefiae
band WTC filters were useth assess the optimal spectral resolutions around chosen band-

centres, including the 820 nm wavelength. In this regard, the mdpesampling procedure

14
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offers the potential for data dimensionality reduction and optingligsnation of redundant
spectral information by means of weighting thresholds of inter-bamdlation criterion.

It is worth noting that the newly introduced resampling approach not @uyces
dimensionality in hyperspectral data, it also preserves/aetespectral information for
posterior classification of £and G grass canopy reflectance. In general, there is very close
relationship between classifier sensitivity to data dimenstgrend classification accuracy,
under conditions of multiple correlations among the input spectral b&@uegz-Chova et
al., 2003). This suggests the concept of using spectral resgntplthniques capable of
reducing co-linearity problems in the input spectral space, foicafiphs involving G and

C,4 grass species.

4.2. Random forest-based band subset selection vs. prior dimensioedlittion

Random forests have been found attractive for the analysisnuitely sensed data for
ecological applications (Chan and Paelinckx, 2008; Ham et al., 2&@Bence et al., 2006;
Prasad et al., 2006). A number of studies have asserted tmag¢tied is insensitive to high-
dimensionality and, therefore, does not require a dimensiomatityction analysis in pre-
processing (Breiman and Cutler, 2004; Ham et al., 2005). How#werassessment of
random forest’s variable importance measure in high-dimensigmedtral space, has
revealed that the algorithm thus show a preference to hightglated predictor variable.
Such a preference was also found to be manifest in the subseglset band selection
process (Table 5). The results from the present experimentaafism the findings of the
recent studies, which investigated random forests variable tamper under predictor
correlation and the generalization of parameter estimate®ddmus and Shugart, 2007,
Strobl et al., 2008). In their studies, the authors recommended tiooatli variable

importance approach for random forest-based variable seleatigpoaterior classifications.
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Critically, the results obtained from the present study showadNR& r = 0.99 yielded
the highest classification accuracy (kappa = 0.82) among the ititexeban correlation
thresholds assessed. This superior accuracy demonstrately, clear role of spectral
resolutions on €and G grass classification and the classifier accuracy. Howéverarger
decrease in classification accuracy obtained for WF.90 could be attributed to the very
larger increase in wavelengths for each individual wavebamgpassented in Table 2. The
trend obtained among the classification of the three WTdatasets compares well with
Dalponte et al. (2009), who investigated the effect of changingtrapeesolution upon
different classifiers for forest applications. In their stuitig authors found that as spectral
resolutions were degraded from 4.6 nm to 36.8 nm, overall kajpgpaaaes dropped from ~
89 % to ~ 84 %, respectively, using Support vector machines Y@drithm (Vapnick,
1998). Furthermore, when compared with classification involving gplsinparametric
classifier such as LDA, Dalponte et al. (2009) recorded mfé@appa accuracies which also
dropped from ~ 77 % to ~54 %, respectively. The authors conclude@dizanced non-
parametric classifiers, such as the random forest are appkcable for classifications
involving complex vegetation feature spaces.

As depicted on Table 5, the random forest band selection prduegsda significant bias
toward the highly correlated Hyperion bands (e.g. B6 - B13 and BB2&89). However, the
random forest analysis on the prior dimensionality-reduction datadégsed distinct
advantage, using the inter-band correlation WTC filters toeagde the majority of the
highly correlated wavebands. The novelty of the proposed method is hinabands
contributing to the out reflectance data were weighted accorditigeiiolinear relationship
with a chosen band-centre. The resultant classification acesirabhowed that the prior
dimensionality-reduction approach considerably negates problemsatsdowith spectral

redundancy and thereby mitigated against the multicollinephighomenon (Gomez-Chova

16



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

et al., 2003). Furthermore, the present experiment has demahdtrateeven when a large
training sample (i.e. 330 canopy spectra), compared to the numliperctdad bands (n = 197)
are used, spectral filtering may still be useful. Tdff#mation is supported by the accuracy
derived from the use of the optimized 13 bands, which yielded supéassification
accuracies (OOB = 0.14; kappa 0.82), compared to that derimedtifre use of a larger but

high-correlated resampled Hyperion bands (OOB = 0.19; kappa = 0.76).

4.3. Implications of the present investigation and conclusion
The primary purpose of this study was to assess the spectigdisiéify among @and G

grasses, sampled from the Drakensberg Mountains of South .Affieasecondary goal was
to address the issue of multicollinearity effect on thefoperance of the random forest
variable importance and the subsequent band subset selection puadesspredictor
correlation. The performance of the method, when applied t diived by resampling
spectra to the Hyperion sensor's spectral resolution, was arechpto that of spectra
resampled by weighting the inter-band correlations, as a umofiwavelength. The overall
implications for this investigation are related to various hgectral data application
constraints: i) the trade-off between the number of spebaratls and the resolution of
remotely sensed imagery; ii) the trade-off between highertrsppaesolution and reduced
signal-to-noise ratio, and iii) challenges associated with adiptimal configuration of
wavebands capable of providing sensitive information about &t teggetation (Price, 1994;
Thenkabail et al., 2004). Therefore, in the present experimezthaitiue has been proposed
to reduce dimensionality, while preserving relevant spectrdrmation for posterior
classification task. It has been observed that the proposauiplsg technique represents a
potential method of reprogramming hyperspectral resolutions and banducatibns. This

potential also holds prospects in the development and configuratiorucé fetmote sensors
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to collect optimal spectral resolutions and configuration focifipevegetation applications.

The results obtained in this study suggested that further studiesssiddr multicollinearity

problem should consider techniques that account for the spectraiddepe information

contained in vegetation reflectance data. In summary, thentuachnique described in this
paper yields the following distinct benefits:

. Reduces data dimensionality by accounting for the inter-band atwored around
specific band-centres of interest and thereby mitigatingnaggtie multicollinearity
phenomenon caused by highly correlated spectral bands.

. Optimizes the spectral resolutions useful for the separahititgng the dominantC
and G grass species investigated.

. Assists the random forest, to achieve improved classificaimpuracy, thereby
providing the potential to link each individual input band to the physnesning of

interaction effects in the structure of the acquired data.
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Figure captions
Fig. 1 Pearson’s r correlation coefficients matrix (plot)hef input spectral bands, calculated
using reflectance data aggregated into 10-nm-wide band inte(aglsand an

illustration of the user-defined inter-band correlation fitter660 nm band-centre (b).

Fig. 2 Random forests variable importance ranks for the WTQ.9%-dataset (n = 13 bands)
based on the Mean Decrease in Accuracy values. The reflecspectrum of the

target grass species is shown.

Fig. 3 Random forests variable importance ranks for resampledriblyggands (n = 197)

based on the Mean Decrease in Accuracy values. The reflecspectrum of the

target grass species is shown.
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Table 1
Wavelengths corresponding to known absorption features, as described m previous studies to be hughly
sensiive to the properties of reflecthon or absorphion of wvegetation structural and brochemical

charactenstics.

No. Band (nm) Known Causal compound/ feature Source

1 470 Total plant pigment concentration Blackbum, 1998

2 530 Chlorophyll a abserption Gamon etal . 1997
3 600 Nitrogen Faurtyot and Baret, 1997
4 660 Nitrogen Curran, 1989

5 700 Total Chlorophyll, Nitrogen Carter, 1994

6 720 Total Chlorophyll, Leaf mass Horler et al.. 1983
7 820 Leaf mass. Leaf area index Curran. 1989

8 1540 Cellulose, vegetation water content Carter, 1994

9 2060 Protemn Carter, 1994

10 2280 Cellulose, Sugar, Starch, Leaf mass Curran, 1989

11 2300 Leaf mass. vegetation water content ~ Carter, 1994

12 2450 Cellulose, Protem, Nitrogen Carter, 1994

13 2470 Cellulose, Protemn Kumar et al., 2001
Table 2

Spectral resolutions obtained from the analysis of the user-defined inter-band correlation.
Wavelength (nm) filter size/ Resampled datasets

Band centre (nm) WICr=099 WTICr=095 WTC r=10.90
470 430 - 500 410 - 520 400— 530
530 520-570 500 - 600 470 - 600
600 580 - 630 550 - 650 530 - 660
660 650 - 690 620 - 690 600 — 700
700 700* 690 - 710 690 - 710
720 720% 710 - 730 710 - 740
820 740 - 1110 730-1190 730-1330
1540 1500 - 1630 1470 - 1780 1470 —-1780
2060 2040 - 2090 2020 - 2180 1990 - 2280
2280 2100 - 2300 2060 - 2300 2060 - 2300
2300 2300 - 2350 2280 - 2390 2289 —2420
2450 2450 2410 - 2460 2360 — 2470
2470 2470* 2460 - 2470 2450 - 2470

* Indicates wavelength = 10 nm of the input spectral band.
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Table 3
Random forest model optimization and accuracy measures using OOB samples on the training dataset
(70% sample). The Kappa-test set statistics were calculated using 30 % holdout samples.

™ i_1 W1 __ I S ] P & Ty o w______
Resampled Numbei Optinuzed Opummzed OOD Rappa mappa-
datasets of Bands  mry niree error rate . Traumng set  Test set
Resampled-Hypenon 197 56 500 0.19 0.71 -
Resampled-Hyperion 22 20 1500 0.19 0.72 0.76
WICr=099 13 6 4000 0.14 0.79 0.82
WICr=095 13 3 2500 021 0.68 0.79
WIC:=090 13 o 4000 023 0.64 0.76
Table 4

Random forest-based forward best ranked band selection on resampled-Hypenon spectral resolution. The
Kappa statistics were calculated on 70 % trammng sample.

Rank Hyperion Average FWHM Optimized Optinuzed Accuracy:
band wavelength (nm)  (om) mtry niree cumulative OOB

1 B7 416.64 11.39 1 500 0.518
2 B6 406.46 11.39 2 10000 0.505
3 B212 227442 10.43 3 1000 0.693
4 B211 226432 10.44 4 1500 0.68
5 BS 42682 11.39 4 500 0.603
] B213 228452 10.42 4 7500 0.699
7 B9 436.99 11.39 7 1500 0.706
8 B216 231481 10.41 1 7000 0.699
9 B214 2204 61 10.41 6 500 0.706
10 B215 2304.71 10.41 ] 2500 0.693
11 B217 232491 10.41 9 1000 0.693
12 B10 4717 11.39 12 500 0.706
13 B210 225422 10.46 1 500 0.699
14 Bl12 467.52 11.39 8 500 0.7112
15 B218 2335.01 10.41 2 1000 0.725
16 Bll 457.34 11.39 4 500 0.725
17 B219 234511 10.41 4 6500 0.732
18 B33 681.2 10.33 18 500 0.771
19 B198 213324 10.73 8 500 0.771
20 B200 215334 10.68 4 1000 0.764
21 B138 17297 11.56 20 1000 0.803
22 B13 477.69 11.39 20 1500 0.81
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