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Abstract 13 

In this paper, a user-defined inter-band correlation filter function was used to resample 14 

hyperspectral data and thereby mitigate the problem of multicollinearity in classification 15 

analysis. The proposed resampling technique convolves the spectral dependence information 16 

between a chosen band-centre and its shorter and longer wavelength neighbours. Weighting 17 

threshold of inter-band correlation (WTC, Pearson’s r) was calculated, whereby r = 1 at the 18 

band-centre. Various WTC (r =  0.99, r = 0.95 and r = 0.90) were assessed, and bands with 19 

coefficients beyond a chosen threshold were assigned r = 0. The resultant data were used in 20 

the random forest analysis to classify C3 and C4 grass species. The respective WTC datasets 21 

yielded improved classification accuracies (kappa = 0.82, 0.79 and 0.76) with less correlated 22 

wavebands when compared to resampled Hyperion bands (kappa = 0.76). Overall, the results 23 

obtained from this study suggested that resampling of hyperspectral data should account for 24 

the spectral dependence information to improve overall classification accuracy as well as 25 

reducing the problem of multicollinearity. 26 

 27 

Keywords: Spectral resampling; Inter-band correlation; Grass species classification; Random 28 

forests  29 

 30 



2 
 

 1 

1. Introduction 2 

Discriminating grass species, which correspond to the 3-carbon (C3) or 4-carbon (C4) 3 

photosynthetic pathways, is consistent with the plant functional type (PFT) approach used in 4 

land surface modelling schemes (Tieszen et al., 1997; Ustin and Gamon, 2010). In general, 5 

C3 and C4 grasses differ significantly in a number of physiological and anatomical 6 

characteristic features. The C4 type of grass species has more compact leaf mesophyll, higher 7 

proportion of vascular tissue and a lower interveinal distance, than those of C3 grasses. In 8 

addition, several biochemicals such as intercellular air-moisture and nitrogen concentration 9 

are relatively lower in C4 grass, compared to C3 grass species (Oyarzabal et al., 2008). Such 10 

differences can manifest in the composition of C3 and C4 grasslands, with the dominant 11 

species strongly constituting the canopy reflectance. The fundamental principle is that C3 and 12 

C4 grass canopy reflectance is directly dependent on their spectral properties, which are in 13 

turn, controlled by the biophysical and biochemical characteristics of vegetation (Mutanga et 14 

al., 2004). Several empirical evidences have shown that the spectral variability between C3 15 

and C4 grass species or groups of grasses is greater than the within group spectral information 16 

(Irisarri et al., 2009; Liu and Cheng, 2011; Smith and Blackshaw, 2003). For example, 17 

reflectance at 531 and 570 nm have been proposed as a set of spectral bands sensitive to 18 

differences in C3 and C4 species (Gamon et al., 1997). Slaton et al. (2001) modelled the near 19 

infrared (NIR) region and found that the reflectance around 800 nm is significantly different 20 

among species, which differ in intercellular structure. In a common garden experiment, 21 

Irisarri et al. (2009) demonstrated that it is possible, using reflectance centred around 820 nm 22 

to differentiate between C3 and C4 grass compositions.  23 

The major challenge, however, is that spectral reflectance data obtained over many narrow 24 

contiguous channels (i.e. hyperspectral data) can represent multiple classes that are often 25 
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mixed for a limited training-sample size (i.e. n < P: Chi and Bruzzone 2007). The problem of 1 

n < P is associated with the well-described “curse of dimensionality” or the Hughes 2 

phenomenon (Hughes, 1968). This phenomenon causes a decrease in a classifier ability to 3 

generalize accurately (Ham et al., 2005; Pal and Foody, 2010). Hence, very large training-4 

samples are required to achieve a good description of data distribution (Dalponte et al., 5 

2009). Besides, the Hughes phenomenon often introduces high degree of multicollinearity, 6 

caused by the use of highly-correlated predictor variables (Clevers et al., 2007). 7 

Multicollinearity is a prominent problem in processing hyperspectral data for vegetation 8 

applications, due to similarities in the reflectance properties of biophysical and biochemical 9 

characteristics (Ferwerda et al., 2005; Knox et al., 2010; Zhang et al., 2011). The problem of 10 

multicollinearity in the matrix of input spectral bands often leads to highly unstable 11 

parameter estimates and thus generalization error for a classifier (Bruzzone and Serpico, 12 

2000; Clevers et al., 2007). 13 

Attempts to solve the problems associated with spectral dimensionality and the related co-14 

linearity include the use of feature reduction and feature selection techniques. The feature 15 

selection approach includes those based on a search strategy and on a separability measure. 16 

The Sequential Forward Floating Selection (Pudil et al., 1994) and the Steepest Ascent 17 

(Serpico and Bruzzone, 2001) are commonly used search strategy techniques, whereas the 18 

Bhattacharyya distance (Djouadi et al., 1990), Jeffries–Matusita distance (Bruzzone et al., 19 

1995) and the transformed divergence distance (Su et al., 1990) are examples of the 20 

separability measures used in processing hyperspectral data. However, these feature selection 21 

techniques require estimation of some statistical properties at full dimensionality, in order to 22 

select optimum subset of the input spectral bands for a given classification task. If the 23 

training samples are insufficient, the parameterization may not be reliably adequate for the 24 

feature selection process (Chi and Bruzzone, 2007). 25 
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The studies by Schmidt & Skidmore (2003) and Becker et al. (2007) used the approach of 1 

analysing the most sensitive wavebands, considering the physical or spectroscopic meaning 2 

of each band across the spectrum. This approach often involves the resampling of high-3 

dimensional spectra to wider bandwidths around a few chosen band-centres or to the spectral 4 

configuration of existing sensors. In this respect, the sensors respective spectral response 5 

functions or spectral resolutions (i.e. Full Width at Half Maximum, FWHM) are simulated. 6 

The major limitation of existing resampling methods is that an inherent property of 7 

vegetation spectral response is not considered. That is, the asymmetrical nature of correlation 8 

between a given waveband (λ) and its shorter and longer wavelength neighbours are not fully 9 

accounted for. In this regard, a more innovative approach can be followed, whereby the 10 

researchers consider the inter-band correlations around each band centre of interest. The 11 

approach has the advantage of linking the physical properties of the target vegetation and its 12 

characteristic spectral response function across the spectrum (Schmidt and Skidmore, 2003). 13 

When hyperspectral data are processed in this way, classifications are based on the 14 

spectroscopic interpretability of each set band (Becker et al., 2007; Faurtyot and Baret, 1997).  15 

From this background, the present study sought to classify C3 and C4 grass canopies using 16 

resampled hyperspectral data obtained through an approach that convolves the spectral 17 

information around a chosen given band-centre. The resultant datasets were analysed using 18 

the random forest (Breiman, 2001) algorithm. Random forests are advanced non-parametric 19 

classifiers, which are increasingly becoming recognized in remote sensing applications 20 

involving classification of vegetation (Chan and Paelinckx, 2008; Ghimire et al., 2010; Ismail 21 

and Mutanga, 2010; Lawrence et al., 2006). Included in the random forest computation are 22 

embedded methods of assessing the generalization error and variable importance measures 23 

and the computation does not require tuning of many parameters (Breiman and Cutler, 2004).  24 

 25 
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2. Data acquisition and methods  1 

2.1. Field spectral data measurements 2 

Field data collection was conducted in the Cathedral Peak region of the Drakensberg 3 

Mountain Range, South Africa. The region consists of vegetation divided into altitudinal 4 

zones, which correspond closely with the physiographic features of the Drakensberg 5 

Mountains (Hill, 1996; Killick, 1963). Three zones namely, the Montane belt (1280 – 1829 6 

m), the Sub-alpine belt (1930 – 2865 m) and the Alpine belt (2866 – 3353 m) are defined. 7 

These zones also coincide with three terraces in the Drakensberg. These include the river 8 

valley system, the foothills (also known as the Little Berg), and the summit areas, 9 

respectively. The sub-alpine belt, which is composed of C3 and C4 grass species, is also 10 

known as the Themeda-Festuca sub-alpine grassland (Hill, 1996). This zone is further 11 

divided into three grass communities denoted as the Themeda triandra, Festuca costata and 12 

the ‘Mixed’ grasslands. The so-called mixed community consists mainly of variable 13 

proportions of C4 grasses, although the occurrence of Rendlia altera seems prevalent. 14 

Nonetheless, within the sub-alpine zone there are consociations of the T. triandra and the F. 15 

costata species occurrence on warm, northerly and cool, southerly slopes, respectively. 16 

Reflectance measurements were collected during the December 2010 summer growing 17 

season, using a 2150 band (350–2500 nm resolution) Analytical Spectral Device (ASD), field 18 

spectroradiometer (FieldSpec®3 ASD, Inc., Boulder, CO, USA). This device uses a fibre 19 

optic cable set at 25o field of view (FOV) to record reflected canopy radiation, which was 20 

individually calibrated against a barium sulfate (BaSO4) white reference panel. Canopy 21 

reflectance measurements were collected to characterize the spectral separability among 1×1 22 

m sample plots, represented by F. costata (C3), R. altera (C4) and T. triandra (C4) dominant 23 

grass species. Spectral reflectance for these dominant grasses (i.e. in the 1×1 m plots) was 24 
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measured at full canopy cover. Although the dominant grasses co-exist with other species, 1 

their respective canopy cover was consistently estimated at ≥ 80% in each target 1×1 m plot. 2 

The field spectral measurements were consistently recorded, considering the 3 

recommendations in Thenkabail et al. (2000). The ASD optic sensor was held at about 1.5 m 4 

directly above the sampling plots, generating an instantaneous field of view of about 0.35 m2. 5 

A minimum of three positions were randomly chosen within each 1×1 m plot and five 6 

spectral measurements were consistently acquired for each one of these positions. This 7 

process resulted in a minimum of 15 reflectance measurements per plot. There were no major 8 

issues with background effects, since average spectral () measurements for each plot (i ≥ 9 

15) were taken at full canopy cover. A total of 110 plots were measured for each of the three 10 

categories of grass species. This process resulted in 330 sample plots, which were considered 11 

representative of the spectral variability within and among the grass species under 12 

investigation.  13 

 14 

2.2. Resampling the spectral data 15 

Spectral resampling of the ASD reflectance was conducted using ENVI’s spectral 16 

resampling routine (ENVI Version 4.7, 2009 Edition, Copyright © ITT Visual Information 17 

Solutions). Initially, an ASCII file containing 10-nm-wide band spacing was created and used 18 

to aggregate the 1-nm-wide  spectral data, across the 400-2500 nm spectrum. The ENVI’s 19 

resampling routine fits a Gaussian model with an FWHM equal to the specified band spacing 20 

to resample the data. This initial sampling of the data was carried to aid calculation of the 21 

inter-band correlation coefficient matrix of the input spectral bands. The degree of linear 22 

relationship between a band and its shorter and longer wavelength neighbours was calculated, 23 

using the well-known Pearson's r coefficient of correlation. The linear spectral dependence 24 

between two sample wavebands (Xi, Yi) was assessed, resulting in values between 0 and 1: 25 
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   (Eq. 1) 1 

where  are the standard score, sample mean, and sample standard 2 

deviation, respectively (Eq. 1). The Pearson’s r correlation coefficient was used, since in this 3 

experiment the data assume multimodal normal distribution of the response variables (Chi et 4 

al., 2008). The inter-band r coefficient matrix was computed using the R statistical software 5 

(R Development Core Team, 2010). The R routines output a spreadsheet file format and an x 6 

: y axis contour plot of the inter-band r values. 7 

Spectral response curves were simulated for the predefined thirteen (13) band-centres. The 8 

band-centres were chosen on the basis of their known sensitivity to the biophysical and 9 

biochemical characteristics of vegetation. Table 1 shows the causal reflectance or absorption 10 

features associated with the chosen bands-centres. In addition, the wavelengths (i.e. band-11 

centres) were selected, considering the observed pattern in the matrix of the data points, as 12 

depicted in Fig. 1a. Moreover, the chosen band-centres have been reported in the literature to 13 

be useful for C3 and C4 grass species discrimination. For example, Smith and Blackshaw, 14 

(2003) reported high frequencies (>15 out of 20 times) for the band-centres chosen within the 15 

visible and near infrared regions. Irisarri et al. (2009) found that the spectral channels around 16 

820 nm were important for differentiating C3 and C4 grass compositions. Further, Noble et al. 17 

(2002) noted that the chosen bands-centres in the shortwave region are useful for C3 and C4 18 

crop/weed species discrimination. 19 

The inter-band Pearson’s r correlation coefficient between each of the chosen band-centres 20 

and their shorter and longer waveband neighbours was calculated. The band-centres were 21 

located at the meeting point of the x: y axis (Fig. 1a), where r = 1, and bandwidths were 22 

estimated by considering the vertical or the horizontal distance across a given band-centre, as 23 

a function of wavelength. It is important to note that the inter-band correlation, r values are 24 
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asymmetrical across the horizontal or the vertical lines. They are only symmetrical across the 1 

diagonal. Therefore, it was possible to capture the spectral response information around each 2 

band-centre, using a chosen weighting threshold of inter-band correlation. Various weighting 3 

thresholds of user-defined inter-band correlation (WTC r = 0.99, WTC r = 0.95 and WTC r = 4 

0.90) were assessed. Fig. 1b illustrates the sizes of the respective user-defined inter-band 5 

correlations, using the 660 nm band-centre as an example. The shorter and longer wavelength 6 

sides of the sample band-centre (i.e. 660 nm) were calculated on the basis of  r ≥ 0.99, r ≥ 7 

0.95 and r ≥ 0.90, whereby bands with coefficients beyond a specified WTC were assigned r 8 

= 0. The procedure was simulated for all the chosen 13 band-centres.  9 

The resultant user-defined inter-band correlation filter functions were used in the ENVI’s 10 

spectral resampling routine. The ENVI’s routine assumes a critical spectral resampling when 11 

FWHM values are not provided by fitting a Gaussian model with a FWHM equivalent to 12 

specified band spacing. However, if a user-defined filter function is incorporated, the routine 13 

uses it to simulate each line of wavelengths as a multiplicative factor (i.e. weighting between 14 

0 and 1) to resample the data (RSI, 2009).  The size of the inter-band correlation for each 15 

band-centre varies depending of the chosen WTC and this accounted for the spectral 16 

dependence information in the original reflectance data. 17 

In addition, conventional approach of resampling reflectance data to match the response of 18 

an existing instrument was assessed for comparative purposes, with the proposed user-19 

defined inter-band correlation filter technique. This involves resampling the ASD data to 20 

match the Hyperion sensor’s (on-board the Earth Observing-1 Satellite) spectral resolution or 21 

FWHM function. The procedure is analogous to that of the user-define spectral resampling 22 

described. However, the ENVI routine uses the pre-defined spectral library developed for the 23 

Hyperion sensor to resample the data. Since the canopy reflectance measurements were 24 

conducted under field conditions, the strong noisy incident radiation in 1350-1460 nm, 1790 - 25 
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1960 nm and inconsistent spectra below 400 nm were removed from all analysis (Thenkabail 1 

et al., 2004). 2 

 3 

2.3. The Random forest’s variable importance, classification and accuracy assessment 4 

All the datasets were randomly split into 70% training and 30% holdout test sets (n = 77 5 

and n =33 subsets, respectively), using the R statistical routine. The random forest algorithm 6 

was constructed to grow a large ensemble of classification trees. The resultant trees in the 7 

ensemble were used to assign each input spectral bands to a class membership of the response 8 

variables: F. costata, R. altera or T. triandra. Each tree is grown from a randomly and 9 

independently selected bootstrap sample of the training data, and about one-third, excluded 10 

samples, called the out of bag (OOB) samples were used to calculate an unbiased assessment 11 

of the classification accuracy (i.e. the OOB error). Since the OOB error is an unbiased 12 

assessment of the classification accuracy (Breiman, 2001; Prasad et al., 2006), it provides 13 

theoretical guarantee for the groups of C3 and C4 grass species detection and classification. 14 

Further to using the OOB error samples to assess the overall classification accuracy, the 15 

kappa coefficient analysis was performed. This was necessary, since the study involves a 16 

multiclass application and the goal is to account for actual agreement specified by each class 17 

versus the chance agreement. That is, it was important to determine if one OOB error matrix 18 

is significantly different from another (Stehman, 1997). 19 

 The random forest algorithm is easy to implement, because the user tunes only two 20 

parameters: (i) the number of trees (ntree) to grow and (ii) the number of variables to split at 21 

each node (mtry). The default value of the mtry parameter in the context of classification 22 

applications is denoted by the square root of the total number of input variables (Liaw and 23 

Wiener, 2002). In the current analysis, the OOB error samples for each class membership of 24 
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the input spectral bands were used to optimize the ntree and mtry hyper-parameters (Ismail 1 

and Mutanga, 2011).  2 

The random forest-based variable permutation mean decrease in accuracy (Strobl and 3 

Zeileis, 2008) was used to calculate the importance of each predictor variable. The variable 4 

rankings were calculated using all variables (i.e. 70% training set) and optimize mtry value 5 

based on the specified ntree (i.e.10 000 for all datasets) value. To decrease computing time 6 

the routine starts with the default mtry value for each dataset and then calculates to the right 7 

of the value; and then to the left of the value. For example, the default mtry for the resampled 8 

Hyperion dataset (n = 197) is 14, so the routine uses mtry values of 2, 7… to the left (deflate) 9 

of the default value; and mtry values of 28, 42… to the right (inflate) of the default mtry 10 

value. It then runs the random forest based on the optimized mtry and ntree values and 11 

determines variable rankings and the test dataset error.  12 

 13 

2.3.1. Random forest-based fast forward variable selection  14 

To calculate the greedy fast forward variable selection (FvS) using the OOB error rates 15 

(Adam et al., 2009; Dye et al., 2011), the routine uses the optimized random forest variable 16 

rankings calculated above to create different subsets of variables. It involves iteratively fitting 17 

the random forest model on the 70% training datasets, and at each iteration building a new 18 

model by adding the band with highest importance.  Consequently, the routine optimizes the 19 

mtry and ntree values for each step of the variable selection process. To decrease computing 20 

time the routine was set to terminate at the iteration with subset OOB error less than the 21 

overall OOB error calculated when using all the variables. This can be calculated to include a 22 

percentage improvement of the overall OOB error. However, because the input Hyperion 23 

bands (n = 197) are high in dimension (more than 100 predictors variables), the percent 24 

improvement approach was not exploited for the current application.  25 
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Several empirical evidences have shown that the random forest algorithm shows 1 

significant preference towards highly correlated predictor variables (Nicodemus et al., 2010; 2 

Strobl et al., 2008). The authors reported that traditional random forest’s preference for 3 

highly-correlated predictor variables can be carried forward to any significance test or 4 

variable selection processes constructed from the importance measures. In this respect, 5 

researchers have suggested the use of conditional variable importance approach to mitigate 6 

the problems associated with traditional random forest variable selection process. Despite the 7 

recommendation, in the current experiment assesses the random forest-based FvS process on 8 

the highly dimensional resampled Hyperion bands, for comparative purposes with the WTC 9 

datasets. 10 

 11 

3. Results 12 

3.1. The user-defined inter-band correlation filter technique of spectral resampling 13 

The results obtained indicate that large portions of the C3 and C4 grass canopy reflectance 14 

exist in highly correlated wavelengths. In general, a decrease in spectral resolutions was 15 

observed for each of the 13 band-centres in relation to the user-defined weighting thresholds 16 

of inter-band correlation filter: r = 0.99, r = 0.95 and r = 0.90, respectively.  For each derived 17 

waveband, the inter-band correlation coefficient r = 1 at the band-centres and generally 18 

decreases across the shorter or longer wavelengths neighbours, as quantified by a chosen 19 

WTC filter. Overall, the WTC r = 0.99 filter yielded higher spectral resolutions, among the 20 

three filters assessed. In addition, it appeared that the band-centres of specific regions (i.e. the 21 

visible, red-edge, near infrared and shortwave infrared spectra) showed varying degrees of 22 

inter-band correlations, resulting in variable spectral resolutions, for each of the spectral 23 

regions. Table 2 shows the results of the various spectral resolutions obtained for each band-24 

centre of the WTC datasets. 25 
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3.2. C3 and C4 grass species classification using the WTC and resample Hyperion datasets 1 

The random forest hyper-parameters were optimized using the OOB error rates. The WTC, 2 

r = 0.99 filter yielded the highest classification accuracy among the three user-defined 3 

thresholds of inter-band correlation filters assessed. Table 3 shows the overall accuracies 4 

(OOB error rates) and the kappa coefficients obtained for all datasets, including the 5 

resampled Hyperion. The OOB error and kappa coefficients increased substantially when the 6 

WTC of r = 0.90 filter dataset was analyzed. However, the results obtained showed that the 7 

proposed user-defined thresholds of inter-band correlation filter approach to resampling 8 

Hyperspectral data produced higher classification accuracies when compared with the 9 

conventional technique of resampling data to match the Hyperion sensors spectral resolution. 10 

Although the WTC datasets yielded significantly variable classification accuracies, a 11 

similar variable importance ranking was obtained for these datasets. Consequently, only the 12 

variable importance ranks of the WTC r = 0.99 dataset is presented in Fig. 2. Since the 13 

random forest algorithm was initially run using all the resampled Hyperion bands (n =197), 14 

the variable importance measure (Fig. 3) was then exploited to evaluate whether the FvS 15 

process could improve the classification accuracy. This procedure yielded an optimal subset 16 

of 22 bands (Table 4), which were subsequently used to classify the C3 and C4 response 17 

variables. The results obtained showed that the resampled Hyperion band B7 yielded the 18 

highest mean decrease in accuracy (11.13%), and that was subsequently carried over to the 19 

variable (1/197 bands) selection process. It should be noted that only the optimum subset of 20 

the best ranked bands are reported in Table 4. Inter-band correlation coefficient matrix (Table 21 

5) of the optimal subset of bands selection through the random forest-based FvS process was 22 

exploited. As expected, the results showed clearly that the FvS procedure yielded highly 23 

correlated resampled Hyperion bands and that the majority of the selected bands were 24 

concentrated in specific regions of the spectrum. 25 
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 1 

4. Discussion 2 

Hyperspectral data are suitable for C3 and C4 grass species classification, since spectral 3 

fine features characteristic of vegetation is more discernible from narrowband sensors. 4 

However, it can be challenging to classify C3 and C4 grass species using their spectral 5 

reflectance data, due to the problem of hyper-dimensionality and associated multicollinearity 6 

phenomena (Pal and Foody, 2010). Among other factors (e.g. Phenological effects and solar 7 

illumination conditions), spectral similarity between C3 and C4 grasses and their co-existing 8 

species can have significant impacts on the classification capability of canopy reflectance 9 

data (Schmidt and Skidmore, 2001). Despite these challenges, recent studies have shown that 10 

subtle differences in structural and physiological properties, such as those described for C3 11 

and C4 grasses may be detected by leaf or canopy reflectance (Irisarri et al., 2009; Liu and 12 

Cheng, 2011).  13 

Although previous studies have used narrow-band spectral data to classify grasslands of C3 14 

and C4 species composition, the present investigation explores the potential use of a user-15 

defined inter-band correlation filter to resample hyperspectral data, for subsequent 16 

classification analysis. This study demonstrated the trade-offs between retaining narrow 17 

bands spectral data vs. the optimal reduction in spectral dimensionality for improved 18 

classification. The results obtained explained the spectroscopic interpretability of the chosen 19 

band-centres, in reference to their sensitivity to leaf or canopy surface properties, internal 20 

structure and biochemical concentrations. These characteristic features are known to 21 

significantly vary between C3 and C4 grass species. Hence, variations in pigments content, 22 

nitrogen, carbon compounds (lignin and fibre) and water components (inter-cellular air-23 

moisture or leaf liquid water content) can be attributed to the good spectral separability 24 

obtained for the target grasses assessed in this study. In general, the results have shown that 25 
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the proposed user-defined inter-band correlation filter technique yielded improved 1 

classification of F. costata, R. altera and T. triandra grass canopies. More detailed analyses 2 

of the results are presented next: the weighting thresholds of inter-band correlation filter 3 

approach to resampling hyperspectral data; the random forest classification and band subset 4 

selection of resampled Hyperion dataset, using a traditional method vs. prior dimensionality-5 

reduction, using the WTC filter technique and; implications of the present investigation for 6 

applications involving C3 and C4 grass species. 7 

 8 

4.1. The weighting thresholds of inter-band correlation filter approach 9 

On the basis of the proposed resampling approach, this study has shown that highly 10 

correlated hyperspectral wavebands in specific regions can be optimally aggregated to reduce 11 

spectral dimension of the input spectral bands. The proposed spectral resampling technique 12 

takes advantage of the inherent property of vegetation reflectance, the asymmetrical nature of 13 

the inter-band correlation matrix of the collected wavebands. The resulted presented in Table 14 

2 show the extent of spectral convolution using the highly correlated wavelengths around 15 

each of the selected band-centres across the 400 – 2500 nm spectrum. The vegetation spectral 16 

response property used to calculate the various WTC r values (i.e. 0.99, 0.95 and 0.90) can be 17 

attributed to reflectance or absorption features characteristic of the target C3 and C4 grasses 18 

(Ferwerda et al., 2005; Knox et al., 2010).  In a previous study, Slanton et al. (2001) found 19 

800 nm wavelength contained very strong discriminating power for plant species at the level 20 

of leaf internal structure. Further, Irisarri et al. (2009) reported that vegetation reflectance at 21 

the 820 nm spectral range is sensitive to even subtle differences among grass species or 22 

between groups of C3 and C4 grasses. Hence, in the present experiment, the use-defined inter-23 

band WTC filters were used to assess the optimal spectral resolutions around chosen band-24 

centres, including the 820 nm wavelength. In this regard, the proposed resampling procedure 25 
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offers the potential for data dimensionality reduction and optimizes elimination of redundant 1 

spectral information by means of weighting thresholds of inter-band correlation criterion.  2 

It is worth noting that the newly introduced resampling approach not only reduces 3 

dimensionality in hyperspectral data, it also preserves relevant spectral information for 4 

posterior classification of C3 and C4 grass canopy reflectance. In general, there is very close 5 

relationship between classifier sensitivity to data dimensionality and classification accuracy, 6 

under conditions of multiple correlations among the input spectral bands (Gomez-Chova et 7 

al., 2003). This suggests the concept of using spectral resampling techniques capable of 8 

reducing co-linearity problems in the input spectral space, for applications involving C3 and 9 

C4 grass species. 10 

 11 

4.2. Random forest-based band subset selection vs. prior dimensionality-reduction 12 

Random forests have been found attractive for the analysis of remotely sensed data for 13 

ecological applications (Chan and Paelinckx, 2008; Ham et al., 2005; Lawrence et al., 2006; 14 

Prasad et al., 2006). A number of studies have asserted that the method is insensitive to high-15 

dimensionality and, therefore, does not require a dimensionality-reduction analysis in pre-16 

processing (Breiman and Cutler, 2004; Ham et al., 2005). However, the assessment of 17 

random forest’s variable importance measure in high-dimensional spectral space, has 18 

revealed that the algorithm thus show a preference to highly correlated predictor variable. 19 

Such a preference was also found to be manifest in the subsequent subset band selection 20 

process (Table 5). The results from the present experiment thus reaffirm the findings of the 21 

recent studies, which investigated random forests variable importance under predictor 22 

correlation and the generalization of parameter estimates (Nicodemus and Shugart, 2007; 23 

Strobl et al., 2008). In their studies, the authors recommended conditional variable 24 

importance approach for random forest-based variable selection and posterior classifications. 25 
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Critically, the results obtained from the present study showed that WTC r = 0.99 yielded 1 

the highest classification accuracy (kappa = 0.82) among the three inter-ban correlation 2 

thresholds assessed. This superior accuracy demonstrates clearly, the role of spectral 3 

resolutions on C3 and C4 grass classification and the classifier accuracy. However, the larger 4 

decrease in classification accuracy obtained for WTC r = 0.90 could be attributed to the very 5 

larger increase in wavelengths for each individual waveband, as represented in Table 2. The 6 

trend obtained among the classification of the three WTC r datasets compares well with 7 

Dalponte et al. (2009), who investigated the effect of changing spectral resolution upon 8 

different classifiers for forest applications. In their study, the authors found that as spectral 9 

resolutions were degraded from 4.6 nm to 36.8 nm, overall kappa accuracies dropped from ~ 10 

89 % to  ~ 84 %, respectively, using Support vector machines (SVM) algorithm (Vapnick, 11 

1998). Furthermore, when compared with classification involving a simple parametric 12 

classifier such as LDA, Dalponte et al. (2009) recorded inferior kappa accuracies which also 13 

dropped from ~ 77 % to ~54 %, respectively. The authors concluded that advanced non-14 

parametric classifiers, such as the random forest are more applicable for classifications 15 

involving complex vegetation feature spaces. 16 

As depicted on Table 5, the random forest band selection process showed a significant bias 17 

toward the highly correlated Hyperion bands (e.g. B6 - B13 and B198 - B219). However, the 18 

random forest analysis on the prior dimensionality-reduction datasets offered distinct 19 

advantage, using the inter-band correlation WTC filters to aggregate the majority of the 20 

highly correlated wavebands. The novelty of the proposed method is that the bands 21 

contributing to the out reflectance data were weighted according to their linear relationship 22 

with a chosen band-centre. The resultant classification accuracies showed that the prior 23 

dimensionality-reduction approach considerably negates problems associated with spectral 24 

redundancy and thereby mitigated against the multicollinearity phenomenon (Gomez-Chova 25 
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et al., 2003). Furthermore, the present experiment has demonstrated that even when a large 1 

training sample (i.e. 330 canopy spectra), compared to the number of spectral bands (n = 197) 2 

are used, spectral filtering may still be useful. This affirmation is supported by the accuracy 3 

derived from the use of the optimized 13 bands, which yielded superior classification 4 

accuracies (OOB = 0.14; kappa 0.82), compared to that derived from the use of a larger but 5 

high-correlated resampled Hyperion bands (OOB = 0.19; kappa = 0.76). 6 

 7 

4.3. Implications of the present investigation and conclusion 8 

The primary purpose of this study was to assess the spectral separability among C3 and C4 9 

grasses, sampled from the Drakensberg Mountains of South Africa. The secondary goal was 10 

to address the issue of multicollinearity effect on the performance of the random forest 11 

variable importance and the subsequent band subset selection process under predictor 12 

correlation. The performance of the method, when applied to data derived by resampling 13 

spectra to the Hyperion sensor’s spectral resolution, was compared to that of spectra 14 

resampled by weighting the inter-band correlations, as a function of wavelength. The overall 15 

implications for this investigation are related to various hyperspectral data application 16 

constraints: i) the trade-off between the number of spectral bands and the resolution of 17 

remotely sensed imagery; ii) the trade-off between higher spectral resolution and reduced 18 

signal-to-noise ratio, and iii) challenges associated with the optimal configuration of 19 

wavebands capable of providing sensitive information about a target vegetation (Price, 1994; 20 

Thenkabail et al., 2004). Therefore, in the present experiment, a technique has been proposed 21 

to reduce dimensionality, while preserving relevant spectral information for posterior 22 

classification task. It has been observed that the proposed resampling technique represents a 23 

potential method of reprogramming hyperspectral resolutions and band configurations. This 24 

potential also holds prospects in the development and configuration of future remote sensors 25 
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to collect optimal spectral resolutions and configuration for specific vegetation applications. 1 

The results obtained in this study suggested that further studies addressing multicollinearity 2 

problem should consider techniques that account for the spectral dependence information 3 

contained in vegetation reflectance data. In summary, the current technique described in this 4 

paper yields the following distinct benefits: 5 

• Reduces data dimensionality by accounting for the inter-band correlations around 6 

specific band-centres of interest and thereby mitigating against the multicollinearity 7 

phenomenon caused by highly correlated spectral bands. 8 

• Optimizes the spectral resolutions useful for the separability among the dominant C3 9 

and C4 grass species investigated. 10 

• Assists the random forest, to achieve improved classification accuracy, thereby 11 

providing the potential to link each individual input band to the physical meaning of 12 

interaction effects in the structure of the acquired data. 13 
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Figure captions 1 

Fig. 1 Pearson’s r correlation coefficients matrix (plot) of the input spectral bands, calculated 2 

using reflectance data aggregated into 10-nm-wide band intervals (a) and an 3 

illustration of the user-defined inter-band correlation filter for 660 nm band-centre (b). 4 

 5 

Fig. 2 Random forests variable importance ranks for the WTC r = 0.99 dataset (n = 13 bands) 6 

based on the Mean Decrease in Accuracy values. The reflectance spectrum of the 7 

target grass species is shown. 8 

 9 

Fig. 3 Random forests variable importance ranks for resampled Hyperion bands (n = 197) 10 

based on the Mean Decrease in Accuracy values. The reflectance spectrum of the 11 

target grass species is shown. 12 
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