
Automatic alignment of audiobooks in Afrikaans
Charl J. van Heerden

Multilingual Speech Technologies
North-West University

Vanderbijlpark, South Africa
Email: cvheerden@gmail.com

Febe de Wet1,2
1Human Language Technology

Competency Area
CSIR Meraka Institute

2Department of Electrical and
Electronic Engineering

Stellenbosch University, South Africa
Email: fdwet@csir.co.za

Marelie H. Davel
Multilingual Speech Technologies

North-West University
Vanderbijlpark, South Africa

Email: marelie.davel@gmail.com

Abstract—This paper reports on the automatic alignment of
audiobooks in Afrikaans. An existing Afrikaans pronunciation
dictionary and corpus of Afrikaans speech data are used to
generate baseline acoustic models. The baseline system achieves
an average duration independent overlap rate of 0.977 on the
first three chapters of an audio version of “Ruiter in die Nag”,
an Afrikaans book by Mikro. The average duration independent
overlap rate increases to 0.990 when the speech data from the
audiobook is used to perform Maximum A Posteriori adaptation
on the baseline models. The corresponding value for models
trained on the audiobook data is 0.996. An automatic measure
of alignment accuracy is also introduced and compared to
accuracies measured relative to a gold standard.

I. INTRODUCTION

Audiobooks are available in many languages. Before the
advent of the digital era, books were made available in
analogue format. More recently new books are created in
digital format and older books that were published on cassettes
are gradually being converted to digital format.

Some digital formats facilitate audiobook access and nav-
igation by people who have challenges using regular printed
media. DAISY is an internationally established standard for
creating digital audiobooks for use by print-disabled peo-
ple [1]. DAISY books exist in a variety of formats. For some
books, both the audio and text are available and the audio and
text are aligned at word level. However, many DAISY books
are published with limited alignment between audio and text
(typically at the chapter level) or with no text at all.

Automatic speech recognition (ASR) technology can en-
hance audiobook publication in two ways. Firstly, for books
that are published as audio only, ASR can be used to generate
the text corresponding to existing audio. Secondly, ASR can
be used to enhance the level of mark-up for books that
are currently only aligned at chapter level. Finer grained
alignments between audio and text enable word level search
in audiobooks as well as synchronised reading, i.e. the text
corresponding to the audio is highlighted during playback.

In this paper we will focus on using ASR technology
to align large audio files at word level. The process will
specifically be investigated for an under-resourced language
for which, until fairly recently, only limited text and speech
resources were available, namely Afrikaans. The ultimate aim

of the work reported here is to improve the level of mark-up
for existing books in any language by automatically converting
the recognition output into DAISY .smil files. Section II
provides some background on previous research on audiobook
alignment. The pronunciation dictionary and acoustic data
that were used during the study are described in Section III.
Section IV describes the ASR systems that were used to
perform alignment and Section V introduces a measure to
verify alignment accuracy automatically. Results are presented
in Section VI and conclusions in Section VII.

II. BACKGROUND

Word and phone-level alignments between the audio and
text versions of audiobooks are used either to enhance the level
of accessibility of the books [2], [3] or to develop resources
for text-to-speech (TTS) development [4], [5], [6].

A large project was undertaken in Portugal to improve the
access to digital audiobooks by print-disabled readers [2].
Amongst other things, an ASR system was developed to
automatically align the audio and text at phone level. The
authors reported challenges such as bad audio quality of the
original analogue recordings, differences of quality within the
same book, inconsistent reading of tables, figures, chapter
numbers, etc. A pilot corpus was therefore compiled for
the development of their alignment system which used a
hybrid of Hidden Markov Models (HMMs) and a Multi-
Layer Perceptron (MLP) to perform acoustic modelling and
a Weighted Finite State Transducer (WFST) framework for
pronunciation modelling. The system achieved phone level
alignment accuracies of more than 90%. Speaker adaptation
as well as pronunciation variation modelling were found to
enhance system performance substantially [2]. Pronunciation
variation seems especially beneficial to capture phenomena
like vowel reduction that are often observed in read speech [2].
In addition to an automatic alignment system, a Digital Talking
Book player incorporating TTS playback and ASR-enabled
navigation were also developed during the same project [3].

From a TTS point of view, aligned audiobooks constitute
rich speech databases for more natural acoustic modelling
because they capture broader prosodic contexts such as dis-
course, information structure and affect that are expressed



beyond sentence level. However, many books are published
as large, unsegmented audio files and traditional alignment
strategies may fail because of the huge memory requirements
associated with the alignment of big audio files. In [4] and [5]
the authors propose modifications to the Viterbi algorithm that
enable the automatic segmentation of large, multi-paragraph
speech databases. The proposed technique is independent of
the duration of the target audio file.

Another technique that was proposed in the TTS domain is
Lightly Supervised alignment [6]. The book under investiga-
tion was first segmented into small audio chunks of about 30
seconds each. The resulting audio files were submitted to a
two-pass recognition strategy. During the first pass the files
were processed by a large-vocabulary, speaker independent
system for general segmentation and during the second pass
the alignments were improved by using Maximum Likelihood
Linear Regression (MLLR) to adapt the models to the speaker
specific characteristics of the reader. In addition, the acoustic
models are supported by a language model that consists of an
interpolation between a general background language model
and one trained on the text of the audiobook. The authors show
that the proposed approach is able to extract the majority of
correctly read sentences without any manual intervention [6].

In this study, automatic alignment was first performed with
acoustic models trained on out-of-domain but channel-matched
data. Alignment was subsequently repeated using acoustic
models that were either adapted using Maximum A Posteriori
(MAP) estimation or trained with in-domain data, and the
effectiveness of the various approaches compared.

III. PRONUNCIATION DICTIONARY & SPEECH DATA

A. Pronunciation dictionary

An existing Afrikaans pronunciation dictionary containing
around 24 000 entries [7] was used during system develop-
ment. Grapheme-to-phoneme (g2p) rules [8] were extracted
from the dictionary to generate pronunciations for words in
the text that are not in the dictionary.

B. Speech data

In 2010 the National Centre for Human Language Tech-
nology (NCHLT) launched a number of projects to support
HLT resource development for all 11 official languages of
South Africa. During one of these projects broadband (16 kHz)
speech corpora were collected for each language. The corpora
all contain in the order of 80 to 90 hours of speech data. In
this study, the Afrikaans NCHLT speech corpus was used to
train the baseline acoustic models.

The test data constitutes an audio version of “Ruiter in
die Nag”, an Afrikaans book by Mikro that was published
in 1936. The audiobook was originally recorded on analogue
tapes in 1960 and was recently converted to digital format.
“Ruiter in die Nag” (loosely translated as “The Rider in the
Night”) was chosen because we had access to both an audio
and a text version and because the copyright on it has already
expired, so the data can be made available freely for research
purposes. The book consists of 17 chapters, each with an

average duration of about 12 minutes. In total, it yielded 3.25
hours of read speech produced by a single speaker.

IV. ASR SYSTEMS

Three different ASR systems were developed in order to
evaluate the effect of different acoustic modelling approaches
on alignment accuracy. The systems all had the same basic
system architecture and were implemented using HTK [9], a
well-known Hidden Markov Model Toolkit.

A. Feature extraction
Standard 39-dimensional (13 static, 13 delta and 13 delta-

delta) MFCC features were extracted from the data. Cepstral
mean and variance normalisation was applied.

B. Acoustic models
All the acoustic models were standard 3-state, left-to-right

context dependent triphone HMMs with decision tree cluster-
ing and semi-tied transforms, corresponding to the Afrikaans
phone set. Three different sets of acoustic models were used
to perform alignment: baseline, MAP-adapted and audiobook
models.

1) Baseline models: The baseline acoustic models were
trained on approximately 90 hours of broadband (16 kHz)
Afrikaans speech data from the Afrikaans NCHLT corpus.

2) Maximum A Posteriori (MAP) adapted models: A sec-
ond set of acoustic models was created by using the speech
data from the audiobook to perform MAP adaptation on the
baseline models.

3) audiobook models: The third set of acoustic models was
trained on the audiobook itself.

V. AUTOMATIC ALIGNMENT VERIFICATION

Once the audiobook has been aligned, it would be ideal to
have a clear measure of the accuracy of the alignment without
requiring manual verification. As an automatic measure of
alignment accuracy, we compare the difference in the final
aligned starting position of each word, with an estimate of the
starting position obtained using phoneme recognition.

Specifically, we decode each chapter using a flat phone
grammar, creating a single string of phonemes. We also
generate a target phoneme string per chapter, using the aligned
text and dictionary as input. Forced alignment is used to
select the best among competing pronunciation variants. Once
these two phone strings have been obtained, we use dynamic
programming to find the corresponding phones (and therefore
words) in the two strings. As each phone is associated with
timing information (either from the alignment, or from the
decoding process) we now have two estimates of the word
starting position. If there is a discrepancy in starting position
estimates, we flag this as a potential alignment error.

This is related to the validation technique used in [10],
except that the dynamic programming scores are not used at
all, and the difference in timing information is directly used as
a confidence measure. As in [10] the dynamic programming
process to match the two phone strings can be made more
accurate by using a variable cost matrix or, if limited errors
in the corpus, a flat scoring matrix can be used.



VI. RESULTS

Manually verified word-level segmentations of the first three
chapters of the audiobook were created to serve as a gold
standard. Specifically, the alignments obtained using the base-
line models were manually verified by a language practitioner
and word boundaries moved where these were not correctly
aligned with the audio. This is illustrated in Fig. 1: four
different alignments are displayed below the waveform and
spectrogram. The language practitioner was provided with the
first (top) alignment, and moved word boundaries where words
were not correctly aligned. This resulted in the gold standard
alignment shown fourth (at the bottom). In this example, the
word ‘oom’ was wrongly aligned to the left of the silence
portion, and corrected.

Note that, while this provides a trustworthy alignment when
identifying word-level errors, the gold standard will at the
millisecond-level be biased towards the models that were used
to create the initial alignments. See for example the boundaries
of the word ‘renen’in Fig. 1; these are at identical positions
for the gold standard and the first two alignments (baseline
and MAP-adapted), but drawn in a slightly different position
by the Audiobook models, which are the models that are most
different from the initial baseline.

Before extracting final results, the gold standard itself was
evaluated. All possible alignment errors of more than 100ms
(obtained using the automated verification tools, which does
not use the gold standard at all) were flagged for manual
evaluation. All segments flagged by all three models were
reviewed. This resulted in a subset of ‘difficult-to-align’ seg-
ments that were carefully reviewed for protocol errors, which
were corrected if the observed error caused a discrepancy of
more than 50ms. Two main protocol errors were observed:
silence that was not inserted when needed and word starting
points that were not correctly set if a silence preceded the
word. 240 segments were reviewed and 24 segments corrected.
(An additional random selection of 50 segments resulted in no
addiontal corrections.)

The audiobook was already aligned at chapter level. Forced
alignment was performed for each chapter individually using
ASR systems based on the three sets of acoustic models
described in Section IV-B. Alignment accuracy was evaluated
by comparing the automatically generated word boundaries to
the gold standard. The comparison was quantified in terms of
duration independent overlap rate (DIOR), defined in [11] as:

DIOR =
Dcom

Dmax
=

Dcom

Dref +Dauto −Dcom
(1)

where Dcom, Dmax, Dref and Dauto are the common,
maximum, reference and automatic durations, respectively.
This definition is not as directly applicable to audiobook
alignment as to TTS; we therefore propose a modified measure
where words are considered correct as long as their start times
in the gold and automatic alignments respectively, are within
ε of each other. At a value of ε = 100ms we obtain the
DIOR results reported on in Table I. The values in the table

represent the average value over the three chapters for which
a gold standard was available.

Acoustic models Average modified DIOR
Baseline 0.977
MAP-adapted 0.990
audiobook 0.996

TABLE I
AVERAGE MODIFIED DIOR FOR BASELINE, MAP-ADAPTED AND

AUDIOBOOK MODELS

Table I shows that using the baseline acoustic models to
perform forced alignment already result in an average DIOR
of 0.977. This value increases to 0.990 for the MAP-adapted
models and to 0.996 for the audiobook acoustic models.

Comparing the gold standard (manually corrected) align-
ments with the automatically obtained alignments, we find
that fairly few errors occur. Table II lists the alignment
errors found in the first three chapters of the audiobook,
when using different error margins. (These errors represent
individual words where the difference in starting time between
the automated alignment and the manual alignment is more
than the error margin ε.

Acoustic models 50ms 100ms 150ms 200ms
Baseline 484 270 182 131
MAP-adapted 334 114 72 46
audiobook 396 61 36 24

TABLE II
ALIGNMENT ERRORS FOR DIFFERENT ERROR MARGINS

If the 50ms margin is not considered, it is clear that the
MAP-adapted models provide an accuracy improvement over
the baseline, and that the audiobook models are again an
improvement over the MAP-adapted models. At the 50ms
margin, the superior performance of the MAP-adapted models
(over the audiobook models) may be due to the bias of the
gold standard, as described in Section VI.

Next, we evaluate our ability to flag possible alignment
errors in the final aligned audiobook. Fig. 2 shows Detection
Error Trade-off (DET) curves for the three acoustic models.
Each curve plots the percentage of true errors flagged versus
the percentage of correctly accepted alignments (where the
number of true errors flagged depends on the error margin
selected). The example illustrated in Fig. 2 corresponds to
an error margin of 150ms. The difference in ms between
aligned and decoded (estimated) word starting points is used
as threshold when constructing the DET curves.

The effect of requiring stricter or more lenient error margins
is illustrated in Fig. 3. We compare the DET curves for
different error margins and the audiobook acoustic models.
At one second, perfect error detection is achieved; at around
150 ms an equal error rate of 0.861 is obtained.

Further error analysis indicated that the main causes of
alignment errors were (a) speaker errors resulting in hesita-
tions, missing or repeated words, (b) rapid speech containing



Fig. 1. Example of different alignments obtained for a sentence in the audiobook.

Fig. 2. DET curves for the three acoustic models at a 150ms error margin.

Fig. 3. DET curves for the audiobook acoustic model at different error
margins.

contractions, (c) difficulty in identifying the starting position
of very short (one- or two-phoneme words) and (d) a few text
normalisation errors (for example, ‘eenduisend negehonderd’
for ‘neentienhonderd’).

A final observation relates to the applicability of the
pronunciation dictionary used. As the alignment verification
process associates a decoded phone string with each word,
this produces a set of alternative pronunciations that can be
considered per word. By counting the number of times the
same pronunciation is observed, frequently occurring pronun-
ciations not found in the dictionary can be added and the
system retrained. In the current work, initial pronunciations
were of sufficient quality that this process was not necessary
to improve alignment quality, but for audiobooks that contain
large numbers of unknown words (such as expected from
study guides or other technical material) this may be a useful
addition to the process.

VII. CONCLUSIONS

The results obtained in this study indicate that the align-
ments obtained by a baseline system are already good enough
for practical purposes, i.e. to provide word-level mark-up for
DAISY books. They also show that alignment accuracy can
be improved by performing MAP adaptation on the baseline
models – a fast and efficient solution requiring minimal com-
putation. The best results are obtained with acoustic models
trained on the target audiobook.

We have also shown that dynamic programming can be used
to align the freely decoded and forced aligned phone strings
associated with each chapter to yield an automatic measure
of alignment accuracy. Error margins are defined in terms of
the difference between estimated starting positions of words
in the two phone strings. For an error margin of 150 ms the
technique is able to accept correct alignments and flag true
errors with an accuracy of 86%. For a larger error margin (of
1 second), 100% accurate alignment accuracy is achieved: all
true alignment errors are rejected, and all accurately aligned
words are correctly accepted.



The process will be repeated for additional audiobooks in
the near future. While the voice artist spoke very rapidly, the
audiobook contained few speaker errors; it would be useful to
understand the extent to which a larger percentage of errors
can be tolerated (and identified during alignment verification).
Follow-up research will also investigate the impact of using
gender-dependent baseline models on the alignment accuracy
of the final systems as well as the bias of the gold standard
towards the initial alignments. The results will be used to
design an automated process that can be used to align large
volumes of audiobooks in a fully automated way.
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