
Software Engineering 2012, 2(4): 91-100
DOI: 10.5923/j.se.20120204.01

Positioning System in Wireless Sensor Networks Using
NS-2

Adnan M. Abu-Mahfouz1,*, Gerhard P. Hancke2,3, Sherrin J. Isaac1

1Advanced Sensor Networks Research Group, CSIR Meraka Institute, Pretoria, 0184, South Africa
2ISG Smart Card Centre, Royal Holloway, University of London, London, United Kingdom

3Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, 0001, South Africa

Abstract The practical difficulties of setting up a wireless sensor network (WSN) and analysing its performance have
made simulation essential for the study of WSNs. The ns-2 network simulator is one of the most widely used tools by
researchers to investigate the characteristics of WSNs. ns-2 has the basic properties and capabilities to support simulations of
different localisation techniques. There are only a limited number of generic and reusable modules for ns-2 that can be
significantly customised to support specific research areas. Therefore, building a complete localisation system requires
in-depth knowledge of the inner workings of ns-2 and selecting between a large number of implementation options. This
paper presents an extension of ns-2 that will enable a user with a basic knowledge of ns-2 to simulate a localisation system
within a wireless network and explains how to implement new localisation algorithms using the extended ns-2. The technical
content of this paper would be beneficial to new ns-2 users regarding how a simulation project is built and structured.

Keywords Simulator, Localisation, Ns-2, Sensor's Position, WSN

1. Introduction
Location information plays a critical role in wireless

sensor networks (WSN). Most of the WSN applications and
techniques require that the positions of the sensor nodes be
determined. Localisation algorithms (e.g.[1-5]) follow
several approaches to estimate positions of sensor nodes.

One approach is to use special nodes, called beacons,
which know their own location, e.g. through a GPS receiver
or manual configuration. The other nodes that do not know
their location, sometimes referred to as unknowns, use
different techniques to compute their own position based on
the location information of the beacons and the measured
distance to these beacons. Once the unknown obtains its
position, it could act as a reference for other unknowns.

WSN Testbeds[6],[7] have been used to study various
aspects of WSNs. However, the practical difficulties of
setting up a WSN and analysing its performance have made
simulation essential for the study of WSNs. Simulation is
widely used in system modelling for applications ranging
from engineering research, business analysis, manufacturing
planning and biological science experimentation[8]. There
are several simulation packages that can be used to simulate

* Corresponding author:
Aabumahfouz@csir.co.za (Adnan M. Abu-Mahfouz)
Published online at http://journal.sapub.org/se
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

a WSN, such as ns-2[9], OMNET++[10] and TOSSIM[11].
ns-2 is an open-source event-driven simulator designed
specifically for research in networks. ns-2 was developed in
C++ and uses Object-oriented Tool command Language
(OTcl) as a configuration and script interface (i.e., a
front-end). Each language has two types of classes. The first
type includes the standalone C++ and OTcl classes that are
not linked together. The second type includes classes which
are linked between the two languages. These C++ and OTcl
classes are respectively called, “compiled hierarchy” and
“interpreted hierarchy”. These two hierarchies are linked
together using an OTcl/C++ interface called TclCL[12].

ns-2 provides substantial support for simulation of TCP,
routing, and multicast protocols over wired and wireless
networks. Recently, Morávek[13] investigated the
capabilities of ns-2 with regards to its suitability to model
localisation in wireless networks. This investigation
concluded that: ns-2 has all the basic properties to support
simulations of different localisation techniques (such as time
of arrival (ToA) and received signal strength (RSS)) that are
contained in several ns-2 tools and modules; and, ns-2
allowed researchers a high level of independence from the
designed framework of the simulator thus allowing
developers to modify existing modules or create new
modules.

This freedom in ns-2 development, however, means a
developer is faced with a large number of implementation
options; these require widespread modification of modules
and an in-depth knowledge of the inner workings of ns-2.

92 Adnan M. Abu-Mahfouz et al.: Positioning System in Wireless Sensor Networks Using NS-2

In this paper, ns-2 is extended to simulate localisation
systems in WSNs (Section 3). This extension collects
together and leverages existing properties of ns-2 for
localisation modelling, offering a simplified and clearly
defined development route for implementing new schemes.
New modules are added and a base class, called “Position”,
is created. Position enables the sensor nodes to estimate their
position using the general multilateration method. New
classes derived from Position can be created to implement
other localisation algorithms as explained in Section 4. A
simulation is conducted in Section 5 to evaluate the
performance of Position. Results are presented for five
localisation algorithms (which are derived from Position) in
terms of localisation error, number of references used,
remaining energy and distance-measurement error.

2. Localisation Systems
Localisation systems consist of three major components:

distance/angle estimation, position computation and a
localisation algorithm[14], as shown in Figure 1.

Figure 1. Components of localisation systems

• Distance/angle estimation: This component is
responsible for determining the physical relationship
between two nodes, which can later be used to compute a
node's location. Different techniques can be used for this
purpose, such as RSS, ToA, time difference of arrival, angle
of arrival or round-trip time. These techniques have been
investigated in more detail in[15].
• Position computation: This component is responsible for

computing the position of a node based on available
information about the distance estimated from the previous
component and position of references. Recognised
techniques used in this component include triangulation[3],
trilateration[16] and multilateration[17].
• Localisation algorithm: This is the main component of a

localisation system. It determines how the available
information will be manipulated in order to enable most or
all of the nodes of the WSN to estimate their position.

In the extended ns-2, the RSS technique is used to measure
the distance between the node and beacons (or references).
The general multilateration method is used in the component
for position computations. Following this framework will
simplify any future modifications. For example, a new
technique (e.g. ToA instead of RSS) can be easily
implemented without modifying the entire system.

2.1. Multilateration Method

By using the multilateration method, a node within the
range of at least three beacons can estimate its position by
minimising the differences between the measured distances
and the estimated Euclidean distances in order to obtain the
minimum mean square estimate (MMSE) from the noisy
distance measurements. As shown in Figure 2, a sensor node
has a set of m reachable beacons with the following
information (xj, yj, dj), where (xj, yj) is the location of beacon
j and dj is the measured distance to it. Assuming that ()yx ˆ,ˆ
is the estimated position of the sensor node, the error of the
measured distance to beacon j ()mj ≤≤1 can be
represented as

() ()22 ˆˆ jjj jyxxd −+−− (1)

Figure 2. Multilateration

This system of equations can be solved to estimate the
location ()yx ˆ,ˆ by using the matrix solution for MMSE[18]
given by:

() ,
1

YXXXb TT −
= (2)

where









=

y
x

b
ˆ
ˆ

() ()
() ()

() () 



















−−

−−
−−

=

mm yyxx

yyxx
yyxx

X

11

3131

2121

22

22
22























+−−

+−−

+−−

=

222

2
3

2
3

2
3

2
2

2
2

2
2

mmm dyxt

dyxt

dyxt

Y


 Software Engineering 2012, 2(4): 91-100 93

2
1

2
1

2
1 dyxt −+=

3. Localisation Extension Structure
ns-2 contains several flexible modules for

energy-constrained wireless ad-hoc networks, which
encourages researchers to use ns-2 to investigate the
characteristics of WSNs. However, to implement and
evaluate localisation algorithms, ns-2 should be extended
and new modules should be added. This section describes the
class and file structure of the localisation extension presented
in this paper. The main purpose of this extension is to
provide researchers with a simplified development path
when evaluating localisation schemes. Although the entire
structure is presented for the sake of completeness, not all the
classes and files need to be modified to implement a new
scheme. Only the classes and files shaded in yellow in Figure
3, Figure 4 and Figure 5 need to be customised.

Figure 3 shows the new classes that were added to ns-2.
These classes can be divided into two types. Firstly, there are
standalone classes, which are MMSE, Position and
YourPosition classes. These classes are used only from the
C++ domain. Secondly, there are compiled hierarchy classes,
which are LocDisApp, LocReqAgent and LocResAgent
classes. In fact, no OTcl modules were created. However, in
order to be able to access the newly compiled hierarchy
classes LocDisApp, LocReqAgent and LocResAgent from
the OTcl domain, these classes were mapped and linked to
corresponding OTcl classes, which are Application/LocDis,
Agent/LocReq and Agent/LocRes, respectively. In this way
the users are able to create an object of the compiled
hierarchy classes from the OTcl domain. For example, the
OTcl command “set lreq[new Agent/LocRec]” will create a
new object of class LocReqAgent.

Figure 3. The new modules added to the ns-2

3.1. Class Hierarchy

The Doxygen documentation system[19] was used to
illustrate the class hierarchy of the new classes as shown in
Figure 4. For the sake of simplicity, only the new classes, the
classes they are derived from (i.e. parent classes) and the
classes used by these new classes were included. Solid lines
show where a class is inheriting from another class, for
example A → B means class A is derived from class B.

Dotted lines show where a class is using a method and/or
member of another class.

3.1.1. MMSE Class

This class is responsible for all the mathematical matrices
operations required to solve (2). Instead of using general
matrix multiplication and matrix inverse, optimized
methods dedicated mainly to MMSE were implemented.
These optimized methods require less computation and
shorter execution time.

3.1.2. Position Class

Position class represents a general localisation method
using the basic multilateration method, which was
explained in Section 2.1, for position computation and RSS
for distance estimation. This method uses all of the
available references, does not distinguish between beacons
and references, does not weigh the references used and
performs the estimation only once. This class is the base
class for any localisation algorithms implemented,
represented in the text and figures as the YourPosition class.
For the sake of simplicity, Figure 3, Figure 4 and Figure 5
include only these two classes, even though other
localisation algorithms were also implemented that will be
mentioned later.

One of the important methods of this class is
“measure_distance_RSS(double Pr);”. This function uses
Friis free space equation (3) to estimate the measured
distance between the node and the reference (or beacon)
nodes,

()
,

4 2

2

d
GGPLP RTT

R
π

λ
= (3)

where: PR is the received power, PT is the transmitted power,
GT is the transmitter antenna gain, GR is the receiver
antenna gain, d is the distance between the transmitter and
the receiver, L is the system loss and λ is the wavelength.

To implement a new technique instead of RSS, e.g. ToA,
this function should be replaced with a new one. However,
this replacement will not affect the other two components,
position computation and localisation algorithm, of the
localisation system.

3.1.3. YourPosition Class

This class is derived from Position class and is the core
class for defining a new localisation scheme. Compared
with the Position class, the YourPosition class will include
functions specific to the scheme being implemented. For
example, for an implementation of ALWadHA[1], one of
the schemes tested in Section 5, this class would include
scheme-specific methods, such as the smart
reference-selection method specified number of references
and termination criterion.

94 Adnan M. Abu-Mahfouz et al.: Positioning System in Wireless Sensor Networks Using NS-2

Figure 4. Collaboration diagram for the new classes

As shown in Figure 4, the Position class uses the MMSE
and LocDisApp classes and the ReferenceNode structure,
which consists of two members, location variable and
double variable to store the measured distance. The Position
class uses an array of this structure (ref_nodes_) to store the
location information (location and distance) of
neighbouring references. The Location class represents the
X, Y and Z coordination of sensor nodes.

3.1.4. LocReqAgent and LocResAgent Classes

These classes are derived from the Agent class.
LocReqAgent constructs and broadcasts a “location request”
packet. This agent should be attached only to unknown nodes
because beacons already know their location. LocResAgent
is responsible for handling the packets received. This agent
should be attached to all nodes (unknowns and beacons).
Two types of packets could be received. The first is a
“location request” packet. If this type of packet is received
by a beacon or reference node it constructs a “location
response” packet that includes location information and then
sends it to the requesting node. Unknown nodes receiving
this type of packet simply deallocate it. The second is a
“location response” packet. The requesting node that
receives this packet sends it to the application layer
(LocDisApp), which processes the included location
information to estimate the node's position.

Two new types of packets were created: firstly, “location
request” packet (PT_LOCREQ), which uses the new
protocol-specific header (PSH) defined in the structure

hdr_locreq; and secondly, “location response” packet
(PT_LOCRES), which uses the new PSH defined in the
structure hdr_locres. LocReqAgent uses only hdr_locreq to
construct “location request” packets. LocResAgent uses both
of the headers' structure: it uses hdr_locreq to gain access to,
and to process, the received “location request” packets;
while it uses the hdr_locres to construct the “location
response” packets.

3.1.5. LocDisApp Class

The LocDisApp class is derived from the Application
class. Each node in the network uses an object from this class
by attaching it to its agent(s). The LocDisApp class performs
several functions, such as invoking the broadcast method of
LocReqAgent periodically to broadcast a “location request”
packet, processing the received “location response” packet
and estimating the node location. As shown in Figure 4, this
class collaborates with several classes, which are the three
timers, the two agents, Location and Position classes. It uses
the hdr_locres header structure to gain access to the received
“location response” packets in order to process the included
location information and estimate the node location.
LocDisApp uses a vector of class ResData, which is used to
store the location information received from neighbouring
references.

3.1.6. The Timer Classes

Three timer classes were created, which are the
ReqTimer, EstimateTimer and OutputTimer classes. These

 Software Engineering 2012, 2(4): 91-100 95

classes are derived from the TimerHandler class. These
timer classes collaborate with LocDisApp to schedule
several tasks during the run time. The ReqTimer is used to
moderate how frequently sensor nodes broadcast a “location
request” packet. After sending the “location request” packet,
the EstimateTimer is used to schedule the estimation
process after a specific delay, which is required to give
“location response” packets enough time to receive
information from neighbouring references. The
OutputTimer is used to schedule the action of recording the
result (such as location error, number of references used and
remaining energy) to the trace file.

3.1.7. ResData Class

This class is responsible for storing and retrieving the
location information included in the “location response”
packets received from the neighbouring references. This
information includes the address, the location and the power
with which the packet is received. Implementing a new
localisation algorithm could require adding extra attributes
to this class. For example, ALWadHA algorithm[1]
introduced the term “probability of accuracy” of the
reference nodes, which requires selecting a subset of
references that will be used to estimate node's position.
Therefore, implementing ALWadHA requires adding a new
attribute that represents the “probability of accuracy”, to
this class.

3.2. The File Structure of the ns-2 Extension

Figure 5 shows the file structure of the new ns-2, where
the files under the “location” directory represent the new
files that were added to ns-2, while the other files (left-hand
side) are the modified files.

Figure 5. The structure of the new ns-2, showing the new files added to
ns-2 (right-hand side) and the modified files (left-hand side)

The new classes that were discussed in the previous
section are implemented in the files under the “location”
directory. In addition to these new files, some other files
were modified as follows:
• common/packet.h: Two packet types were created in the

locationpacket.h file using two structures (hdr_locreq and
hdr_locres). In order to use these two types of packets, their
corresponding packet types (PT_LOCREQ and
PT_LOCRES) were defined in the packet.h file.
• common/location.h: This file contains the Location class,

which is used to represent the location coordination (X, Y
and Z) of nodes. Some methods were added to this class,
such as: the getter and the setter of an individual coordinate;
is_equal() method to check if two locations are the same;
and distance() method to find the actual distance between
two locations.
• common/mobilenode.cc, .h: Two methods were added to

these files. The first is to get an object to the topography. The
second is to record the result in the trace file. The result could
be the location error, number of references used and
remaining energy. However, this method can be modified to
record other information. For example, to implement a new
successive refinement localisation algorithm (e.g.[1],[5]),
this method can be modified to record the number of
iterations required to reach the final estimation.
• tcl/lib/ns-packet.tcl: In order to activate the new header

classes, the OTcl class names were included in this file. The
new OTcl header classes are “PacketHeader/LocReq” and
“PacketHeader/LocRes”, and so only “LocReq” and
“LocRes” were added to the active protocol list.
• tcl/lib/ns-node.tcl: As mentioned before, from the

localisation perspective, the node could be a beacon,
reference or unknown. In order to specify the type of nodes, a
new instvar, called “nodeAttribute_”, and a new instproc to
get the node attribute, called “attribute”, were created.
• tcl/lib/ns-lib.tcl: In order to enable the simulator to deal

with the node attribute, an instproc was created to set the
instvar “attribute_”. Within the “Simulator instproc
create-wireless-nodes” the node is allowed to set its attribute
($node set nodeAttribute_ $attribute_).
• tcl/lib/ns-namsupp.tcl: During the simulation, when the

unknown nodes estimate their position they change their
colour (for instance to red). In order to enable the nodes to
change their colour after running the simulator, the “Node
instproc color” was modified within this file.
• tcl/lib/ns-default.tcl: Sometimes it is necessary to bind

some variables in both hierarchies (i.e. interpreted and
compiled hierarchies). The default value of these bind
variables is initialised in the ns-default.tcl file. Several
variables were bound, such as: the packet size; the request
frequency (reqFreq_); the showColor_ variable (to enable
showing the colour of the nodes based on their attribute); the
distanceError_ variable (to consider distance measurement
error); and the method_ variable (to specify which
localisation algorithm should be applied).

96 Adnan M. Abu-Mahfouz et al.: Positioning System in Wireless Sensor Networks Using NS-2

3.3. Localisation Procedures

The complete procedure of the localisation process is as
follows:
• LocDisApp schedules the OutputTimer with a specific

delay (e.g. 1.0 s) to record the result into a trace file.
• LocDisApp schedules the ReqTimer with a specific

delay, which determines how frequently the node broadcasts
a “location request” packet.
• At the expiration time of ReqTimer, the LocDisApp

invokes the LocReqAgent's method called broadcast() in
order to broadcast a “location request” packet, schedules the
EstimateTimer to start location estimation after a specific
delay and reschedules the ReqTimer.
• LocReqAgent constructs a “location request” packet,

and then it broadcasts the packet to the neighbouring nodes.
• The LocResAgent of the reference nodes that received

the “location request” packet requests the location
information of the node from the LocDisApp. LocResAgent
constructs a new “location response” packet, which includes
this information, and sends it back to the requesting node.
• The LocResAgent of the requesting node receives the

“location response” packets from neighbouring references
and then sends them to LocDisApp for more processing.
• LocDisApp extracts the required information from the

packet received, namely the address and location of the
sending reference node and the power with which the packet
is received, and then stores this information in a ResData
vector.
• At the expiration time of EstimateTimer the LocDisApp

invokes the Position's method (or one of its child classes
method) called estimate().
• Position estimates the node location using the data stored

in the ResData vector based on the multilateration method.

3.4. Guidelines for Running the Simulation

Using the ns-2 extension does not require new knowledge
or writing a specific code to run the simulator. Normal users
who have the basic knowledge to run a simple wireless
network using ns-2 are able to write a simple OTcl script to
simulate the proposed localisation system. This section gives
some guidelines for configuring the localisation simulation.
It assumes that the reader is familiar with setting up wireless
mobile network simulations in ns-2. Therefore, it will not
explain the entire simulation procedures; rather it will show
how to configure nodes to simulate localisation. However,
the reader is referred to[9] for some tutorials about
configuring wireless networks.

At the beginning of the simulation there are only two types
of nodes, beacons and unknowns. Each of them has a
different configuration, as shown in Figure 6. Beacons
already know their location, so they should be attached only
with LocResAgent. Unknowns should be attached with
LocReqAgent in order to allow them to broadcast location
request messages, and they should also be attached with
LocResAgent to handle the recipient packets (which are
“location request” and “location response” packets). These

two types of agents should be attached to LocDisApp.

Figure 6. Node configuration, where ui is an unknown node and bj is a
beacon node

Before creating the nodes their configuration (e.g. the
routing protocol, MAC type, etc.) should be specified. In
addition, the attribute (either BEACON or UNKNOWN) of
the nodes should also be specified; this can be done with the
help of the command “node-config”. For example, the
following code shows how to create 7 unknown nodes and 3
beacon nodes:

set val(nn) 10 ;# Number of nodes
set val(nu) 7 ;# Number of unknowns
set val(nb) 3 ;# Number of beacons
Unknown nodes
Nodes configuration
set val(attr) UNKNOWN ;# node attribute
$ns_ node-config -attribute $val(attr)
Nodes creation
for {set i 0} {$i < $val(nu)} {incr i} {
set node_($i)[$ns_ node]
}
Beacon nodes:
set val(attr) BEACON ; # Node attribute
$ns_ node-config -attribute $val(attr)
for {set i $val(nu)} {$i < $val(nn)} {incr i} {
set node_($i)[$ns_ node]
}
The next step is to create the required agents and

applications based on the configuration shown in Figure 6.
unknowns have both request and response agent
for {set i 0} {$i < $val(nu)} {incr i} {
#Setup the request agent
set lreq_($i)[new Agent/LocReq]
$ns_ attach-agent $node_($i) $lreq_($i)
#Setup the response agent
set lres_($i)[new Agent/LocRes]
$ns_ attach-agent $node_($i) $lres_($i)
#Setup the location discovery application
set ldis_($i)[new Application/LocDis]
$ldis_($i) attach-agent $lreq_($i)
$ldis_($i) attach-agent $lres_($i)
}
Beacon nodes have only response agent
for {set i $val(nu)} {$i < $val(nn)} {incr i} {
Setup the response agent

 Software Engineering 2012, 2(4): 91-100 97

set lres_($i)[new Agent/LocRes]
$ns_ attach-agent $node_($i) $lres_($i)
Setup the location discovery application
set ldis_($i)[new Application/LocDis]
$ldis_($i) attach-agent $lres_($i)
}
Finally, the location discovery applications should be

started at a specific time:
Start the locdis applications
for {set i 0} {$i < $val(nn)} {incr i} {
$ldis_($i) set random_ 1
$ldis_($i) set method_ 2
$ldis_($i) set showColor_ 1
$ldis_($i) set distanceError_ 1
$ns_ at 0.0 "$ldis_($i) start"
}
If required, the user can change the default setting of the

bind variables before starting the applications. For instance,
in the above code, the random_ variable was set to 1 for all
the LocDis applications so that the location request messages
could be broadcast at random times instead of starting
immediately (random_ = 0). The method_ variable specifies
which localisation algorithm should be applied to estimate
the node location. The variable showColor_ is used to
change the colour of all the unknowns after they estimate
their location; setting this variable to zero disables this
feature. To consider the distance measurement error, the user
should set the distanceError_ variable to 1.

3.5. Manipulate Output Files

After simulation, ns-2 outputs either text-based or
animation-based simulation results. As shown in Figure 7,
several tools could be used to interpret these results
graphically or interactively. The Network AniMator
(NAM)[9] is an animation tool that uses the
animation-based results to view the network simulation
traces and real-world packet traces. NAM supports topology
layout, packet level animation and various data inspection
tools.

Figure 7. Tools used to manipulate the result

Text-based results consist of a lot of details on events that
occur in the network, such as the sending or receiving of
packets, and the movement and remaining energy levels of
nodes. A new method was written that records the
localisation-related information in the trace file. The format
of the traced data is shown in Figure 8. Several tools can be
used to extract this location information into a different file,

such as the “grep” command. Assuming that the name of the
trace file is “location.tr”, then the extracted location
information can be store in the file named “result” by using
the following command:

grep "^L" location.tr > result
which means: filter only those lines that begin with the

letter L.

Figure 8. The format of the traced location information

To analyse particular data, such as localisation error, the
relevant information needs to be extracted from the traces
and transformed to a more easily comprehensible format.
Perl language[20] was used for this purpose. Perl stands for
“Practical Extraction and Report Language”. Perl can be
used to filter and to process the ASCII trace files in Unix. For
example, a simple Perl script could be written to estimate the
average localisation error of all nodes at each second. The
Gnuplot software was used to represent the relevant results
graphically. Gnuplot[21] is a portable command-line-driven
graphing utility for Linux, as well as many other platforms.

4. Implementing New Localisation
Algorithms

Implementing new localisation algorithms using the ns-2
extension is a straightforward process. Assuming that one
needs to implement a new algorithm called “Your”, then the
following procedure should be followed:

1. Create two new files “yourposition.h” and
“yourposition.cc” under the “location” directory (see Figure
5), and then modify the ns-2 “Makefile” by adding the
corresponding object file name of the new module
(-I./location/yourposition.o).

2. Derive a new class called YourPosition from the
Position class, and then implement the new methods and
features which were not provided by the Position class.

3. In the file “support.h” assign a number for the new
algorithm (e.g. #define YOUR 10). If the new algorithm
requires extra information for localisation, then this
information should be added to the ResData vector within
this file.

4. To enable the user to run the new algorithm by
specifying the value of the method_ variable to “10” (as
explained in Section 3.4) add these few lines to the switch
case in “locationdiscovery.cc” file:

switch (method_)
{........
case YOUR:

98 Adnan M. Abu-Mahfouz et al.: Positioning System in Wireless Sensor Networks Using NS-2

position_ = new YourPosition(this);
break;
}
5. Finally recompile ns-2.
As an example, let us consider the implementation of the

Nearest localisation algorithm which proposed in[3]
1. Create two new files “nearestposition.h” and

“nearestposition.cc” under the “location” directory, and then
modify the ns-2 “Makefile” by adding the corresponding
object file name of the new module
(-I./location/nearestposition.o)

2. Derive a new class called NearestPosition from the
Position class, and then override the “estimate” method. The
new “estimate” method will differ in two things. Firstly, it
sets the number of references used to 3 (num_ref_ = 3;)
instead of using all the available references. Secondly, it
invokes a new method called nearest_ref(). The new method
“nearest_ref” will be used to select the closest three
references, which will be used in the position estimation.

3. In the file “support.h” add the following:
#define NEAREST3 2
4. Add these few lines to the switch case in

“locationdiscovery.cc” file:
switch (method_)
{........
case NEAREST3:
position_ = new NearestPosition(this);
break;
}
5. Finally recompile ns-2.

5. Simulation Results
To evaluate the effectiveness of the presented ns-2

extension, six localisation algorithms have been
implemented for the performance comparison, using the
same assumptions. Two algorithms based on the basic
multilateration method were implemented. The first one is
based on the single-estimation approach (called M_Single),
where the node estimates its position only once. The second
one is implemented based on the successive refinement
approach (called M_Refine), where the node keeps
re-estimating its position. The other algorithms are:
Nearest[3]; CRLB (Cramer-Rao-Lower-Bound)[4]; NDBL
(node distribution-based localisation)[5]; and
ALWadHA[1].

Twelve beacons and 64 unknowns were distributed
randomly in a 200 m x 200 m field. Several experiments
were performed. In each experiment the simulation was run
100 times; the duration of each run was 600 s (the total
duration was 60 000 s) and in each run, nodes were
redistributed randomly in different places (using a different
seed value). RSS was used to measure the distance between
nodes. However, to simulate noise (assuming that
distanceError_ variable is set to 1), each measured distance
was disturbed by a normal random variant with the following

settings: a mean of 0.1% of the measured distance and a
standard deviation of 1% of the measured distance. The
implemented algorithms were evaluated in terms of the
location error, number of references used, remaining energy
and distance-measurement error.

5.1. Localisation Error

The mean error is estimated every second for all knowns
as a ratio of transmission range. The mean error at a specific
time t is equal to the summation of the location error of all
knowns divided by the number of these knowns and then it
is divided by the transmission range (rtx) as follows:

,%1001ˆ1

1 tx

n

i
iit r

zz
n

errorMean 












−= ∑

=
 (4)

Where: n is the total number of knowns at a specific time t;
zi is the actual node's location; and iẑ is the estimated
node's location. Figure 9 shows the mean error of the
implemented algorithms.

Figure 9. Mean error as a ratio of transmission range

5.2. Number of References

Figure 10. Average # of references

Increasing the number of references could enhance the
accuracy of the position estimation. On the other hand it
increases the complexity of computations. The
multilateration method uses all the available references. The
number of references used for the Nearest and CRLB
algorithms is predefined manually to three references. The
ALWadHA and NDBL algorithms specify the number of

 Software Engineering 2012, 2(4): 91-100 99

references dynamically at each iteration, based on a specific
criterion. The average number of references used at a
specific time t is calculated as follows:

()∑
=

=
n

i
it SC

n
referencesof

1

,1# (5)

Where: n is the total number of knowns at a specific time t;
Si is the subset of references used to estimate the location of
node i; and C(Si) is the cardinality of set Si. Figure 10 shows
the average number of references used by each algorithm.

5.3. Remaining Energy

At the beginning of the simulation each node has 2.0 J.
Figure 11 shows the average remaining energy versus time
considering only energy consumption due to
communication.

Figure 11. Remaining energy, j = joule

5.4. Distance-measurement Error

In order to check the robustness of the localisation
algorithms with the existence of error, the value of the
standard deviation is changed from 1% to 10% of the
measured distance. 10 experiments were performed with
different standard deviation, and then the mean error was
recorded at the end of the run time, as shown in Figure 12.

Figure 12. Mean error vs standard deviation

5.5. Grid Deployment
In this experiment 12 beacons and 68 unknowns were

distributed in a 200 m x 200 m field as a grid. Figure 13

shows the mean error of the implemented algorithms in the
grid deployment.

Figure 13. Grid deployment with distance error

6. Conclusions
Academic papers focus on results and rarely include

details of how ns-2 simulations are implemented, and if
published the modules tend to be scheme-specific. This
paper presents an extension to ns-2. The extended ns-2 is a
reusable and customisable package that will enable a user
with a basic knowledge of ns-2 to simulate a localisation
system within a wireless network without any extra
knowledge. We showed the simple procedures that are
required to implement new localisation algorithms using the
extended ns-2. Therefore, the extended ns-2 will eliminate
the need to build simulations largely from first principles.
This paper will help researchers who want to implement and
test new or existing localisation algorithms. Moreover,
considering the limited academic publications available, it
will also help the new ns-2 users who wish to know more
about how a simulation project is built and structured. We
also hope that this paper will encourage practitioners in other
areas of WSN research to develop similar ns-2 extensions.

REFERENCES
[1] A. M. Abu-Mahfouz and G. P. Hancke, "An efficient

distributed localization algorithm for wireless sensor
networks: Based on smart reference-selection method,"
Submitted for Publication, 2011.

[2] S. Chinnappen-Rimer and G. P. Hancke, "Perimeter echo
algorithm for network localization," in Proceedings of the
IEEE AFRICON 2009, September 23 - 25, Nairobi, Kenya,
2009, pp. 1-5.

[3] K. Y. Cheng, V. Tam and K. S. Lui, "Improving aps with
anchor selection in anisotropic sensor networks," in
Proceedings of the Joint International Conference on
Autonomic and Autonomous Systems and International
Conference on Networking and Services — ICAS-ICNS '05,
October 23-28, Papeete, Tahiti, 2005, pp. 49-54.

100 Adnan M. Abu-Mahfouz et al.: Positioning System in Wireless Sensor Networks Using NS-2

[4] D. Lieckfeldt, J. You and D. Timmermann, "An algorithm for
distributed beacon selection," in Proceedings of the 6th
Annual IEEE International Conference on Pervasive
Computing and Communication — PerCom '08, March 17-21,
Hong Kong, China, 2008, pp. 318-323.

[5] S. Han, S. Lee, S. Lee, J. Park and S. Park, "Node
distribution-based localization for large-scale wireless sensor
networks," Wireless Networks, vol. 16, no. 5, pp. 1389-1406.
2010.

[6] A. M. Abu-Mahfouz, L. P. Steyn, S. J. Isaac and G. P. Hancke,
"Multi-level infrastructure of interconnected testbeds of large
scale wireless sensor network (MI2T-WSN)," in Proceedings
of the 11th International Conferences on Wireless Networks,
July 16-19, Las Vegas, USA, 2012, .

[7] L. P. Steyn and G. P. Hancke, "A survey of wireless sensor
network testbeds," in Proceedings of the IEEE AFRICON,
September 13-15, Livingstone, Zambia, 2011, pp. 1-6.

[8] T. Issariyakul and E. Hossain, Introduction to Network
Simulator (NS2). New York, NY, USA: Springer, 2009.

[9] "The network simulator - ns-2," 12 February 2010, online
available:
http://nsnam.isi.edu/nsnam/index.php/User_Information.

[10] "OMNET++ simulator," 09 March 2011, online available:
http://www.omnetpp.org/.

[11] P. Levis, N. Lee, M. Welsh and D. Culler, "TOSSIM:
Accurate and scalable simulation of entire TinyOS
applications," in Proceedings of the 1st International
Conference on Embedded Networked Sensor System —
SenSys '03, November 05-07, Los Angeles, CA, USA, 2003,
pp. 126-137.

[12] K. Fall and K. Varadhan, "The Ns Manual," 9 May 2010,
online available:
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf.

[13] P. Morávek, "Ns-2 simulator capabilities in nodes
localization in wireless networks," 2009, online available:

http://www.feec.vutbr.cz/EEICT/2009/sbornik/03-Doktorske
%20projekty/01-Elektronika%20a%20komunikace/06-xmor
av08.pdf.

[14] A. Boukerche, H. Oliveira, E. F. Nakamura and A. A.
Loureiro, "Secure localization algorithms for wireless sensor
networks," IEEE Communications Magazine, vol. 46, pp.
96-101, 2008.

[15] A. M. Abu-Mahfouz and G. P. Hancke, "Distance bounding:
A practical security solution for real-time location systems?"
IEEE Transactions on Industrial Informatics, Accepted for
publication.

[16] S. Tian, X. Zhang, X. Wang, P. Sun and H. Zhang, "A
selective anchor node localization algorithm for wireless
sensor networks," in Proceedings of the International
Conference on Convergence Information Technology —
ICCIT '07, November 21-23, Gyeongju, Korea, 2007, pp.
358-362.

[17] J. Liu, Y. Zhang and F. Zhao, "Robust distributed node
localization with error management," in Proceedings of the
7th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, May 22-25, Florence, Italy,
2006, pp. 250-261.

[18] A. Savvides, C. C. Han and M. B. Strivastava, "Dynamic
fine-grained localization in ad-hoc networks of sensors," in
Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking — MobiCom '01, July
16-21, Rome, Italy, 2001, pp. 166-179.

[19] "The doxygen documentation system," 12 October 2010,
online available: http://www.stack.nl/~dimitri/doxygen/.

[20] "The perl programming language," 2010, online available:
http://www.perl.org/.

[21] "The gnuplot software," September 2010, online available:
http://www.gnuplot.info.

	1. Introduction
	2. Localisation Systems
	3. Localisation Extension Structure
	3.1. Class Hierarchy

	4. Implementing New Localisation Algorithms
	5. Simulation Results
	6. Conclusions

