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1. INTRODUCTION 

 

Fire danger indices (FDI) describe the conditions that 

influence ease of ignition, rate of spread and the impact 

caused by fires [1]. It is used to assess the safety of 

prescribed burning activities, to improve real-time fire 

fighting preparedness and in logistic planning of fire 

fighting resources [2, 3]. 

 

Different indices are being used for specific areas 

while some FDIs, e.g. the Canadian Fire Weather Index 

(FWI), are now being applied globally in the Global 

Wildfire Early Warning System [1]. The choice of FDI 

is often made subjectively due to the lack of objective 

comparison methods. Evaluation of the performance of 

indices is a difficult task due to the ambiguous concept 

of fire risk. Fire risk (or potential) cannot be measured 

directly but can only be inferred by measuring the 

components of which the index consists, such as 

temperature, relative humidity, rainfall and wind speed 

[4, 5]. This contrasts with fire behavior models in 

which physical parameters such as flame length or rate 

of spread can be physically measured or modeled. Fire 

danger indices are not designed to describe the 

characteristics of a fire but rather the potential of a fire 

taking place in an area of interest [5]. 

 

Several different approaches have been taken in 

evaluating FDIs, but [5, 6] found that fire activity is a 

useful concept based on the assumption that higher FDI 

values corresponds with increased fire occurrences. 

Fire activity can furthermore be assessed using 

remotely sensed data such as active fire detections and 

burned area maps as a proxy of historical fire activity. 

In a study by [6] fire activity collected from the field 

were evaluated with the Normalized Difference 

Vegetation Index (NDVI), Normalized Difference 

Water Index (NDWI) and Keetch-Byram Drought 

Index (KBDI) using performance measures extracted 

from a binary logistic model. It was successfully 

demonstrated that the vegetation based NDWI can be 

used effectively as a fire risk indicator. In a paper by 

[5] a quick, objective and quantitative guideline for 

selecting an appropriate FDI for a specific areas was 

suggested by ranking an number if measures in terms 

of performance. These measures included logistic 

regression, percentile shift analyses and the 

Mahalanobis distance.  

 

A similar approach is used in this study to identify the 

most suitable FDI for application in South Africa. The 

indices in the  comparison includes the Lowveld Fire 

Danger Index (LFDI), used by the South African fire 

management community, the internationally used FWI, 

the McArthur Forest Fire Danger Index (FFDI) and the 

McArthur Grassland Fire Danger Index (GFDI).  

 

In this study historical fire activity from remotely 

sensed data are compared with various FDIs to identify 

which index has the strongest statistical relationship 

with fire occurrences and therefore the highest 

forecasting potential for fires in the future. 

 

2. METHODOLOGY 

 

Meteorological data on temperature, relative humidity, 

rainfall and wind speed were obtained from the South 

African Weather Services (SAWS) for calculation of 

the FDIs. This gridded data was modeled with the 

Unified Numerical Weather Prediction (NWP) model 

at a 11 km cell size and data for the time period June 

2007 to October 2010 were used. Unfortunately NWP 
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data prior to 2007 could not be used due to 

incomparability with the previously used Eta NWP 

model.  

 

Historical fire activity was determined by using burned 

area data as well as active fire detections from the 

MODIS sensors onboard the Terra and Aqua satellite 

platforms. In preparation of fire activity per 11 km 

meteorological cell, individual fires were calculated  

by the integrating the 500 m MCD45A and MCD64A1 

burned area data products with the 1 km MOD14A1 and 

MYD14A1 active fire products. This was done by 

considering the proximity and date of neighboring 

burned area pixels and their association with active fire 

detections. If a neighboring burned area pixel was  

connected to another burned pixel within a two-day 

time period, the two pixels were considered as part of 

the same fire. Individual fires were subsequently 

aggregated into 11 km cells, comparable in size to the 

meteorological data. 

 

Given that the data is in a binary form, fire activity is 

expressed as a fire-day in which a value of 1 if 

allocated to a cell if one or more fires occurs and 0 

otherwise [5]. In this study fire activity was defined in 

terms of (i) a fire-day (ii) a multiple fire-day when 

more than 5 fires occurred and (iii) a large fire-day 

when more than 4 burned area pixels (100 ha) were 

recorded. 

 

According to [7]more than 10 events per variable is 

required in logistic regression to avoid bias in both 

positive and negative directions. A threshold of 20 

large fire events per cell were used in this study to 

avoid bias and have appropriate frequency distributions 

for percentile analyses. However, if the 20 fire events 

per cell threshold is taken into account, very few 

multiple fire-days are present in the dataset and a 

meaningful logistic regression fit on this fire activity 

type cannot be obtained. Therefore only fire-days and 

large fire-days were further used as an indication of 

fire activity. The 20 large fire event threshold per cell 

resulted in reducing the data set from 22 700 to 3 680 

cells. 

 

It is important to note the unique spatial approach of 

this study in which the performance of each FDI is 

ranked per individual cell, which provides a regional 

analyses of the effectiveness of the FDIs versus a point 

based comparison at weather stations. 

 

The ranking of the FDIs were based on the total rank 

obtained from assessing measures from the logistic 

regression, percentile shift analyses and the 

Bhattacharyya coefficient. Logistic regression was 

used to determine the probability that fire will take 

place on any particular day, as a function of FDI 

values. The FDI were defined as the independent 

variable and fire-day and large fire-day as the response 

variables [5]. Metrics used for the ranking of the FDIs 

were the R
2
 and the range of predicted values obtained 

from the logistic model. 

 

In percentile shift analyses the 25
th
, 50

th
 and 90

th
 

percentile values of all-days were compared with the 

percentile values of fire-days and large fire-days. A 

shift towards higher FDI values of days on which fire 

occurred, indicates that increased historical fire activity 

relates to higher FDI values. Empirical cumulative 

distribution functions were employed to calculate the 

distances between the frequency distributions of all-

days versus fire activity days. The largest distances 

between the frequency distributions, indicating higher 

correlation of FDIs with fire activity, were given a 

ranking of one, with shorter distances being ranked 

with higher values. 

 

It was decided to use Bhatthacharyya coefficient to 

measure the amount of overlap between the 

distributions of no fire-days and fire. In this case a 

shorter distance indicates an increased relationship 

between the specific FDI and fire activity. The 

individual ranking of i) the R
2
 obtained from logistic 

regression ii) the range of the predicted values from the 

logistic model iii) percentile shifts and iv) 

Bhatthacharyya coefficient were summarized in a total 

ranking with the lowest value as the best ranking FDI. 

 

3. RESULTS 

 

The overall ranking of the cells according to all four 

measures are summarized in Table 1, normalized to 

percentages. The FWI ranks as the highest ranking FDI 

at 90.32%, followed by the LFDI in second place with 

54.75%. Although ties occur between the LFDI and 

FFDI in the third position with 33.42% and 32.28% 

respectively, the FFDI is placed thirdly because of the 

high ranking of LFDI in the second position. The GDFI 

is ranked last with a 45.73% in the fourth position. 

  



Table 1: Overall ranks of FDIs expressed in 

percentages 

  
LFDI 
(%) 

FWI 
(%) 

GFDI 
(%) 

FFDI 
(%) 

Rank 1 6.46 90.32 2.55 5.48 

Rank 2 54.75 5.64 21.4 30.1 

Rank 3 33.42 2.71 30.31 32.28 

Rank 4 5.37 1.33 45.73 32.15 
 

The spatial extent of the 11 km cells in which the FWI 

was ranked first is shown in Fig 1. The white areas in 

the western parts of south Africa are not associated 

with either burned area pixels or active fire records due 

to a lack of fuel and low rainfall. In the eastern parts of 

the country the lack of ranked cells is caused by the 20 

large fire event threshold for each meteorological cell.  

 

 
Fig 1: The Fire Weather Index (FWI) showed 

according to ranks. 

 

The spatial extent of the FWI (Fig 1) ranked first in 

most of the country indicates its strong relationship 

with fire activity. Fig 1 also illustrates results in Table 

1 in which less than 15% of the remaining FDIs was 

ranked first. 

 

The difference between FWI and LFDI in terms of the 

R
2
 value form the logistic regression is shown in Fig 2 

whit the LFDI R
2
 values peaking much lower than the 

FWI values. 

 

 
Fig 2: R

2
 results from the fire-day logistic model for 

FWI and LFDI. 

 

 

(need to comment on low R2 for logistic regression) 

 

 

4. DISCUSSION 

 

 

Most of the fires occur in the eastern parts of South 

Africa due to sufficient fuel and dry conditions in 

winter in the summer rainfall region. The south 

western Cape is a winter rainfall region with fires 

occurring in Fynbos vegetation.  

 

 

It was found that the FWI performed the best in most 

part of South Africa. However the usage of the LFDI 

model is entrenched in local communities and there is a 

clear understanding of resources required to suppress 

fires based on the LFDI color coding. It is therefore 

suggested to historical use of the LFDI model is used 

in conjunction with the FWI. 
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