
ToF camera ego-motion estimation 
T RATSHIDAHO1, JR TAPAMO2, J CLAASSENS1, N GOVENDER1

1CSIR Modelling and Digital Science, PO Box 395, Pretoria, South Africa, 0001
2School of Electrical, Electronic and Computer Engineering, University of Kwazulu-Natal, King George V Avenue, Durban, South Africa, 4041

Email: tratshidaho@csir.co.za – www.csir.co.za

ABSTRACT
We present three approaches for ego-motion estimation using 
Time-of-Flight (ToF) camera data. Ego-motion is defined as a 
process of estimating a camera’s pose (position and orientation) 
relative to some initial pose using the camera’s image sequences.  
Ego-motion facilitates the localisation of the robot. The ToF 
camera is characterised with a number of error models. Iterative 
Closest Point (ICP) is applied to consecutive range images of the 
ToF camera to estimate the relative pose transform which is used 
for ego-motion estimation. We implemented two variants of ICP, 
namely point-to-point and point-to-plane. A feature-based ego-
motion approach that detects and tracks features on the amplitude 
images and uses their corresponding 3D points to estimate the 
relative transformation, is implemented. These approaches are 
evaluated using groundtruth data provided by a motion capture 
system (Vicon). The SIFT ego-motion estimation was found to 
perform faster when compared to the ICP-based methods.

INTRODUCTION
Ego-motion is an important field in mobile robotics, because it 
facilitates robot localisation by tracking the robot trajectory. Three 
algorithms for estimating the 6 degrees of freedom (DoF) ego-
motion of three dimensional (3D) Time-of-Flight (ToF) cameras 
are evaluated and compared. A ToF camera is a compact, solid-
state sensor that provides range images and amplitude images at 
a video frame rate of approximately 30 fps. It emits near infrared 
(NIR) light which illuminates the scene, and the reflected light is 
measured on a charge couple device (CCD) or complementary 
metal oxide semiconductor (CMOS) sensor of the camera. The 
distance is computed using the phase-shift principle.

Iterative Closest Point (ICP) is a well-known algorithm for registering 
two range images with partial overlap. It was concurrently 
introduced by Besl et al.[1]  and Chen et al.[2]. Two variants of ICP 
namely, point-to-point and point-to-plane ICP are implemented. 
The third approach makes use of the amplitude images to detect 
and track features in the image sequence. The Scale-Invariant 
Feature Transform (SIFT)[3] detection algorithm is applied on the 
amplitude images to extract features, and their corresponding 
3D points are used to estimate relative pose transform between 
the image sequence. An algorithm developed by Arun[4] that 
uses Singular Value Decomposition (SVD) is used to compute the 
transformation, and outliers are rejected using Random Sample 
and Consensus Set (RANSAC)[5].

ERROR HANDLING
The ToF camera is characterised by systematic and non-systematic 
errors. Systematic errors are handled by calibration. Non-systematic 
errors, which are also called random errors, do not have a mean 
value when measurements are repeated several times. They are 
handled by filtering. A jump edge filter is implemented in all the 
experiments undertaken. Jump edges occur when the transition 
between foreground objects and the background objects is sudden 
but the camera transition is smooth. The application of a jump 
edge is shown in Figure 1 below.

Figure 1: (a) bimodal scene used to test the jump edge filter 
and (b) shows the point cloud from the SR4000 ToF camera of 
the same scene where jump edge points are represented by red 
points

EGO-MOTION ESTIMATION
Point-to-point ICP

Given two 3D point clouds, a base point cloud B = {bi ,i=1…Bm} 
and a scene point cloud D = {di ,I=1…Nd} that correspond to the 
same shape, the transformation (R,t) that transforms the scene 
point cloud to the data point cloud is computed by minimising 
the equation (1). This equation minimises the squared distances 
between the corresponding points of the base point cloud and 
scene point.

Point-to-plane ICP

Point-to-plane ICP differs from the point-to-point in that it tries to 
minimise the squared distance between 3D scene points with the 
tangent plane to the corresponding base points. This is represented 
mathematically in equation (2).

Feature-based Ego-motion

Image features in the amplitude images of the ToF camera are used 
to find the corresponding 3D points the image sequences. These 
correspondences are used to estimate the camera’s ego-motion. 
SIFT feature detector algorithm is used to extract features that are 
invariant to rotation, scale and illumination change. SIFT features 
have been proven to outperform other feature descriptors based 
on repeatability and robustness. Transformation is estimated using 
a least square algorithm develop by Arun et al. [4] that uses SVD. 
RANSAC is used to reject outliers.

RESULTS AND CONCLUSION
Figure 2 (a) shows the results from a synthetic data experiment 
where a single point cloud was translated in a circular motion with 
a diameter of two metres. In Figure 2 (b) the point cloud was 
rotated as if the ToF camera was being rotated 360o to original 
starting point.

During experiments, point-to-plane converges in few iterations 
compared to point-to-point, but point-to-point ICP seems to 
produce more accurate results. This might be due to data being 
used. ICP fails when the transformation is purely rotational as it 
can be seen in Figure 2 (b).

Trajectory estimation using real data captured with ToF camera is 
shown in Figure 3 below. The ground truth is provided by the Vicon 
motion capture system. The Vicon system uses infrared reflective 
markers to track the pose of an object in space. It has an accuracy 
of sub-millimetre.

The SIFT ego-motion estimation performs best. It is faster compared 
to ICP based ego-motion estimation, and it produces better results.
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Figure 2: Trajectory estimation for (a) synthetic data test 1 and 
(b) synthetic data test 2. This compares the groundtruth with 
point-to-point ICP and point-to-plane ICP estimation

Figure 3: Trajectory estimation comparison of (a) point-to-point, 
SIFT and (b) point-to-plane with the groundtruth
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