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INTRODUCTION
Buildings in South Africa are designed with little regard to passive heating and 
cooling techniques (Lombard et al., 1999); therefore indoor thermal environments 
are uncomfortable leading to high electrical energy consumption from heating, 
ventilation and air conditioning (HVAC) systems. HVAC loads require an estimated 
4 000 gigawatt hours of electricity per annum (Eskom, 2010); this load could be 
reduced by 50–75% through the adoption of appropriate passive interventions. This, 
in turn, would significantly reduce the nation’s energy bill and positively contribute 
to environmental impact and climate change mitigation, as well as alleviate 
uncomfortable indoor conditions experienced by many citizens (Clarke, 2001).

A thermal simulation model was prepared for a “typical” suburban building 
of 120m2 and nine different passive designs were simulated to evaluate their 
impact on the heating and cooling load.

Figure 1: Construction of a Light Steel Frame (LSF) building

Figure 2: Construction of brick building

METHODOLOGY

Figure 3: Methodology

A “typical” 120 m2 suburban building was modelled within Ecotect. As part of 
the model infiltration rate (obtained from infiltration rate measurements), wind 
sensitivity (assumed for an urban environment) and weather files (generated 
from Meteonorm) for the six climatic regions selected (Figure 5) were used. 
Additionally, new material composites were introduced in the materials database 
to represent typical building materials used in the construction of heavy and 
light weight buildings in South Africa. The thermal characteristics of these new 
materials were then calculated within Ecotect. Ecomat™ was used to calculate 
thermal lag which was used as an additional input into Ecotect.

Figure 4: Building model used in thermal analysis

Figure 5: Map identifying regions selected

Combinations of materials with high thermal mass and high insulation were 
used to come up with nine different cases; the details of which are set out in 
Table 1. These cases were designed to evaluate the following:
• Case A – base case
• Case B – insulated walls
• Case C – insulated walls and insulated ceiling 
• Case D – insulated walls, insulated ceiling and roof
• Case E – increased thermal mass wall and insulated ceiling
• Case F – centrally insulated wall and insulated ceiling
• Case G – double insulated wall and insulated ceiling 
• Case H – increased thermal mass wall
• Case I – centrally insulated wall

Table 1: Detailed description of cases A–I

Case Roof External wall Internal wall Ceiling
A 30 mm concrete 

tiles, 38 mm air gap, 
0.2 mm polyethylene 
(high density). 
Uvalue = 2.59 W/m2.K, 
Thermal lag = 0.82 hrs

15 mm cement 
plaster, 220 mm brick 
normal fire clay, 15 mm 
cement plaster. 
Uvalue = 2.72 W/m2.K, 
Thermal lag = 6.05 hrs

15 mm cement 
plaster, 110 mm brick 
normal fire clay, 15 mm 
cement plaster. 
Uvalue = 3.54 W/m2.K, 
Thermal lag = 3.24 hrs

6.4 mm gypsum 
board. 
Uvalue = 5.58 W/m2.K, 
Thermal lag = 0.06 hrs

B Same as case A 9 mm fibre cement 
sheet, 0.2 mm vapour 
membrane, 30 mm 
OSB board, 102 mm 
glass wool insulation 
in combination with 
0.8 mm steel studs, 
15 mm gypsum 
board.
Uvalue = 0.5402 W/m2.K, 
Thermal lag = 2.6 hrs

9 mm fibre cement 
sheet, 0.2 mm vapour 
membrane, 30 mm 
OSB board, 102 mm 
glass wool insulation 
in combination with 
0.8 mm steel studs, 
15 mm gypsum 
board.
Uvalue = 0.5402 W/m2.K, 
Thermal lag = 2.6 hrs

Same as case A

C Same as case A Same as case B Same as case B 140 mm glass wool 
insulation, 6.4 mm 
gypsum board. 
Uvalue = 0.26 W/m2.K, 
Thermal lag = 0.44 hrs

D 30 mm concrete tiles, 
0.2 mm polyethylene 
(high density) and 
40 mm isotherm 
insulation. 
Uvalue = 0.93 W/m2.K, 
Thermal lag = 0.96 hrs

Same as case B Same as case B Same as case C

E Same as case A 15 mm plaster, 220 mm 
dense concrete and 
15 mm plaster. 
Uvalue = 3.05 W/m2.K, 
Thermal lag = 6.3 hrs

Same as case A Same as case C

F Same as case A 15 mm cement plaster, 
110 mm brick normal 
fire clay, 50 mm mineral 
wool insulation, 110 mm 
brick normal fire and 
15 mm cement plaster. 
Uvalue = 0.59 W/m2.K, 
Thermal lag = 9.08 hrs

Same as case A Same as case C

G Same as case A 15 mm cement plaster, 
50 mm mineral wool 
insulation, 220 mm 
brick normal fire clay, 
50 mm mineral wool 
insulation and 15 mm 
cement plaster. 
Uvalue = 0.33 W/m2.K, 
Thermal lag =
10.16 hrs

Same as case A Same as case C

H Same as case A Same as case E Same as case A Same as case A
I Same as case A Same as case F Same as case A Same as case A

RESULTS
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CONCLUSIONS
1. Ceiling insulation is the most beneficial intervention that can be applied.
2. Insulating a building’s ceiling and walls reduces its heating and cooling 

loads the most. 
3. Applying both roof and ceiling insulation should always be avoided. 
4. Building insulation is an effective intervention in all climatic regions.
5. Slightly increasing the thermal mass of a wall is not beneficial.
6. Positioning of insulation in a wall has a negligible effect.
7. Different designs have similar benefits across all climatic regions irrespective 

if heating or cooling is dominant. 
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Figure 6: Annual space heating and 
cooling demand for Durban

Figure 8: Annual space heating and 
cooling demand for Musina

Figure 8: Annual space heating and 
cooling demand for Bloemfontein

Figure 7: Annual space heating and 
cooling demand for Kimberly

Figure 9: Annual space heating and 
cooling demand for Pretoria

Figure 9: Annual space heating and 
cooling demand for Cape Town

Building thermal 
simulation allows one to 
model a building before 

it is built or before 
renovations are started 

and various energy 
effi ciency alternatives 
to be investigated and 
options compared to 

one another leading to 
an energy-optimized 

building.


