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ABSTRACT   

We experimentally generated superpositions of higher-order Bessel beams that possess no global orbital angular 
momentum (OAM), yet exhibit an angular rotation in their intensity profile as the field propagates. The digital 
holograms encoded on a spatial light modulator (SLM), used for generating such fields, consist of two annular rings of 
unequal radial wave-vectors where each ring is encoded with an azimuthal mode of equal order but opposite charge. We 
present experimentally measured angular rotation rates for some example superposition fields, which are shown to be in 
good agreement with that predicted theoretically. Introducing a second SLM and a Fourier transforming lens, we 
demonstrate a simple approach to perform an azimuthal decomposition of our generated optical fields. Bounding the 
match-filter to an annular ring, of varying radius, we are able to perform a scale-independent azimuthal decomposition of 
our initial field. From the measured weightings of the azimuthally decomposed modes we show reconstruction of the 
cross-sectional intensity profile and OAM density of our initial field.    
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1. INTRODUCTION  
The OAM of an optical field is associated with the azimuthal phase dependence of the field’s wavefront. It was first 
shown that Laguerre-Gaussian (LG) laser modes contain a phase singularity1, around which the phase of the field 
increases azimuthally, exp(ilθ), where l indicates the azimuthal mode index and θ is the azimuthal angle. Any optical 
field that possesses a helical phase structure, such as higher-order Bessel beams, carry OAM.  
 
Zero-order and higher-order Bessel beams have received increased attention over the past few years due to their non-
diffracting and self-reconstructing properties2. Durnin first illustrated that a zero-order Bessel beam can be generated by 
illuminating an annular ring, placed in the back focal plane of a lens, with a plane wave3. Many techniques exist for the 
generation of both zero and higher-order Bessel beams, such as refractive axicons4-7 and diffractive computer generated 
holograms8-13.  
 
In this paper we extend Durnin’s annular ring experiment by introducing two azimuthal modes at different radial 
positions to produce superpositions of higher-order Bessel beams14,15. The transverse intensity profiles of the resulting 
superimposed fields exhibit an interesting feature: they rotate about the propagation axis14,15. Other forms of rotating 
optical fields have been theoretically and experimentally realized as superpositions of higher-order Bessel beams16-19, LG 
beams17,20 and multi-mode hyper-geometric beams17. We report quantitative, experimental measurements of the rotation 
rates of superimposed higher-order Bessel beams and illustrate that the rotation rate is dependent on two parameters: the 
azimuthal modes and radial wave-vectors.   
 
An understanding of the structure and propagation characteristics of different forms of laser modes has been achieved 
through the use of modal decomposition techniques21-24. Some techniques have employed a mode-multiplexing scheme 
encoded in computer generated holograms for the modal decomposition of laser beams from fibres25-29. Although these 
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techniques are noteworthy, they require the scale parameter of the mode under investigation to be known for the 
fabrication of the diffractive optical element 
 
In this paper we formulate a scale-independent, azimuthal decomposition of an arbitrary laser mode by making use of the 
angular harmonics of basis functions to express the spatial distribution in terms of spatially dependent coefficients30. We 
implement our measurement technique to infer the cross-sectional intensity profile of our initial superposition field, as 
well as its OAM density.       

2. THEORY  
A digital annular ring hologram (such as that in Fig. 1(a)), having the following transmission function 
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is encoded onto a SLM  (in the form of Fig. 1(b)) and illuminated with an expanded Gaussian beam. R1 and R2 are the 
radii of each of the two annular rings, respectively and Δ is the width of both annular rings.  
 

 
Figure 1. (a) The transmission function described in Eq. (1) for an azimuthal mode index of l = 3. (b) The digital hologram 
encoded on a phase-only SLM to execute both amplitude and phase modulations in a single step. The inset in (b) shows a 
‘zoomed-in’ section of the alternating phase values of 0 and π, which mimic an amplitude mask of zero transmission31.  

 
The field in the Fourier plane of the digital annular ring hologram, described by the transmission function in Eq. (1), is 
determined by making use of the Kirchoff-Huygens diffraction integral, resulting in the contribution from the inner and 
outer annular rings to produce the following superposition14  
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k1r and k2r denote the transverse wave-numbers, associated with each of the two Bessel beams, defined as k1r = ksinα1 and 
k2r = ksinα2, where k = 2π/λ and α is the opening angle of the cone on which the wave-vectors, produced by each annular 
ring, propagate. The longitudinal wave-numbers, k1z and k2z, are defined as k1z = kcosα1 and k2z = kcosα2. 
 
Since the annular rings are arbitrarily thin and close to one another (k1r  ≈ k2r = kr), this results in Jl(k1rr) ≈ Jl(k2rr) = Jl(krr) 
and by implementing the Bessel function identity, J-l(k2rr) = (–1)lJl(k2rr), the intensity of the superimposed Bessel field is 
determined as 
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The intensity profile (Eq. (3)) is modulated in the azimuthal co-ordinate, θ, by the function cos(2lθ), resulting in the 
intensity profile having 2|l| intensity maxima, or ‘petals’. The angular rotation rate experienced by the intensity profile, 
as the field propagates along the z-axis, is given by14,15 
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To perform the azimuthal decomposition on such fields, we select a basis that is scale-independent. Such a basis is the 
angular harmonics, exp(ilθ), that are orthogonal over the azimuthal coordinate. An expansion of an arbitrary optical field 
in terms of the angular harmonics is given by32 
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The coefficients for the azimuthal modes, al, are determined by calculating the inner-product of the initial field, u(r,θ,z), 
with a suitable match-filter (phase hologram), tl(r,θ). Physically, this requires that the on-axis intensity of the Fourier 
plane of the initial field, u(r,θ,z), modulated by the match-filter tl(r,θ), be measured33    
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The match-filter has two requirements: it should (i) have an azimuthal phase variation opposite to the mode being 
analyzed; and (ii) select the information as a function of r.  These conditions are satisfied if the match-filter is defined as 
30, 33 
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which represents an annular ring centered at r = R and of negligible thickness, ΔR. 
 
Measuring the intensity of the signal, Il(R,0), at the origin in the Fourier plane we obtain the magnitude of the 
coefficients as 
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Performing the azimuthal decomposition and extracting the phase delays between the azimuthal modes, one can calculate 
the intensity of the field, |u(r,θ)|2 , the phase and the OAM density30. 

3. EXPERIMENTAL REALIZATION  
The experimental setup, depicted in Fig. 2 (a), consists of two parts: (i) the generation of the superimposed higher-order 
Bessel beams and (ii) the azimuthal decomposition of these rotating fields. A HeNe Gaussian beam was expanded 
through a 5× telescope before illuminating the liquid crystal display of SLM1, which was programmed with a digital 
hologram similar to that in Fig. 1 (b) and Fig. 2 (b), so as to produce a superposition of two OAM carrying Bessel beams. 
The resulting field is a non-diffracting ‘petal’ mode (Fig. 2 (c)) that rotates as it propagates14, 15 and is imaged with a 10x 

Proc. of SPIE Vol. 8490  84900A-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/17/2012 Terms of Use: http://spiedl.org/terms



(a) I
L2

IS" GENERATION

(b)

SLM2

f3,-,-
-Di

f,

L4

(ii) DECOMPOSITION

CCD2

02

 

 

objective onto SLM2 for the execution of the azimuthal modal decomposition. The decomposition was accomplished by 
executing an inner-product of the initial field with the match-filter, exp(ilθ), for various l values and at particular radial 
positions. An example of such a match-filter is given in Fig. 2 (d). The on-axis intensity, in the Fourier plane (Fig. 2 (e)) 
was measured so as to extract the weighting coefficients, al.      
 

 
Figure 2. (a) A schematic of the experimental setup for generating the rotating, superimposed Bessel beams and performing 
the azimuthal decomposition.  L: Lens (f1 = 15 mm; f2 = 75 mm; f3 = 200 mm and f4 = 200 mm); M: Mirror; SLM: Spatial 
Light Modulator; O: Objective; CCD: CCD Camera. The digital hologram (b) used to generate the rotating optical field (c) 
and the digital hologram (d) used to extract the azimuthal mode weightings from the inner product (e).  

4. RESULTS AND DISCUSSION  
The intensity profiles of these non-diffracting, superimposed fields were captured at discrete distances along their 
propagation and the angular position of a selected ‘petal’ was calculated for each frame (illustrated in Fig. 3 (a)). The 
rotation rate of a selected ‘petal’ was determined from the slope of the straight line that best fits the measured angular 
position as a function of the propagation distance. Similar slopes (or experimentally measured rotation rates) were 
obtained for various azimuthal orders, |l|, and various differences between the two wave-vectors, Δk. These experimental 
rotation rates as a function of |l| and Δk are depicted in Figs 3(b) and (c), respectively. Overlaid with the experimental 
data are the theoretical predictions, represented by dashed lines. An increase in the azimuthal order, |l|, results in a 
hyperbolic decrease in the rotation rate, evident in Fig. 3(b), where the measured rotation rates, for six different values of 
Δk, are plotted as a function of the azimuthal order |l|. Increasing the difference between the two wave-vectors (achieved 
by increasing the width of the inner and outer annular rings), resulted in the rotation rate of the intensity profile 
increasing linearly (evident in Fig. 3(c)). Both Figs 3(b) and (c) convey good agreement between the measured data 
(solid points) and the theoretical predictions (dashed curves). 
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Figure 3. (a) Experimental images (top row) of the intensity profile of a superimposed l = +3 and l = -3 order Bessel beam, 
recorded at intervals along its propagation. Corresponding theoretical predictions appear in the bottom row. (b) Graphs of 
the rotation rates, for fields generated for various differences between the two radial wave-vectors, as a function of the order 
of the field, |l|. (c) Graphs of the rotation rates for beams of various orders |l| as a function of the difference Δk between the 
two radial wave-vectors. 

 
The match filter was dynamically addressed to consist of an annular ring initially having 10 different radial positions, for 
azimuthal modes ranging from l = –4 to +4. The weighting coefficients, al, were measured by detecting the on-axis 
intensity of the inner-product and an example for coefficients, a+3 and a-3, as a function of the radial co-ordinate, is given 
in Fig. 4(a). The example given in Fig. 4(a) is for a superposition of Bessel beams having azimuthal modes of l = +3 and 
–3, resulting in no global OAM. However, the local OAM varies radially across the field for values of l = +3 and l = –3, 
evident in Fig. 4(a).  
 
In considering only the azimuthal decomposition of the azimuthal mode l = +3, across a superimposed Bessel field 
possessing azimuthal indices l = +3 and –3 for an increased number of annular rings (in this case 46), one can reconstruct 
the normalized, cross-sectional intensity profile of the field, evident in Fig. 4(b). The cross-sectional intensity profile 
varies radially across the field (marked by the red arrow), in agreement with the theoretically predicted normalized, 
cross-sectional intensity profile of a third order Bessel beam (solid black curve). By measuring the phase delays between 
the azimuthal modes (outlined in Ref. [30]), we found that the entire spatial distribution and phase of the initial field can 
be reconstructed. The OAM density of the superimposed field was calculated quantitatively, following the analysis 
outlined in Ref. [33]. In Fig. 4(c) it is evident that the quantitative measurements for the OAM density (given by the red 
data points) are in very good agreement with the theoretical prediction (blue solid curve). The OAM density, for this 
particular superposition, oscillates radially across the field, as shown in Fig. 4(c) and its insert.       
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Figure 4. (a) The percentage of the azimuthal mode found at different radial positions (rings 1 to 10) in the field of two 
superimposed Bessel beams (l =+3 and –3). Light blue denotes the percentage of the azimuthal mode l = +3 and dark blue 
denotes the percentage of the azimuthal mode l = –3. (b) The cross-sectional intensity profile of the superimposed Bessel 
beam (insert) extracted when performing an azimuthal decomposition of l = +3 for 46 radial co-ordinates. (c) The measured 
OAM density (red data points), inferred from the weighting coefficients, a+3 and a-3, and the theoretical OAM density (blue 
curve). The theoretical OAM density distribution (insert). Red denotes negative OAM and blue denotes positive. Light to 
dark blue denotes an increase in positive OAM and light to dark red denotes an increase in negative OAM.  

5. CONCLUSION 
We have demonstrated an experimental technique for the production of rotating superpositions of Bessel beams and 
quantified the angular displacement of the intensity profile as a function of the beam propagation distance. We have 
shown that by altering the width of the annular rings and the azimuthal modes, encoded in the digital holograms, 
arbitrarily fine control over the rotation rates of the intensity profile can be achieved, thus making these rotating fields an 
ideal tool for controlled rotation of trapped particles. We also outlined a simple method for the azimuthal decomposition 
of an arbitrary field requiring no scale information. Superpositions of two OAM carrying Bessel beams were used as an 
example to show the reconstruction of the cross-sectional intensity profile and the OAM density. This technique is 
significant to those working in OAM, both at the classical and quantum level, as well as the emerging field of mode-
multiplexing. 
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