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Abstract. In this paper we outline the development of a 1D finite volume model to solve for
blood flow through the arterial system. The model is based on a staggered spatial discretiza-
tion which leads to a stable solution scheme. This scheme can accurately capture the various
pressure wave reflections at locations with distinct discontinuities (in both area and material
properties) as well as naturally treat branching vessels. We investigate the behaviour and per-
formance of the solver for both a stented and branching vessel and finally for a full arterial
network consisting of 55 arteries within the human vascular network.
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1. INTRODUCTION

Within the cardiovascular system there are numerous examples of ’shunts’. In brief, a
shunt, whether from a medical procedure or naturally occurring anomaly within the body, is an
irregular passage of blood. In particular, we aim to investigate shunts between the arterial and
venous system, for example a shunt medically inserted for the purposes of haemodialysis treat-
ment, or anomalies such as the vein of Galen malformation. In both these instances, a shunt that
allows for an abnormal amount of blood to pass from the arterial network back into the venous
network often results in congestive heart failure. While several studies have been devoted to the
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Figure 1. Spatial discretization for a bifurcation using (a) discontinuous solution schemes, and
(b) staggered solution schemes.

investigation of flow and wave propagation through the arterial network, the venous system and
the coupling between the two networks have received little attention. One dimensional tran-
sient models provide an attractive option for modelling the global flow phenomena through the
arterial-venous network at computationally reasonable times.

Mathematical and numerical modelling of the cardiovascular system has received a lot
of attention in recent years. Within this context, simplified models, including 1 dimensional
models have demonstrated potential in providing useful information and insight at reasonable
computational costs. Despite the reduced computational cost of 1D models, the cost can be
excessive, especially considering a fully coupled arterial-venous network. This requires solving
for a large vascular network constituting hundreds of branching vessels, solving for flow through
the terminal coupling vessels (arterioles, capillaries and venules) as well as several stages of
non-return valves within the venous network. With these computational demands in mind, it
becomes necessary to have available an efficient numerical solution method.

To this end, we outline the development of a 1D finite volume solver discretized over a
staggered grid. This is in contradiction to the published literature pertaining to the solution of
blood flow through the arterial network. Most researchers have opted for solving the branching
vascular tree through the use of discontinuous solution schemes, including the discontinuous
Galerkin [6, 7], locally conservative Galerkin [4] and finite volume Godunov schemes [1].
While these solution schemes have been applied successfully to the branching vascular tree,
they require the solution of an additional set of non-linear equations at each of the branching
points. Consider Figure 1(a), a representation of a collocated discontinuous grid across a bifur-
cation. At the bifurcating location there are 6 unknowns that need to be solved. Therefore at
each bifurcation, a non-linear set of equations relating mass flow rate, total pressure conserva-
tion and an additional 3 compatibility conditions based on the system characteristics need to be
solved.

Using a staggered grid discretization (Figure 1(b)), there are as many equations as un-
knowns and can therefore be solved naturally with fewer degrees of freedom. The primary
purpose of this paper is thus to analyse the suitability of using the FV method discretized over a
staggered grid for solving a branching vascular network. We aim to investigate the stability and
dissipation properties of the solution scheme. We will further demonstrate that the method is
capable of solving for distinct discontinuities (in area and material properties) within an arterial
vessel. We will lastly demonstrate the solution of bifurcations and solve the blood flow through
a full arterial branching network.



2. GOVERNING EQUATIONS

The mass and momentum equations for a cylindrical vessel with compliant walls ex-
pressed in terms of area and velocity can be shown to be [5]:
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where A, p and u are cross-sectional luminal area of the vessel, fluid pressure and velocity
respectively. KR is a function representing viscous losses. Assuming fully developed steady
flow with a flat velocity profile the viscous losses can be approximated by

KR
u
A
=−8πµu

A
, (3)

where µ is the blood viscosity.
The mass (1) and momentum (2) equations however have 3 unknowns. To close the set

of equations, an algebraic area-pressure relationship is used which is of the form:

p = pext +φ (A,A0,β ) (4)

where pext represents external pressure, A0 is the initial unloaded area (artery area when pext = 0)
and β is a function describing material properties. In this paper we use a non-linear pressure-
area relationship of the form [6]

p = pext +β
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)
, (5)

where β is defined as

β =

√
πhE

A0 (1−σ2)
, (6)

and h is the artery thickness, E is Young’s modulus and σ is Poisson’s ratio.

2.1. Discretization and solution of the system

2.1.1. Staggered FV discretization

In this paper, equations (1) and (2) are solved using the FV method on a staggered
grid (see Figure 2). This allows for as many equations as there are unknowns, and hence no
additional compatibility equations are required.

Firstly, the mass and momentum conservation equations are modified to be in terms of
the quantities to be conserved, i.e. volume flow rate Q = Au and total pressure p0 =

1
2ρu2 + p.

To this end, the mass (1) and momentum (2) equations become
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Consider Figure 2(a). There are two sets of control volumes (CVs). Areas and pressures
are associated with the one set of CVs, indicated by subscript i, and momentum conservation
is associated with the other set of CVs indicated with subscript I. The midpoint of each of the
groups is defined such that their quantities are at the face centres of the second group.

Firstly, let us consider the discretization of the momentum conservation equation (8).
Under the assumptions of the FV method, we change equation (8) into its integral weak form
over the control volumes depicted in Figure 2 and integrate over a time increment:
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where CV refers to the momentum conservation control volume. Using the divergence theorem:
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Using backward differencing in time
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where superscript ’0’ refers to the previous time step t and no superscript refers to time step
t +∆t. Furthermore, using central differencing , (12) is rewritten as
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where I refers to the momentum conservation CV and i refers to mass conservation CV, with
element length ∆xI , face area AI =

Ai+1+Ai
2 and volume ∆VI = AI∆xI . For a generalised integral

in time
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Figure 2. Staggered grid discretization with associated control volumes for (a) linear vessel and
(b) branching bifurcation.
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where integration in time is first order explicit if θ = 0, second order Crank-Nicholson for
θ = 1/2 and first order implicit for θ = 1.

Assuming a uniform finite difference mesh (all ∆xI = ∆xi = ∆x ), and dividing through
by AI and ∆t we obtain
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where the discretized total pressure is
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and Qi =
QI+QI−1

2 .
Similarly, the discretized mass conservation equation becomes

Ai−A0
i
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∆x =−θ (QI−QI−1)− (1−θ)(QI−QI−1)

0 . (18)

2.1.2. Discretization at branching vessels:

For a branching vessel we use a staggered grid shown in Figure 2(b), where area and
pressure node values are located at the centre of the branching CV. With this grid discretization,
both the momentum and mass conservation equations are naturally treated.

The mass and momentum discretized equations for the mesh in Figure 2(b) (for a uni-
form finite difference mesh where ∆xi = ∆xI = ∆x) at the branching point become:



Figure 3. Illustration of linear interpolation of discontinuities (in A0 and β ) across a cell from
the centre of the momentum conservation CVs to the face centres.
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The discretized total pressure equations become
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(√
A2−

√
A02

)
+

1
2

ρ

(
Q2i

A2

)2

. (21)

In order to compute Q2i at the bifurcation, we make the assumption that Q1 = Q2 +Q3

(i.e. values of Q at cell centres = Q at face centres). Based on this assumption, volume flow rate
at the bifurcation can be approximated as Q2i =

1
2 [(Q1)+(Q2 +Q3)]. It should be noted that

when generating the mesh, the area and material properties at the bifurcation are interpolated to
be consistent with this choice of Q interpolation.

2.1.3. Material and Area Discontinuities

Within the arterial and venous network there exists several discontinuities or sudden
changes in both material properties (β ) and unloaded areas (A0). These discontinuities can be
due to cardiovascular diseases, for example plaque build up may lead to a decreased A0 with an
increase in β while the presence of an aneurysm increases A0 while decreasing β . Furthermore,
certain surgical interventions such as vascular stents or grafts may also introduce discontinuities
in both A0 and β .

For the staggered solution scheme, the discontinuities are defined in the centre of the
momentum conservation CVs and then linearly interpolated to the face centres (see Figure 3).
This is done during the initial mesh generation and has the effect of spreading the discontinuities
across two CVs. This allows for the solution scheme to remain stable for large discontinuities
and ensures that no spurious pressure waves are generated due to the presence of a discontinuity
in either A0 or β .

2.1.4. Boundary Conditions

Even though the discretized equations no longer explicitly require the system character-
istics, they are still used when applying the system inlet and outlet boundary conditions. The
system being solved constitutes a set of hyperbolic equations, and hence applying non-reflecting



boundary conditions are non-trivial. By using the system characteristics, it is possible to apply
non-reflecting inlet conditions (where the inlet flow remains unaffected by any backward run-
ning waves). Similarly, the outlet boundary conditions are based on a reflection coefficient [4],
which allow for outlet boundary conditions varying from full reflection to no reflection. The
derivation and implementation of the 1D system characteristics are well documented [4, 5, 6, 7]
and will therefore not be reproduced in this paper.

2.1.5. Solution algorithm

The discretized equations (16) through (18) constitute a set of coupled non-linear equa-
tions. In this paper we solve the discretized equations using the Gauss-Seidel algorithm [2].
Gauss-Seidel is arguably one of the simpler methods for solving a set of non-linear equations.
The decoupled equations (16) through (18) are solved iteratively per time step until conver-
gence. The convergence criteria used is∑N

i |pi+1− pi|√
N

< ε (22)

where ε = 1× 10−6 is used. N refers to the total number of elements and i+ 1 and i to the
current and previous solution iterations respectively.

Gauss-Seidel typically requires a large number of convergence iterations, while each
iteration is fairly cheap. The solution method does however perform well for the branching
vascular problem, especially considering the small time steps necessary to maintain stability of
the system.

It should however be noted, for large discontinuities within an artery segment (for ex-
ample a stented vessel, see Section 3.1), Gauss-Seidel iterations may become unstable and fail
to converge. To circumvent this instability it becomes necessary to reduce the time step size
or make use of a relaxation method. One advantage of the Gauss-Seidel solution method, due
to the decoupled nature of the solution of the 3 equations, is the simplicity with which to re-
place the pressure-area relationship, for example to a collapsible tube algebraic relationship for
investigating flow through the venous network.

Unless otherwise stated, the problems investigated in this paper are based on the first
order implicit (θ = 1) time integration. The use of implicit time integration allows the solution
to remain stable for larger time steps while suffering from only minimal numerical dissipation.

3. RESULTS

3.1. Stented artery

The first test problem we consider is blood flow through a stented arterial vessel, first
investigated by Quarteroni et al. [5]. The vessel is depicted in Figure 4. The vessel has a length
of 15cm, unit diameter with material properties β 0 = 451352dyne/cm2 and a stented section of
5cm where β = κβ0 and κ = 100. Blood density of ρ = 1g/cm2 and viscosity of µ = 0.035
poise is used. The input pressure pulse is modelled as a half sine wave:



Figure 4. Test case layout for a stented vessel.

(a) (b)

Figure 5. Material property variation for the stented artery. (a) Discontinues material property
β0 interpolated over a distance of two elements, (b) C1 continuous function used by Quarteroni
et al. [5].

pin = 2×104 sin
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2πt
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)
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2
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The sine wave introduces a sharp discontinuous pressure gradient at the leading and
trailing edges of the pressure pulse.

The pressure pulse through the stented artery is solved using 75 uniformly spaced el-
ements with time steps ∆t = 1× 10−5. The discontinuous material property jump is linearly
interpolated over two elements (Figure 5(a)) as described in Section 2.1.3.

Figure 6(a) shows pressure-time plots at the 3 measurement locations (P, M, D) for
both the healthy and stented artery. We directly compare to the digitised results obtained from
Quarteroni et al. [5], based on the Taylor-Galerkin method, with 105 non-uniform elements
and ∆t = 0.2×10−6. Quarteroni et al. modelled the stent discontinuity using a C1 continuous
function (Figure 5(b)), where the function varies from β0 to κβ0 over a length of 1cm.

As a first level observation, the results in Figure 6(a) qualitatively exhibit the same
trends. The pressure pulse propagates through the healthy artery undisturbed with visible dissi-
pation due to the frictional losses. Furthermore, an increased proximal pressure (measurement
point P) is observed due to partial backward reflection as the wave reaches the stented section.
There is a further observable acceleration of the wave through the stiffened region.

There is however a marked phase shift between the results obtained using the staggered
FV and Taylor-Galerkin schemes. The FV method further computes a lower proximal pressure
peak for flow through the stented vessel. Both these observations can be quantified by the
Taylor-Galerkin scheme of Quarteroni et al. resulting in lower pressure wave speeds.



Healthy Artery Stented Artery

(a)

(b)

Figure 6. Pressure pulse through the healthy and stented artery compared to digitised results
of Quarteroni et al. [5], for (a) β0 = 451352dyne/cm2 as per problem definition, (b) modified
β0 = 0.7β0, to demonstrate that the wave speed obtained by Quarteroni et al. is fractionally too
slow.

Comparing the wave speeds, a difference of approximately 15% is observed. From the
system characteristics it can be shown that a finite amplitude pressure wave propagates through
an artery at a velocity of u+ c, where c is defined as [4]

c =

√
β
√

A
2ρ

. (24)

For physiologically real conditions c� u. We can therefore reduce the wave speed by
modifying the material properties such that β0 = 0.7β0. The results for the reduced wave speed
is shown in Figure 6(b) once again compared to the results obtained by Quarteroni et al. There
is now a much better correspondence between the two set of results. The pertinent question thus
remains which of the two schemes produces the correct wave speed.

To demonstrate that the wave speed resulting from the staggered FV scheme is indeed
correct, consider Figure 7, depicting the pressure pulse propagation through a healthy artery for



a modified material property β0 = 317356.64dyne/cm2. The modified β0 relates to an unstressed
wave speed c0 of

c0 =

√
β
√

A0

2ρ
= 375cm/s. (25)

We analyse here the unstressed wave speed, since the peak wave speed of u+c is depen-
dent on the solution of both primitive variables A and u. c0 on the other hand is independent of
the solution procedure, and can be seen as the analytical speed at which a wave travels through
an initially unstressed artery.

Based on the modified material property (β0 = 317356.64dyne/cm2), the leading edge
of the half sine pressure wave should reach the 3 measurement points P, M and D at 0.01, 0.02
and 0.03 seconds respectively (related to c0 = 375cm/s). The pressure vs. time plots in Figure 7
is computed using the same spatial and temporal discretization as was used for generating the
results in Figure 6 (i.e. 75 elements and ∆t = 1× 10−5) as well as for a refined discretization
of 1200 elements and ∆t = 1×10−6. We further set µ = 0 such that any observable dissipation
and dispersion is due to the numerical scheme only.

From Figure 7 it may be noted that both the coarse and refined discretized solutions
result in the expected unstressed wave speed. The solution relating to the coarse discretization
exhibits minor dissipation, which can more clearly be noted by the increasing dissipation of the
leading edge of the sharp pressure gradient discontinuity imposed by the half sine wave. Despite
the dissipative properties, the pulse velocities differ by less than 0.5% between the coarse and
refined solutions. Furthermore, since there are no frictional losses (µ = 0) it may be noted that
none of the wave amplitudes undergo a noticeable change as the waves travel through the length
of the artery. We therefore conclude that the staggered, implicit in time, FV scheme is capable
of accurately computing the wave speeds with only minor numerical dissipation.

3.2. Vessel branching

The arterial network can be viewed as the combination of a series of branching connec-
tions, where each branch is often not well matched. A non-matching bifurcation results in a
partial backward reflection of a wave as the wave reaches these branching points. This gives
rise to a large number of forward and backward running reflections through a branching arterial
tree. It is therefore important that the solution scheme be capable of accurately capturing these
reflecting waves.

Since the solution based on the staggered FV discretization does not explicitly rely on
the system characteristics to treat the bifurcations, it is important to test whether the solutions
obtained at the branching points remain consistent. To this end we analyse a bifurcating branch
with an analytical linear reflection coefficient Rb = 0. Sherwin et al [7] have demonstrated that
the linear reflection coefficient at a bifurcation for a forward travelling wave can be written as:

Rb =
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0
− AB

0
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0
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0
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0

AA
0

cA
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0
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0
+
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(26)
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Figure 7. Pressure wave propagation through a healthy artery with modified material properties
β0 = 317356.64dyne/cm2 for which the unstressed wave speed c0 = 375cm/s. The leading
edge of the pressure wave should therefore reach the measurement points P, M and D at 0.01,
0.02 and 0.03 seconds respectively. (a) Magnification of the leading edge of the pressure pulse,
(b) full pressure pulse.

(a) (b)

Figure 8. (a) Branching vessel representation. (b) Vessel properties for the bifurcation. The
material and area properties are computed for well matched (for forward travelling waves) and
non-matching bifurcations.

where the superscripts A, B and C refer to the artery vessels in Figure 8(a). Using equation (26),
we construct a matching branching vessel where the properties of the parent vessel (A) and the
two children vessels (B, C) are shown in Figure 8(b). The terminal resistances of vessels B and
C are set to 0 (i.e. no backward reflecting waves at the outlets).

The linear reflection coefficient defined in equation (26) is strictly speaking not applica-
ble for the non-linear model except for very small pressure pulses. To this end, we impose as
input to the bifurcating branch a single half sine pressure pulse with unit amplitude and a period
of 0.05 seconds where µ = 0 and ρ = 1. The pressure-time plots for the matching bifurcation
is shown in Figure 9(a), where the measurement points are located at the centres of each of the
respective branches. The pressure pulse from vessel A enters the two children vessels undis-
turbed with no spurious pressure oscillations. Furthermore, since there are no viscous losses,
and both terminals B and C have equal areas and material properties, the full pressure pulse is
transmitted into both children vessels.

Figure 9(b) illustrates the various pressure reflections for a non-matching bifurcation,



(a) (b)

Figure 9. Pressure pulse propagation through a branching vessel for a (a) matching branching
vessel (Rb = 0), and (b) non matching branching vessel (Rb =0.5).

where the vessel properties are shown in Figure 8(b) relating to Rb = 0.5. Furthermore, the
terminal resistance of vessel B is set to 1 (i.e. fully backward reflecting at the outlet). Once
again a pressure pulse with a period of 0.05 seconds is used to ensure that each of the reflecting
waves are distinct. It can be noted that there is a 50% partial backward reflecting wave in vessel
A as the pressure pulse reaches the bifurcation. The pressure wave in vessel B is fully reflected at
the outlet, which upon travelling back to the bifurcation undergoes a negative reflection before
partial transmission into parent vessel A and vessel C.

The bifurcating problem is solved using 1200 uniform elements with step size ∆t =
1× 10−5. A fine spatial discretization is required to resolve the sharp impulse like pressure
wave introduced into the system. A pressure pulse period of 0.05 seconds is far shorter than
typical pressure pulses produced by the heart but allows for the analyses of distinct pressure
pulse propagations.

3.3. Arterial Network

The last problem we investigate is the pressure pulse propagation through 55 main ar-
teries in the human vascular system. The arterial tree connectivity is shown in Figure 10 where
the artery vessel properties are shown in Table 1. The vessel properties reproduced in Table 1
are adopted from Wang et al [8] and Sherwin et al. [6]. The material properties were modified
by Wang et al. from previous published data to ensure well matched bifurcations for forward
travelling waves. This was done so as not to obscure any backward running reflections from
the terminal vessels. The outflow conditions at the terminal vessels are treated as resistance
elements, where the resistance for each terminal vessel is included in Table 1.

The cardiac input is modelled as a half sine pressure wave, with an amplitude of 15×
103dyne/cm2 and period of 0.3 seconds, where the period of the full cardiac cycle is 1 second.
Figure 11 depicts the input pressure pulse over 4 cardiac cycles, where the input wave is imposed
as input to the ascending aorta (vessel 1). The density of blood is taken to be ρ = 1.021g/cm3

with viscosity of µ = 0.035 poise.
The branching network is solved with a total of 1850 non-uniform elements with implicit



Figure 10. Arterial tree consisting of 55 major arteries.

Figure 11. Half sign pressure input pulse over 4 cardiac cycles.



Table 1. Physiological vessel data for the 55 major arteries depicted in Figure 10. Data is
reproduced here from Wang et al. [8] and Sherwin et al. [6].

L
en

gt
h

A
re

a
β

L
en

gt
h

A
re

a
β

ID
A

rt
er

y
(c

m
)

(c
m

2 )
( kg

s−
2 cm

−
2)

R t
ID

A
rt

er
y

(c
m

)
(c

m
2 )

( kg
s−

2 cm
−

2)
R t

1
A

sc
en

di
ng

A
or

ta
4.

0
5.

98
3

97
-

29
C

el
ia

c
I

2.
0

0.
47

8
47

5
-

2
A

or
tic

A
rc

h
I

2.
0

5.
14

7
87

-
30

C
el

ia
c

II
1.

0
0.

12
6

18
05

-
3

B
ra

ch
io

ce
ph

al
ic

3.
4

1.
21

9
23

3
-

31
H

ep
at

ic
6.

6
0.

15
2

11
42

0.
92

5
4

R
.S

ub
cl

av
ia

n
I

3.
4

0.
56

2
42

3
-

32
G

as
tr

ic
7.

1
0.

10
2

15
67

0.
92

1
5

R
.C

ar
ot

id
17

.7
0.

43
2

51
6

-
33

Sp
le

ni
c

6.
3

0.
23

8
80

6
0.

93
6

R
.V

er
te

br
al

14
.8

0.
12

3
25

90
0.

90
6

34
Su

pe
ri

or
M

es
en

tr
ic

5.
9

0.
43

0
56

9
0.

93
4

7
R

.S
ub

cl
av

ia
n

II
42

.2
0.

51
0

46
6

-
35

A
bd

om
in

al
II

1.
0

1.
24

7
22

7
-

8
R

.R
ad

ia
l

23
.5

0.
10

6
28

66
0.

82
36

L
.R

en
al

3.
2

0.
33

2
56

6
0.

86
1

9
R

.U
ln

ar
I

6.
7

0.
14

5
22

46
-

37
A

bo
m

in
al

II
I

1.
0

1.
02

1
27

8
-

10
R

.I
nt

er
os

se
ou

s
7.

9
0.

03
1

12
89

4
0.

95
6

38
R

.R
en

al
3.

2
0.

15
9

11
81

0.
86

1
11

R
.U

ln
ar

II
17

.1
0.

13
3

24
46

0.
89

3
39

A
bd

om
in

al
IV

10
.6

0.
69

7
38

1
-

12
R

.I
nt

er
na

lC
ar

ot
id

17
.6

0.
12

1
26

44
0.

78
4

40
In

fe
ri

or
M

es
en

tr
ic

5.
0

0.
08

0
18

95
0.

91
8

13
R

.E
xt

er
na

lC
ar

ot
id

17
.7

0.
12

1
24

67
0.

79
41

A
bd

om
in

al
V

1.
0

0.
57

8
39

9
-

14
A

or
tic

A
rc

h
II

3.
9

3.
14

2
13

0
-

42
R

.C
om

m
on

Il
ia

c
5.

9
0.

32
8

64
9

-
15

L
.C

ar
ot

id
20

.8
0.

43
0

51
9

-
43

L
.C

om
m

on
Il

ia
c

5.
8

0.
32

8
64

9
-

16
L

.I
nt

er
na

lC
ar

ot
id

17
.6

0.
12

1
26

44
0.

78
4

44
L

.E
xt

er
na

lI
lia

c
14

.4
0.

25
2

14
93

-
17

L
.E

xt
er

na
lC

ar
ot

id
17

.7
0.

12
1

24
67

0.
79

1
45

L
.I

nt
er

na
lI

lia
c

5.
0

0.
18

1
31

34
0.

92
5

18
T

ho
ra

ci
c

A
or

ta
I

5.
2

3.
14

2
12

4
-

46
L

.F
em

or
al

44
.3

0.
13

9
25

59
-

19
L

.S
ub

cl
av

ia
n

I
3.

4
0.

56
2

41
6

-
47

L
.D

ee
p

Fe
m

or
al

12
.6

0.
12

6
26

52
0.

88
5

20
V

er
te

br
al

14
.8

0.
12

3
25

90
0.

90
6

48
L

.P
os

te
ri

or
Ti

bi
al

32
.1

0.
11

0
58

08
0.

72
4

21
L

.S
ub

cl
av

ia
n

II
42

.2
0.

51
0

46
6

-
49

L
.A

nt
er

io
rT

ib
ia

l
34

.3
0.

06
0

92
43

0.
71

6
22

L
.R

ad
ia

l
23

.5
0.

10
6

28
66

0.
82

1
50

R
.E

xt
er

na
lI

lia
c

14
.5

0.
25

2
14

93
-

23
L

.U
ln

ar
I

6.
7

0.
14

5
22

46
-

51
R

.I
nt

er
na

lI
lia

c
5.

1
0.

18
1

31
34

0.
92

5
24

L
.I

nt
er

os
se

ou
s

7.
9

0.
03

1
12

89
4

0.
95

6
52

R
.F

em
or

al
44

.4
0.

13
9

25
59

-
25

L
.U

ln
ar

II
17

.1
0.

13
3

24
46

0.
89

3
53

R
.D

ee
p

Fe
m

or
al

12
.7

0.
12

6
26

52
0.

88
8

26
In

te
rc

os
ta

ls
8.

0
0.

19
6

88
5

0.
62

7
54

L
.P

os
te

ri
or

Ti
bi

al
32

.2
0.

11
0

58
08

0.
72

4
27

T
ho

ra
ci

c
A

or
ta

II
10

.4
3.

01
7

11
7

-
55

R
.A

nt
er

io
rT

ib
ia

l
34

.4
0.

06
0

92
43

0.
71

6
28

A
bd

om
in

al
I

5.
3

1.
91

1
16

7
-



(a) Pressure
(
dyne/cm2

)
(b) Velocity (cm/s)

Figure 12. Pressure and velocity measurements at the entrance to the ascending aorta, left
femoral artery and left tibial artery.

time steps of ∆t = 1×10−4 seconds.
The pressure pulse and velocity propagation measured at the entrance of the ascending

aorta (1), left femoral artery (46) and the left anterior tibial artery (49) are depicted in Figure 12
for the first 4 cardiac cycles. The cardiac output compares well to published literature. It is
however difficult to ascertain the physiological accuracy of the produced pressure and velocity
outputs since the properties of the arterial vessels are still largely unknown. There are however
a few key properties of the produced cardiac output that qualitatively compare well with in
vivo observations. Firstly, there is a distinct formation of a diacrotic notch for the pressure
pulse within the ascending aorta. The peak pressure pulses increase as blood propagates to the
extremities of the arterial network, while the overall mean pressure decreases, and regions of
large flow reversal are observed due to the interaction of backward travelling pressure waves.

As a final note, the terminal vessels were modelled using resistance elements. It has been
demonstrated [4] that the capillary vessels exhibit properties of both resistance and capacitance.
Future work will however focus on developing and coupling the venous network to the arterial
network tree, where the flow through the arterioles, capillaries and venules will be modelled
using an equivalent vessel formulation [3] and hence will no longer require the use of terminal
vessel approximations.

3.3.1. Computational performance

To provide an indication of the computational time required by the solver, consider
the results tabulated in Table 2. The reported computational times are for a single Intel Xeon
2.27GHz core using 3 different mesh sizes and 2 different time step sizes.

The average solution time per time step scales well for an increase in the number of
system degrees of freedom, where the average computational time approximately doubles for
a doubling in the number of degrees of freedom. Furthermore, despite the Courant number for
the solution being greater than 1, it may be noted that the number of convergence iterations
required by the Gauss-Seidel algorithm is relatively low, highlighting its suitability for this



Table 2. CPU time spent using a single 2.27GHz core for the 55 arterial network tree.

Time Step Solution Time [s] Avg. # Avg. Time per
# Elements Size [s] (1 Cardiac Cycle) Iterations Time Step [s]

1850 ∆t = 1×10−4 9.46 2.7 0.00095
3700 ∆t = 1×10−5 127.01 1.999 0.00127
7400 ∆t = 1×10−5 238.48 1.999 0.00238

particular problem.

4. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have demonstrated that the finite volume method, discretized on a stag-
gered grid is a viable solution methodology for solving the 1D vascular network. The solution
scheme naturally treats bifurcations and vessel discontinuities. Future work will entail detailed
investigations into alternative solution algorithms to solve the set of discretized equations as
well as focus on the inclusion of the venous network.
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