
Adaptively trained reduced-order model for acceleration of oscillatory flow simulations

O. F. Oxtoby

Advanced Computational Methods Group, Aeronautic Systems, Council for Scientific and In-
dustrial Research, Pretoria, South Africa (ooxtoby@csir.co.za)

Abstract.
We present an adaptively trained Reduced-Order Model (ROM)to dramatically speed

up flow simulations of an oscillatory nature. Such repetitive flowfields are frequently encoun-
tered in fluid-structure interaction modelling, aeroelastic flutter being one important appli-
cation. The ROM is constructed using the method of snapshotsand evaluated using both
Proper Orthogonal Decomposition (POD) and the snapshots themselves as the basis modes.
The incompressible Navier-Stokes equations are projectedonto these basis modes using the
method of Galerkin projection. While most ROM techniques try to speed up a sequence of
similar simulations by first generating the ROM using selected representative runs, and then
applying it to others, here it is generated on the fly in order to exploit the fact that individ-
ual simulations may themselves contain nearly-repetitivebehaviour. In this work we propose
a metric for determining when the ROM is accurate enough to use and when it needs to be
augmented with further information from the full simulation. Thus, the process is fully au-
tomated and the amount of speed-up obtained depends on the degree to which the solution
is repetitive in nature. The metric presented is a combination of monitoring of the overall
residual as well as the mismatch between residuals of spatial and temporal terms generated
by the ROM. Comparative accuracy and efficiency of flow simulations with and without the
ROM are assessed.

Keywords: Reduced-Order Model (ROM), Proper Orthogonal Decomposition (POD), Adap-
tive, Oscillatory flow.

1. INTRODUCTION

The objective of this paper is to develop a reduced-order modelling technique to speed
up the simulation of systems involving oscillatory or repetitive fluid flow, while maintaining
acceptable engineering accuracy. A classic example of sucha situation is in an aeroelastic
flutter calculation where the vibration of aircraft wings and control surfaces in response to
airflow must be characterised [1]. In order to account for thenonlinearities inherent in real
airflows, as well as geometrical nonlinearities, a full computational fluid dynamics (CFD)
simulation needs to be performed. However, since this is a fully time-dependent simulation
it is very costly; in addition, it is usually necessary to perform many such simulations for



different conditions, and the resulting computational cost frequently makes it infeasible for
use in practice [2], while the experimental cost is also often prohibitive [3].

While much work has been done in developing reduced-order models (ROMs) to char-
acterise flutter response as a function of a parameter such asmach number or angle of attack
[1,2], in this work we attempt to develop a method to speedingup each individual calculation
by exploiting its repetitive or nearly-repetitive nature.This requires a ROM to automatically
be trained as the simulation progresses, a topic on which there is little existing work. A tech-
nique for automatic adaptation of a ROM for mesh-movement was presented by Bogaerset
al. [4] and shown to be very effective. Additional complexity isintroduced, however, when
solving time-dependent equations such as the Navier-Stokes equations as inaccuracy is ac-
cumulated as the solution progresses, and care must be takento ensure that, when snapshots
are added due to an inadequate ROM solution, they are not contaminated by that accumu-
lated error. Accordingly, in the procedure described belowthe aim is to monitor the level
of accuracy and ensure that it stays within nominated bounds. A similar technique applied
to time-dependent Fisher and Ginzburg-Landau equations has been presented by Rapún and
Vega [5], but not to the author’s knowledge for the Navier-Stokes equations.

The equations being solved here are the viscous, incompressible Navier-Stokes equa-
tions, i.e.

ρ
∂ui

∂t
= −ρ

∂

∂xj

uiuj −
∂p

∂xi

+ µ
∂2ui

∂x2

j

(1)

and
∂uj

∂xj

. (2)

The structure of this paper is as follows. In Section 2, the theory behind the generation
of ROMs via the method of snapshots with and without POD is presented. Next, in Section
3 the novel techniques for enhancing the ROM on-the-fly with new detailed calculations are
presented. Numerical results are then presented in Section4 and finally, we conclude with
Section 5.

2. REDUCED-ORDER MODEL FOR FLUID FLOW

Firstly, the reduced-order model is built using Proper Orthogonal Decomposition and
the Method of Snapshots. Both are standard techniques and are well described in many ref-
erence, see e.g. [6]. In short the techniques involve takingsnapshots of the flow fields and
performing a principal-components analysis on them to makethem orthogonal and to capture
the maximum variation in as few modes as possible. The only thing to note is that the ROM
is built based on the difference between the snapshots and their average value; this was found
to generate a more accurate solution as the numerical dissipation was not able to diminish
the energy towards zero, but instead ensures that the correct boundary conditions are always
maintained.

Secondly, we consider a ROM built using the snapshots themselves as the basis modes,
i.e. without generating principal orthogonal modes using POD. Although this technique no
longer captures the maximum variation using the fewest modes, the advantage is that it allows
us to dramatically reduce the time taken to build the ROM. Dueto the adaptive nature of the



ROM considered here, the continually repeated rebuilding process has to be fast in order to
realise overall speed gains, as will be shown.

2.1. Galerkin projection

In this subsection we present the projection of the original, continuous, governing
equations onto the basis modes, when in actual fact we are dealing with the discrete numerical
realisation of these equations. This is important for consistency since in the adaptive code,
one is constantly switching back and forth between the detailed numerical solution and the
ROM. However, presenting the governing equations only is done for clarity of notation, with
special considerations for the numerical equivalents being noted where applicable.

2.1.1 Using POD modes

We begin by writing the velocity and pressure as the average of snapshots plus a linear
combination of the POD modes:
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Here,γl are the coefficients in the ROM, whileψl andφl are the basis modes for the ROM.L
is the number of retained modes in the POD. Using the method ofGalerkin Projections (see
e.g. [6]), we substitute these expressions into the Navier-Stokes equations and insist that the
projection onto each of the basis modes is zero; i.e. that that governing equations are satisfied
on the subspace spanned by the basis modes. Substituting (3)into the continuity equation, we
obtain
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However, because the average velocity as well as every basismode is a linear combination
of the original snapshots, all of which are divergence-free, the equation above is identically
satisfied. Note that, in the numerical realisation of the continuity equation the velocity is
divergence-free only to truncation accuracy rather than convergence accuracy. It is only the
forward-projected velocities which are truly divergence-free, and they contain contributions
from the pressure due to the pressure-projection method used. We refer to these divergence-
free fluxes as the ‘face fluxes’. Therefore, as long as the pressure and velocity snapshots are
kept in the same proportion, the discrete version of the continuity equation is also identically
satisfied by the expansion (3). This is the reason why a singleexpansion coefficient has to be
used for velocity and pressure in Eq. (3).



Now performing the Galerkin projection on the momentum equations, we obtain
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where(ai, bi) is shorthand for
∫

V
a · bdV andV is the solution domain. The pressure terms

(last two terms on the second line) are often ignored (thereby eliminating pressure as a vari-
able) because they can be reduced to boundary integrals if the velocity snapshotsψk are
divergence-free. However, in our case it is only the face fluxand not the velocities which
are truly divergence free, and in any case the boundary integral is only zero if the pressure at
all boundaries is the same. Regardless, for our applicationit would be inconvenient to have
to reconstruct pressure from the momentum equation whenever we wished to switch from the
ROM back to the detailed solution, so we therefore make no effort to eliminate it from the
model.

2.1.2 Using snapshots as basis modes

When using the snapshots themselves as basis modes, we do notconsider deviations
from the average as we wish to minimise re-computation by being able to add extra modes
without affecting the existing ones. We therefore expand the primary variables as
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whereγl again denote the expansion coefficients,ul andpl the snapshots, andM is the number
of snapshots. Again using the method of Galerkin Projections, the continuity equation is
identically satisfied, while the only difference in the momentum equations is the presence of
off-diagonal terms on the left-hand side:
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Solution of the above system of equations requires inversion of the matrix on the left-hand
side, but no additional complications arise from the non-orthogonality of the modes.

The virtue of the above formulation is that, not only does it eliminate the need to
perform a POD when a snapshot is added, but only a small fraction of the coefficients in the
above system of equations [i.e. the bracketed terms in Eq. (7)] need to be recomputed when
the model is rebuilt [O(M2) coeffients rather thanO(L3) in the POD case].



So that (as described above) the coefficients in Eq. (7) do notall have to be recomputed
whenever a new snapshot is added, the snapshots have not beenseparated from the average
(as in the POD case). However, it is still desirable for the expansion (6) to represent deviations
from the average solution rather than from zero, for the reasons mentioned before. To achieve
this in effect, after every time-step of Eq. (7) we shift the expansion coefficientsγl by a
constant offset in order to satisfy

M
∑
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γl = 1. (8)

It can be shown that this procedure is equivalent to minimising the residual of Eq. (1) with
respect to the variablesγl, subject to the constraint (8).

3. AUTOMATIC ADAPTATION

The procedure adoped to automatically update the reduced-order model from full
finite-volume calculations is as follows.

1. Solve the equations in full detail for a nominated time known as the snapshot interval
∆T .

2. Add the current velocity and pressure fields as snapshots and regenerate the ROM.

3. Solve using the the ROM, evaluating the accuracy every timestep (∆t). If accuracy is
below a set threshold, go back to the beginning of the timestep and continue from step
1.

The aim is to solve the system using the ROM while it is adequate, but to detect the point at
which the true solution diverges from the subspace of the ROM. Once this happens, the system
is solved in full detail for and snapshot interval∆T after which a new snapshot is added to
the ROM and it is attempted to continue solving with it. The snapshot interval should be
on the scale of the physical timescales of the problem or larger, so that the detailed solution
of the system has a chance to deviate meaningfully from the too-restrictive ROM subspace
from which it was re-started. On the other hand, making it toolong will waste unneccesary
computation time on the detailed solution.

The challenge is to identify an accurate heuristic to detectwhen the detailed solution
‘wants to’ diverge from the subspace of the ROM, without actually calculating it. The most
obvious approach is to detect how accurately the ROM is approximating the full solution by
monitoring the full residual (L2-norm). However, experience shows that this is a fairly poor
predictor, unable to differentiate between a plausible (albeit approximate) solution and one
which is completely physically unrealistic.

A much more useful metric is obtained by comparing the left- and right-hand sides of
the momentum equation when the ROM solution is substituted in. The two are identical when
projected onto the POD modes, of course, but comparing them when the reconstructed fields
are substituted in gives a comparison of where the full solution ‘wants to go’ (RHS) versus
where it was allowed to go within the ROM subspace (LHS). The metric used is
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A value of ∆ > 1 indicates that the ROM subspace is constraining the solution to some
degree.

To maintain the accuracy of the solution, we monitor both metrics – the residual and
∆ – maintaining them both below preselected limits.

4. RESULTS

Figure 1. Velocity magnitude contours (shading) and pressure contour (lines spaced at 0.06
Pa intervals between -0.6 Pa and 0.6 Pa), comparing the full finite-volume solution (left) with
the adaptive ROM solution (right) at the end of the simulation (75 s).

The test-case we consider consists of the periodic sheddingof vortices from a cylinder
as depicted in Fig. 1. The mesh consists of 98 000 cells. A constant velocity of 1 ms−1 is
imposed one the left hand boundary, while the right hand boundary is at a constant pressure of
zero. The lateral boundaries are slip boundaries and the cylinder wall has a viscous (no-slip)
boundary condition.

This test case was run initially with the standard finite-volume incompressible solver
icoFoam in OpenFOAM, and then using the adaptive ROM algorithm. The vortex-shedding
initially builds up and then settles into a periodic regime,providing a good test of the adaptive
capabilities of the ROM. For this problem the convergence metrics were chosen as∆ < 1.25

and Residual< 0.08. For the POD ROM, the number of POD modes selected was 16.
Figure 2 compares the solutions obtained with the full simulation to those obtained

using the adaptive ROM with snapshots used as the basis modes. First, in the top panel, the
solutions themselves are compared. Whilst there is a considerable difference in the initial
transition to limit-cycle oscillation, this is to be expected as the problem starts off in a state
of unstable equilibrium. The rate at which it leaves this state is dependent initially on the
numerical noise present and so will be affected by the different numerical schemes used. The
steady-state oscillation regime is comparable to engineering accuracy. The ROM here consists
of only 42 degrees of freedom compared to the thousands used in the detailed solution.

In the middle panel of Fig. 2, computational time is comparedas a function of sim-
ulation time, and compared with that for the ROM with orthogonal POD modes. The long,
almost-horizontal lines show how quickly the ROM runs once it has been generated. The
speedup in this region is 56 times compared to the full solution. This, of course, includes the
time taken to monitor the full residual in order to calculatethe accuracy heuristics. However,
for the POD ROM the steep staircase in the dotted line prior to36 s can be seen to be the
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Figure 2. Results of the vortex-shedding cylinder test-case. In the top panel, the vertical ve-
locity at centre of the domain outflow boundary is shown for the full finite-volume solution
compared to the ROM (using snapshots as non-orthogonal basis modes). Comparative CPU
time taken to solve is shown as a function of simulation time in the middle panel, both for
POD and non-orthogonal basis modes. The lower panel depictsthe values of the conver-
gence metrics∆ and Residual as a function of time, again for the non-orthogonal case. The
convergence thresholds selected for this run are denoted bythe dotted lines.

limiting factor in the speed of the solution, and is a consequence of the time taken to regen-
erate the ROM whenever a snapshot is added – most of which is taken up in regenerating
Galerkin projection coefficients. The result is only a 23% speedup overall. The ROM with
non-orthogonal modes, by contrast, has visibly less computational overhead in the ‘learning’
phase and yields an overall speedup in computational time of67% for this problem.

The lower panel of Fig. 2 shows the convergence metrics,∆ and Residual as a function
of time along with the thresholds selected for this problem.Note that initially, the∆ metric
large but the residual metric is nonetheless within the required tolerance; this means that the
ROM solution solves the equations with acceptable accuracybut on too restricted a subspace.
Later the∆ metric falls below the designated tolerance but the residual rises, implying that
the subspace spanned by the basis modes is large enough to encompass the required time
dynamics but not in sufficient detail.



5. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a new scheme for generating reduced-order models on
the fly, and developed a heuristic for determining when the basis modes need to be augmented
with further snapshots of the detailed solution.

As mentioned, the regeneration of the ROM and more particularly the calculation of
Galerkin coefficients is a major bottleneck in the speed of the ROM solution. To alleviate this
it was shown to be worthwhile to relax the condition that the basis modes should be orthogo-
nal. This makes the ROM equation (5), somewhat more costly tosolve, however, this is vastly
outweighed by the advantage that all but one of the basis modes stay the same whenever the
model is augmented, drastically reducing the number of new Galerkin coefficients to be calcu-
lated. Despite this, when the number of snapshots becomes very large, the number of Galerkin
coefficients to be calculated can still become prohibitive.Therefore it is proposed that a limit
be placed on the number of snapshots stored, with a ‘scoring’system used to determine which
to discard based on which has played the smallest part in the reconstructed solution.

One drawback of the current system is that it is not obvious how to select the residual
threshold to provide a good tradeoff between accuracy and computation time. This question
will be considered in future work.
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