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Abstract.

We present an adaptively trained Reduced-Order Model (RoMjamatically speed
up flow simulations of an oscillatory nature. Such repetifiowfields are frequently encoun-
tered in fluid-structure interaction modelling, aeroeladlutter being one important appli-
cation. The ROM is constructed using the method of snapsimatsevaluated using both
Proper Orthogonal Decomposition (POD) and the snapshasigelves as the basis modes.
The incompressible Navier-Stokes equations are projemtéal these basis modes using the
method of Galerkin projection. While most ROM techniqugddrspeed up a sequence of
similar simulations by first generating the ROM using seldaepresentative runs, and then
applying it to others, here it is generated on the fly in ordeekploit the fact that individ-
ual simulations may themselves contain nearly-repethitgaviour. In this work we propose
a metric for determining when the ROM is accurate enough &arsl when it needs to be
augmented with further information from the full simulatioThus, the process is fully au-
tomated and the amount of speed-up obtained depends ondheede which the solution
IS repetitive in nature. The metric presented is a combaratf monitoring of the overall
residual as well as the mismatch between residuals of dpatihtemporal terms generated
by the ROM. Comparative accuracy and efficiency of flow sitimra with and without the
ROM are assessed.

Keywords: Reduced-Order Model (ROM), Proper Orthogonal DecompasitPOD), Adap-
tive, Oscillatory flow.

1. INTRODUCTION

The objective of this paper is to develop a reduced-orderathiad technique to speed
up the simulation of systems involving oscillatory or refpe fluid flow, while maintaining
acceptable engineering accuracy. A classic example of awgituation is in an aeroelastic
flutter calculation where the vibration of aircraft wingsdacontrol surfaces in response to
airflow must be characterised [1]. In order to account forribelinearities inherent in real
airflows, as well as geometrical nonlinearities, a full cat@pional fluid dynamics (CFD)
simulation needs to be performed. However, since this idlya time-dependent simulation
it is very costly; in addition, it is usually necessary to fpem many such simulations for



different conditions, and the resulting computationaltdoesquently makes it infeasible for
use in practice [2], while the experimental cost is alsorofiehibitive [3].

While much work has been done in developing reduced-ordelelsROMS) to char-
acterise flutter response as a function of a parameter sutlaels number or angle of attack
[1,2], in this work we attempt to develop a method to speedimgach individual calculation
by exploiting its repetitive or nearly-repetitive natuiéis requires a ROM to automatically
be trained as the simulation progresses, a topic on whichk thdittle existing work. A tech-
nique for automatic adaptation of a ROM for mesh-movemerst prasented by Bogaees
al. [4] and shown to be very effective. Additional complexityimsroduced, however, when
solving time-dependent equations such as the Navier-Ste§gations as inaccuracy is ac-
cumulated as the solution progresses, and care must bettakesure that, when snapshots
are added due to an inadequate ROM solution, they are noaroamated by that accumu-
lated error. Accordingly, in the procedure described bellogvaim is to monitor the level
of accuracy and ensure that it stays within nominated bauAdsimilar technique applied
to time-dependent Fisher and Ginzburg-Landau equatioh®éan presented by Raplin and
Vega [5], but not to the author’s knowledge for the Navieskes equations.

The equations being solved here are the viscous, inconmbplediavier-Stokes equa-
tions, i.e.
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The structure of this paper is as follows. In Section 2, tle®ti behind the generation
of ROMs via the method of snapshots with and without POD isgméed. Next, in Section
3 the novel techniques for enhancing the ROM on-the-fly wétv mletailed calculations are
presented. Numerical results are then presented in Settaond finally, we conclude with
Section 5.

2. REDUCED-ORDER MODEL FOR FLUID FLOW

Firstly, the reduced-order model is built using Proper Ggtimal Decomposition and
the Method of Snapshots. Both are standard techniques ansledirdescribed in many ref-
erence, see e.g. [6]. In short the techniques involve tagimgpshots of the flow fields and
performing a principal-components analysis on them to ntla&en orthogonal and to capture
the maximum variation in as few modes as possible. The omigtto note is that the ROM
is built based on the difference between the snapshots airdhtrerage value; this was found
to generate a more accurate solution as the numerical digsipwas not able to diminish
the energy towards zero, but instead ensures that the tboeandary conditions are always
maintained.

Secondly, we consider a ROM built using the snapshots theessas the basis modes,
I.e. without generating principal orthogonal modes usi@pPR Although this technique no
longer captures the maximum variation using the fewest midtle advantage is that it allows
us to dramatically reduce the time taken to build the ROM. Rude adaptive nature of the



ROM considered here, the continually repeated rebuildnoggss has to be fast in order to
realise overall speed gains, as will be shown.

2.1. Galerkin projection

In this subsection we present the projection of the origisahtinuous, governing
equations onto the basis modes, when in actual fact we aliegleath the discrete numerical
realisation of these equations. This is important for cgtesicy since in the adaptive code,
one is constantly switching back and forth between the ldetaiumerical solution and the
ROM. However, presenting the governing equations only reedor clarity of notation, with
special considerations for the numerical equivalentsgoroted where applicable.

2.1.1 Using POD modes

We begin by writing the velocity and pressure as the averégeapshots plus a linear
combination of the POD modes:
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Here,v, are the coefficients in the ROM, whitg, and¢, are the basis modes for the ROM.
is the number of retained modes in the POD. Using the meth@hédrkin Projections (see
e.g. [6]), we substitute these expressions into the N&&fekes equations and insist that the

projection onto each of the basis modes is zero; i.e. thagthaerning equations are satisfied
on the subspace spanned by the basis modes. Substitutingp(8)e continuity equation, we

obtain .
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However, because the average velocity as well as every tragie is a linear combination
of the original snapshots, all of which are divergence;ftee equation above is identically
satisfied. Note that, in the numerical realisation of thetioonty equation the velocity is
divergence-free only to truncation accuracy rather thaivemence accuracy. It is only the
forward-projected velocities which are truly divergericee, and they contain contributions
from the pressure due to the pressure-projection methatl Wse refer to these divergence-
free fluxes as the ‘face fluxes’. Therefore, as long as thespresand velocity snapshots are
kept in the same proportion, the discrete version of theigoity equation is also identically
satisfied by the expansion (3). This is the reason why a sexglansion coefficient has to be
used for velocity and pressure in Eq. (3).



Now performing the Galerkin projection on the momentum ¢igna, we obtain
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where(a;, b;) is shorthand forf;, a - bdV" andV is the solution domain. The pressure terms
(last two terms on the second line) are often ignored (theediminating pressure as a vari-
able) because they can be reduced to boundary integrals Welocity snapshotg* are
divergence-free. However, in our case it is only the face #od not the velocities which
are truly divergence free, and in any case the boundaryraitesgonly zero if the pressure at
all boundaries is the same. Regardless, for our applicétwould be inconvenient to have
to reconstruct pressure from the momentum equation whemeverished to switch from the
ROM back to the detailed solution, so we therefore make nurtetid eliminate it from the
model.

2.1.2 Using snapshots as basis modes

When using the snapshots themselves as basis modes, we clansater deviations
from the average as we wish to minimise re-computation bgdgable to add extra modes
without affecting the existing ones. We therefore expamdatimary variables as
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wherey, again denote the expansion coefficiemtsandp, the snapshots, and is the number
of snapshots. Again using the method of Galerkin Projestidhe continuity equation is
identically satisfied, while the only difference in the marhen equations is the presence of
off-diagonal terms on the left-hand side:
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Solution of the above system of equations requires inversfdhe matrix on the left-hand
side, but no additional complications arise from the naiagonality of the modes.

The virtue of the above formulation is that, not only doeslitnaate the need to
perform a POD when a snapshot is added, but only a smalldracfithe coefficients in the
above system of equations [i.e. the bracketed terms in Bgnééd to be recomputed when
the model is rebuilt@(1/?) coeffients rather tha@®(L?) in the POD case].




So that (as described above) the coefficients in Eq. (7) dalhiodave to be recomputed
whenever a new snapshot is added, the snapshots have natdpseated from the average
(asinthe POD case). However, it is still desirable for theagsion (6) to represent deviations
from the average solution rather than from zero, for theaessnentioned before. To achieve
this in effect, after every time-step of Eq. (7) we shift the&nsion coefficients; by a
constant offset in order to satisfy
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It can be shown that this procedure is equivalent to minimgishe residual of Eq. (1) with
respect to the variableg, subject to the constraint (8).

3. AUTOMATIC ADAPTATION

The procedure adoped to automatically update the reducks-onodel from full
finite-volume calculations is as follows.

1. Solve the equations in full detail for a nominated timewnas the snapshot interval
AT.

2. Add the current velocity and pressure fields as snapshdtsegenerate the ROM.

3. Solve using the the ROM, evaluating the accuracy evergdiap (\t). If accuracy is
below a set threshold, go back to the beginning of the tinpesstel continue from step
1.

The aim is to solve the system using the ROM while it is adegjuaut to detect the point at
which the true solution diverges from the subspace of the ROMe this happens, the system
is solved in full detail for and snapshot intenll" after which a new snapshot is added to
the ROM and it is attempted to continue solving with it. Theysshot interval should be
on the scale of the physical timescales of the problem oetasp that the detailed solution
of the system has a chance to deviate meaningfully from thedstrictive ROM subspace
from which it was re-started. On the other hand, making itltow will waste unneccesary
computation time on the detailed solution.

The challenge is to identify an accurate heuristic to detd®n the detailed solution
‘wants to’ diverge from the subspace of the ROM, without atijucalculating it. The most
obvious approach is to detect how accurately the ROM is aqupiating the full solution by
monitoring the full residualf,-norm). However, experience shows that this is a fairly poor
predictor, unable to differentiate between a plausiblbgialapproximate) solution and one
which is completely physically unrealistic.

A much more useful metric is obtained by comparing the left aght-hand sides of
the momentum equation when the ROM solution is substituted@he two are identical when
projected onto the POD modes, of course, but comparing thieemhe reconstructed fields
are substituted in gives a comparison of where the full smiutvants to go’ (RHS) versus

where it was allowed to go within the ROM subspace (LHS). Tl#rimused is
RHS|dV
A — Qv |RHSIAV. )
fv E|dv



A value of A > 1 indicates that the ROM subspace is constraining the solubocsome
degree.

To maintain the accuracy of the solution, we monitor bothrioget- the residual and
A — maintaining them both below preselected limits.

4. RESULTS

Figure 1. Velocity magnitude contours (shading) and pmessantour (lines spaced at 0.06
Pa intervals between -0.6 Pa and 0.6 Pa), comparing therfité#-frolume solution (left) with
the adaptive ROM solution (right) at the end of the simula(ie5 s).

The test-case we consider consists of the periodic sheddiaytices from a cylinder
as depicted in Fig. 1. The mesh consists of 98000 cells. Ataohselocity of 1 ms! is
imposed one the left hand boundary, while the right hand Bannis at a constant pressure of
zero. The lateral boundaries are slip boundaries and tlredeylwall has a viscous (no-slip)
boundary condition.

This test case was run initially with the standard finiteewoné incompressible solver
I coFoamin OpenFOAM, and then using the adaptive ROM algorithm. Téreex-shedding
initially builds up and then settles into a periodic regimmviding a good test of the adaptive
capabilities of the ROM. For this problem the convergencéiocsewere chosen a& < 1.25
and Residuak 0.08. For the POD ROM, the number of POD modes selected was 16.

Figure 2 compares the solutions obtained with the full satioh to those obtained
using the adaptive ROM with snapshots used as the basis mbuist in the top panel, the
solutions themselves are compared. Whilst there is a ceraite difference in the initial
transition to limit-cycle oscillation, this is to be expedtas the problem starts off in a state
of unstable equilibrium. The rate at which it leaves thigesia dependent initially on the
numerical noise present and so will be affected by the diffenumerical schemes used. The
steady-state oscillation regime is comparable to engingaccuracy. The ROM here consists
of only 42 degrees of freedom compared to the thousands ngkd detailed solution.

In the middle panel of Fig. 2, computational time is compassd function of sim-
ulation time, and compared with that for the ROM with orthogbPOD modes. The long,
almost-horizontal lines show how quickly the ROM runs onickas been generated. The
speedup in this region is 56 times compared to the full smtuthis, of course, includes the
time taken to monitor the full residual in order to calculdte accuracy heuristics. However,
for the POD ROM the steep staircase in the dotted line pri@6@ can be seen to be the
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Figure 2. Results of the vortex-shedding cylinder tesecas the top panel, the vertical ve-
locity at centre of the domain outflow boundary is shown fa till finite-volume solution
compared to the ROM (using snapshots as non-orthogona beies). Comparative CPU
time taken to solve is shown as a function of simulation timéhie middle panel, both for
POD and non-orthogonal basis modes. The lower panel depietsalues of the conver-
gence metricg\ and Residual as a function of time, again for the non-orthagoase. The
convergence thresholds selected for this run are denotdeelgotted lines.

limiting factor in the speed of the solution, and is a consege of the time taken to regen-
erate the ROM whenever a snapshot is added — most of whiclkeas 12 in regenerating

Galerkin projection coefficients. The result is only a 23%equp overall. The ROM with

non-orthogonal modes, by contrast, has visibly less coatjoumal overhead in the ‘learning’

phase and yields an overall speedup in computational tine&@%f for this problem.

The lower panel of Fig. 2 shows the convergence metficand Residual as a function
of time along with the thresholds selected for this probl@&ote that initially, theA metric
large but the residual metric is nonetheless within theireduolerance; this means that the
ROM solution solves the equations with acceptable accuratgn too restricted a subspace.
Later theA metric falls below the designated tolerance but the residses, implying that
the subspace spanned by the basis modes is large enoughotopass the required time
dynamics but not in sufficient detail.



5. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a hew scheme for generatingegdarder models on
the fly, and developed a heuristic for determining when tissbaodes need to be augmented
with further snapshots of the detailed solution.

As mentioned, the regeneration of the ROM and more partigullae calculation of
Galerkin coefficients is a major bottleneck in the speed @RBM solution. To alleviate this
it was shown to be worthwhile to relax the condition that thsib modes should be orthogo-
nal. This makes the ROM equation (5), somewhat more costighie, however, this is vastly
outweighed by the advantage that all but one of the basis sstdg the same whenever the
model is augmented, drastically reducing the number of nalei®in coefficients to be calcu-
lated. Despite this, when the number of snapshots becomgkavge, the number of Galerkin
coefficients to be calculated can still become prohibitiMeerefore it is proposed that a limit
be placed on the number of snapshots stored, with a ‘scaysgem used to determine which
to discard based on which has played the smallest part irettumstructed solution.

One drawback of the current system is that it is not obviows twoselect the residual
threshold to provide a good tradeoff between accuracy antgpatation time. This question
will be considered in future work.
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