Polymer based nanocomposites for the removal of Cr(VI) from water

Emerging Researcher Symposium

Katlego Setshedi

10 October 2012

Outline

- Background
 - Problem statement
 - Health impacts
- Remedies
- Objectives
- Experimental procedure
- Results
 - Characterization
 - Batch sorption
 - Continuous sorption
- Conclusions

Background

The water industry faces problems on national and global level that needs to be addressed:

•Fresh water reduces due to droughts

•Chemical (metals, fluoride, nitrate and other chemicals) and biological contamination

- •Acid mine drainage
- Little/disregard for the environmental consequences of INDUSTRIAL activity

www.csir.co.za © CSIR 2012 Slide 3

Industrialization & Heavy-metals – The problem

Abandoned mines

Electroplating

Alloy manufacturing

Acid mine drainage

Effluent Cr, Ni, Cu, Pb, Hg, Cd, As, Fe...

a, As,

Wastewater discharge to surface water

Health effects

Drinking water containing Heavy metals (even at low concentrations) can cause:

- •Skin cancer
- •Liver damage
- •Mental retardation
- •Carcinogenic
- •Kidney damage

Environ Health Perspect. 1983 February; 48: 113-127.

Copyright notice

Research Article

Public health consequences of heavy metals in dump sites.

T W Clarkson, B Weiss, and C Cox

Special Theme – Environment and Health

Theme Papers

Environmental lead exposure: a public health problem of global dimensions

Shilu Tong, ¹ Yasmin E. von Schirnding, ² & Tippawan Prapamontol³

Hazards of heavy metal contamination

Lars Järup

Department of Epidemiology and Public Health, Imperial College, London, UK

Conventional technologies Vs our approach

Precipitation Sludge disposal problem Ineffective @ low conc.

Electrodialysis **High Cost**

Fouling

Adsorption

Robust in nature Mass transfer resistance Our approach

Nanotechnology (Nanosorbents)

Characteristics:

- ·large surface area
- potential for self assembly
- •high specificity
- •high reactivity
- •catalytic potential

www.csir.co.za

Advances in nanoscale science and engineering

Adsorbents

Polymer/Clay nanocomposites

(Present study)

PPy/Fe₃O₄ Nanocomposites

(Bhaumik et al., 2011)

Objectives

- To synthesize and characterize polymer based nanocomposites for Cr(VI) removal from wastewater
- To perform batch adsorption equillibria and kinetics under controlled conditions
- To relate sorbent performance with sorbent properties and water quality
- To apply existing mathematical models to describe isotherms and kinetic data for design parameters
- To test the applicability of the material with real groundwater containing Cr(VI)
- To test the regenerability of the sorbent
- Evaluate sorption performance in a continuous system

Adsorbent preparation

Preparation of the exfoliated polypyrrole/OMMT nanocomposites

Novel magnetic polymer based nanocomposite

- •Highly dispersible
 - •Easy separation
- •Use of high gradient magnetic separator

Batch equilibrium and kinetics

Sorption isotherms

Water bath shaker

Variables

- •Temperature
- •Initial concentration
- •pH
- Sorbent dose

Sorption kinetics

Sorption kinetics study:

-Determination of reaction kinetic parameters

our future through science

Results

Characterization XRD

Wide angle X-ray diffraction patterns of (a) OMMT and (b) PPy-OMMT NC

Small angle X-ray diffraction patterns of (a) OMMT and (b) PPy-OMMT NC

ATR-FTIR and **TEM** analysis

FTIR spectra of the PPy-OMMT NC (a) before and (b) after adsorption with Cr(VI)

Transmission electron microscopic image of the PPv-OMMT NC

OMMT clay -9.79m²/g PPy-OMMT NC -16.076m²/g

Column – dynamic study

Continuous column adsorption small scale system

pH 2 $C_o = 100 \text{ mg/L}, 298 \text{ K}, 3 \text{ ml/min}$ 30 cm column 2 cm diameter

Breakthrough curves of Cr(VI) sorption by PPy-OMMT NC

Magnetic polymer based nanocomposites

Adsorption kinetics of Cr(VI) onto polymer based magnetic nanocomposite

$$rac{C_e}{Q_e} = rac{1}{q_o b} + rac{C_e}{q_o}$$

Langmuir isotherm

Maximum sorption capacity = 335-580 mg/g

Adsorption isotherms of Cr(VI) onto polymer based magnetic nanocomposite

$$\frac{t}{q_t} = \frac{1}{kq_e^2} + \frac{t}{q_e}$$

Pseudo second order kinetic mode

Chemisorption

our future through science

Feasibility test for Cr(VI) contaminated ground water and the effect of competing ions

Regeneration studies

Adsorption-desorption cycles for PPy-OMMT NC

Adsorption-desorption cycles for polymer based magnetic nanocomposite

Conclusions

The removal of Cr (VI) ions as a model heavy metals from aqueous solution was carried out in a batch and continuous adsorption mode using polymer based NCs

- PPy-OMMT and the polymer based magnetic NCs was synthesized and characterized for Cr (VI) removal from aqueous solution
- PPy-OMMT NC was exfoliated and exhibited effectiveness in the removal of Cr (VI) ions from aqueous solutions
- Uptake increases with an decrease in pH and an increase in temperature with both nanocomposites
- Fast removal kinetics—due to low mass transfer resistance for both nanocomposites
- Isotherms were best described by the Langmuir isotherm for both nanocomposites
- Kinetics were best described by the Pseudo second order kinetic model for both nanocomposites
- Continuous sorption data reveals an effective Cr(VI) sorption with an increase in sorbent dosage

our future through science

Output

- 1. Chromium(VI) Removal from Water Using Fixed Bed Column of Polypyrrole/Fe₃O₄ Nanocomposite, Madhumita Bhaumik, **Katlego Zebedius Setshedi**, Arjun Maity, Maurice S. Onyango, *Separation and Purification Technology*, Under Review, (2012) I.P- 2.92
- 2. Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal, **Katlego Zebedius Setshedi**, Madhumita Bhaumik, Segametsi Songwane, Maurice S. Onyango, Arjun Maity, *Water Research*, Under review, (2012) I.P 4.8

Acknowledgements

- •Dr. Arjun Maity CSIR supervisor
- •Prof. Maurice Onyango TUT Supervisor
- Avashnee Chetty
- •Segametsi Songwane
- •Dr. Mamoeletsi Mosia
- •National Research Foundation (NRF)
- Council for Scientific and Industrial Research (CSIR)

Thank you

