Evaluation of 5P12-RANTES analogue expression in *Nicotiana benthamiana*

Emerging Researcher Symposium

Kedibone Gloria Mawela 10 October 2012

Global view of HIV infection: 2010

- Nearly 34 million people were living with HIV
- Sub-Saharan Africa shows high proportion (%) of infected adults (people aged 15 to 49 years)
- New infections () were reported (in thousands) among adults and children

A lot of progress has been made to manage HIV But....

More solutions are required

- Globally, 60% of women are affected
- Available protection measures are biased towards male partners
- Most women have little negotiating power on sexual matters
- Microbicides may offer a viable option that women can initiate
 - Microbicides are molecules that eliminate or reduce the spread of viruses or bacteria

Discovery of 5P12-RANTES

5P12-RANTES mechanism of action

RANTES is difficult to manufacture

Current bioreactors

- Yeast (e.g. *Pichia*) linear and cyclic (active) forms
- E. coli insoluble inclusion bodies formation
- Mammalian cells low expression yield
- Unaffordable

Low-cost bioreactors

Plants - Nicotiana benthamiana

- Capacity to carry out post-translational modification
- Used for more than 20 years as an expression host – susceptible to various pathogens, e.g. viruses, bacteria and fungi
- Safe & cheap

Aim

Can functional 5P12-RANTES be expressed in tobacco via transient approaches?

Objectives

- a) To clone 5P12-RANTES analogue into a transient expression vector (viral and bacterial)
- b) Agroinfiltration of 5P12-RANTES constructs into tobacco leaves
- c) Evaluate protein expression by ELISA and western blot
- d) Optimise protein expression level by subcellular targeting
- e) To develop protein purification process

Materials and methods

Results - ELISA

dpi – day post infiltration

• ELISA (enzyme linked immunosorbent assay) was used to evaluate expression with anti-RANTES antibodies

Western blot analysis

Western blot confirmed expression and size of plant-based 5P12-RANTES

Cytotoxicity – MTS based

Efficacy testing

Table 1 Summary of IC_{50} values of the HIV-1 pseudovirions screened.

Sample identification	ZM53 (targets CCR5)	HXB2 (targets CXCR4)
	IC ₅₀ (μg/ml)	IC ₅₀ (μg/ml)
Crude extract	0.59	2.05
Large proteins (>10 kDa)	0.09	0.02
Small proteins (<10 kDa)	0.06	0.02
5P12-RANTES (CCR5 inhibitor)	<0.0006	NT
pICH11599 (-ve control)	1.66	0.56
278RN-RANTES (E. coli based)	20-100	>100
T20 (fusion inhibitor)	0.081	0.04459

Non-specific antiviral activity

Plant-based 5P12-RANTES did not inhibit infection downstream of viral entry, hence it is specific to CCR5 inhibition

Conclusion

- Proof of concept was obtained
- Viral vector system gave better expression levels (i.e., 603 μg/kg)
- Apoplast was the best compartment for heterologous expression of 5P12-RANTES
- Recombinant 5P12-RANTES inhibited binding of ZM53 and HXB2 pseudovirions to CCR5 receptors
- 5P12-RANTES was specific to CCR5 inhibition as it was unable to inhibit the endocytosed VSV-G pseudovirions
- Future work, optimise conditions for better expression of 5P12-RANTES in the apoplast and chloroplast

our future through science

Acknowledgements

- Prof JN Eloff, Dr E Chakauya and Dr R Chikwamba
- Special thanks to Combined Highly Anti-Retroviral Microbicides (CHAARM) for funding
- CSIR/Biosciences-Protein technologies crew
- Phytomedicine Programme crew (University of Pretoria)

Thank you

