Novel polymer-based nanocomposites for application in heavy metal pollution remediation

Emerging Researcher Symposium

Lara Kotzé-Jacobs 10 October 2012

Introduction: SA's water problem

• SA is a water scarce country

© CSIR 2012 Slide 2

Introduction: Heavy metals

- Cr, Ni, Cu, Pb, As etc.
- Exposure can cause liver and kidney damage and also cancer
- Heavy metals can accumulate in food sources through heavy metal contamination of soil and plants

- Small volume applications: ion exchange
- Larger volumes eg. acid mine drainage: neutralisation and precipitation as well as reverse osmosis (membrane process)
- Ion exchange and reverse osmosis although very efficient is expensive (resins and membranes)
- Neutralisation and precipitation is not 100% effective at removing heavy metals at low concentrations <10ppm

Adsorption for removal of heavy metals

- Most well known activated charcoal/carbon
- A<u>d</u>sorption of atoms, ions or molecules from a gas, liquid, or dissolved solid to a surface – surface phenomenon

 Absorption is a condition in which something takes in another substance- bulk phenomenon

- Nanocomposites are composites of polymers and inorganic/organic material where at least one of the components are smaller than 100nm
- Relative affordability of polymer nanocomposites
- Relative ease of manufacture of polymer nanocomposites

Nanocomposites

Larger surface ~ Increased adsorption

www.csir.co.za

© CSIR 2012 Slide 7

Materials and methods

Alumina <50nm

 Reagents are combined and polimerized with FeCl₃ to form the PPy/Alumina nanocomposite

Analysis of adsorption efficiency

Adsorption of Cr(VI)

Cr(VI) free water

Magnetic stirrer

- Adsorption is evaluated at different nanocomposite loadings, different pH's as well as initial heavy metal concentrations
- Additional studies include studies at 25, 35 and 45 C to determine thermodynamic parameters of adsorption

Potable water < 0.05 ppm Cr(VI) Surface discharge < 0.1ppm Cr(VI)

US EPA

Characterisation: Scanning Electron Microscopy

© CSIR 2012 Slide 10

Characterisation: Transmission Electron Microscopy

© CSIR 2012 Slide 11

Characterisation: ATR-FTIR

www.csir.co.za

© CSIR 2012 Slide 12

Characterisation: X-Ray Photoelectron Spectroscopy

Process of Cr(VI) adsorption

concentration using UV spectrophotometry

water

www.csir.co.za

Results – Nanocomposite loading study

© CSIR 2012 Slide 15

Results – pH studies

www.csir.co.za

Results – Kinetics studies

Results – Adsorption isotherms

Results – Regeneration experiments

AtAb ighve CCr((W)) concentrations

Results – Co-existing ions

Summary

Material Characteristic	PPy/Alumina	PPy/Magnetite
Max adsorption capacity (25°C)	~190mg Cr(VI)/g material	~169 Cr(VI)/g material
Time for 100% removal (100ppm, 150ppm, 200ppm)	20min, 80min, 100min	20min, 110min, 150min
Kinetic model	Pseudo-second order	Pseudo-second order
Isotherm model	Langmuir	Langmuir

M. Bhaumik et al. / Journal of Hazardous Materials 190 (2011) 381-390

Cr(VI) free water

Magnetic stirrer

www.csir.co.za

© CSIR 2012 Slide 21

- Developed a PPy/Alumina nanocomposite
- Improved adsorption capacity for Cr(VI) when compared to Fe₃O₄ nanocomposite and other low cost materials
- Regeneration up to 3 cycles was possible at low Cr(VI) concentrations
- Co-existing ion studies showed material specificity for Cr(VI)

Acknowledgements

- Dr Arjun Maity, Supervisor
- Dr James Wesley-Smith, Nanocenter, TEM images
- Mrs Avashnee Chetty, Group leader

Thank you

Questions?

