The Green Economy and Alternative Building Technologies

4th Biennial Conference

Presented by: Llewellyn van Wyk

Date: 10 October 2012

Content

- The Green Economy in South Africa
- Alternative Building Technologies
- Case Studies
- Findings
- Conclusion

The Green Economy in South Africa

- "The Green Economy is one that results in improved humanwellbeing and social equity, while significantly reducing environmental risks and ecological scarcity" (United Nations Environmental Programme).
- Karl Burkart defines
 (www.mnn.com/) it as based
 upon 6 main sectors, namely:
 - Renewable energy
 - Green buildings
 - Clean transportation
 - Water management
 - Waste management
 - Land management

© CSIR 2012 Slide 3

Alternative Building Technologies (ABT)

- The erection of buildings in South Africa is regulated by the National Building Regulations and Building Standards Act, 1977 (Act 103 of 1977).
- The Act makes provision for 3 compliance methods, namely:
 - 1) Deemed-to-satisfy
 - 2) Rational design
 - 3) Agrément Certificate
- A narrow definition of ABT would be building technologies that do not meet the "deemed-to-satisfy' requirement.
- A broader definition would include, inter alia,
 - 1) Building systems
 - 2) Other technologies that support the operation of a building
 - 3) Innovation
- For purposes of this presentation the broader definition is used.
- Research Question: How, and in what way, can ABT support the Green Economy?

CSIR Innovation Site

CSIR Innovation Site BASF House

Case Study 1: CSIR House

Case Study 1: Sub-structure Continuously reinforced thin concrete pavement

Case Study 1: Super-structure Modular use of blocks 10-Dec-08 13:33

Case Study 1: Roof assembly Re-oriented roofsheets Insulation board as a ceiling

Case Study 1: Services

www.csir.co.za © CSIR 2012 Slide 11

Case Study 1: Results

Concrete – reduction of almost 1 ton

Carbon dioxide – reduction of almost 800 kg/equivalents
Water – reduction of 19.73

cubic meters in materials

Energy demand in use – reduction from 19.78 (GJ) to 8.66 (GJ)

Material mass – reduction of 18.8 ton

Implementation: Mdantsane, Eastern Cape

Implementation: Mthimkulu Village, Western Cape

Implementation: Kleinmond, Western Cape 8295

Case Study 2: Muden, KwaZulu-Natal

Case Study 2: Muden, KwaZulu-Natal

- Sustainable rural settlements:
 - Renewable energy (solar lights & cellphone charging)
 - Rainwater harvesting
 - Solar water heating
 - Off-grid water borne sanitation (not septic tank)
 - Thermally comfortable home
 - Energy efficient home
 - Reduced construction waste
 - Reduced construction water consumption
 - Reduced material mass
 - Reduced environmental impact (non-renewable resource minimisation)
 - Enhanced Quality of Life (QoL)
 - Reduced (nil) service charges

Case Study 2: Muden, KwaZulu-Natal

Policy Implication: Is it possible to provide a level of municipal service even in the absence of bulk infrastructure (electricity, water, sanitation)

www.csir.co.za © CSIR 2012 Slide 19

Findings

Innovative technology	Per house	National
Energy reduction (heating cooling)	11.12 GJ	23.3 million GJ
CO ₂ reduction	0.885 ton	1.94 million ton
Material weight reduction	18.8 ton	39.4 million ton
Water from materials	19.73 m3	41.4 million m ³
Water, through tanks	22 m3	46.2 million m ³
Electricity (SWH)	1762.95 kWh/annum	3.7 billion kWh/annum
Electricity (PV)	36 kWh/annum	75.6 million kWh/annum
CO ₂ reduction (SWH)	2.11 ton/kWh/annum	4.4 million t/kWh/annum
CO ₂ reduction (PV)	0.04 ton/kWh/annum	90 300 ton/kWh/annum

www.csir.co.za © CSIR 2012 Slide 20 our futur

Conclusion

It is possible to construct and operate buildings that result in improved human well-being over the long-term, while not exposing future generations to significant environmental risks or ecological scarcities.

www.csir.co.za © CSIR 2012 Slide 21

Thank you

