CSIR Emerging Researcher Symposium, CSIR Convention Centre,
October 2012

Flow features that arise due to the interaction of a plane shock wave with concave profiles

PhD by David MacLucas
Supervised by Prof. BW Skews

Flow Research Unit Wits University

Presentation outline

- Introduction to shock wave focusing
- Numerical and experimental setup
- Results
- Conclusions

Introduction: Shock wave focusing

our future through science

Shearing interferometry flow viz. of the interaction of a plane Mach 1.2 shock wave with a blended profile.

Video shot at 330 kfps using a NHK prototype high-speed camera.

Research motivation

our future through science

- Focus studies concentrated on a limited group of both cavity profiles and depth-to-aperture ratios
 - Identify new focus patterns and focus mechanisms
- Limited understanding of shock focus mechanism in blended profiles.
 - Determine the efficiency of various shock focus mechanisms
 - Tailor both the focus pattern and focus mechanism with the addition of an inlet profile.
- Improved flow visualisation techniques capable of providing both qualitative and quantitative information
 - Quantitative information would aid in understanding the variation of shock strength affecting shock focus process

Research applications

The focus of sonic booms Extracorporeal shock wave lithotripsy

Kulkarny, V.A. (1975) The focusing of weak shock waves. PhD submitted to CAL Tech, Pasadena California.

Research Objectives

- Conduct numerical testing of various cavity profiles using a suitable computational fluid dynamics package
- Validate the numerical scheme experimentally
- Identify variation in shock focus patterns and focus mechanism numerically and experimentally.
- Identify the effect of cavity shape on the shock induced pressure distributions
- Implement a qualitative and quantitative flow visualisation system

- Test section measures 150 x 75 mm
- Air is used as the test gas
- Atmospheric pressure is approximately 933 mb
- Shearing interferometry flow visualization measures <u>horizontal density</u> gradient only
- Images captured on a NHK high-speed camera (712 x 412 pixels)

Numerical setup

Flow Euler code by Luke Felthun:

- Adaptive dynamic triangular meshes
 - Element size calculated by maintaining global target for approximated error.
 Density gradient used to measure error within each cell.
- Compressible Euler equations written in terms of an arbitrary reference frame
 - Inviscid approach adequate for a transient flow of short duration.
- Finite volume vertex centred scheme with upwind flux functions
 - Numerical dissipation by upwind approach using a flux vector splitting method.
- 2nd order accuracy in space
 - Reconstruction procedure works in conjunction with a multi-dimensional limiter to reduce overshoots and oscillations of solution within a cell.
- Scheme validated experimentally

Results: Velocity profile

Air velocity vector plot superimposed onto interferograms for a parabolic-circular compound at Mach 1.45. Vectors are scaled and coloured according to their resultant magnitude measured in the laboratory reference frame

Results: Shock wave focusing

Pre-focus wave behaviour

- I Plane incident shock wave
- R Reflected shock wave
- F Reflected shock of Transitioned Regular Reflection (TRR)
- W Wall shock of TRR
- S Shear layer

Shearing interferometry flow visualisation of the interaction of a plane Mach 1.2 shock wave with a blended profile.

Video shot at 330 kfps using a NHK prototype high-speed camera

our future through science

Results: Shock wave focusing

Gas Dynamic Focus

R – Reflected shock wave

W – Wall shock of TRR

P – Mach stem

M – Main reflected wave

our future through science

S – Shear layer

Shearing interferometry flow visualisation of the interaction of a plane Mach 1.2 shock wave with a blended profile.

√ideo shot at 330 kfps using a NHK prototype high-speed camera

Results: Shock wave focusing

Post-focus wave behaviour

R - Reflected shock wave

P – Mach stem

M – Main reflected wave

B – Shear layer of P-R-M MR

S – Shear layer

Shearing interferometry flow visualisation of the interaction of a plane Mach 1.2 shock wave with a blended profile.

Video shot at 330 kfps using a NHK prototype high-speed camera

Results: Velocity profile

Map of maximum V and minimum U velocity **history** for the interaction of a plane Mach 1.45 shock wave with a compound profile

Results: Pressure profile

Map of maximum pressure amplification **history** for the interaction of a plane Mach 1.45 shock with a compound profile

Conclusions: Principal flow features

- Strong compression field developed behind the reflected shock wave R as system is near/at focus
 - Compression field shown to shape R
 - Reflected shock wave R is shown to direct air into focal region
- Strong horizontal gradients observed behind the Mach stem P
 - Minimum U velocity plot illustrates substantial velocities in the focal region
 - Results also illustrate non-uniform expansion behind shock wave M
- Peak pressure amplifications observed within focal region
 - Peak pressure amplification reaches a maximum at the start of focus
 - Peak pressure amplifications drop rapidly outside of the focal region
- Weak expansion fields found behind triple point
 - Maps of maximum V velocity history illustrate strong upward flows behind the triple point of the Mach reflection that nears focus

our future through science

Acknowledgements

- Prof. Beric Skews and Dr C Law
- Prof. H Kleine of University of New South Wales
- Project Fluxion and Dr I Gledhill
- National Research Foundation for KIC grant

