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From stationary annular rings to rotating Bessel beams
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In this work we use a phase-only spatial light modulator (SLM) to mimic a ring-slit aperture, containing multiple
azimuthally varying phases at different radial positions. The optical Fourier transform of such an aperture is
currently known and its intensity profile has been shown to rotate along its propagation axis. Here we investi-
gate the near-field of the ring-slit aperture and show, both experimentally and theoretically, that although the
near-field possesses similar attributes to its Fourier transform, its intensity profile exhibits no rotation as it

propagates. © 2012 Optical Society of America
OCIS codes:

1. INTRODUCTION

Currently, there is a large amount of literature dedicated to
fields carrying orbital angular momentum (OAM). This ranges
across Laguerre—Gaussian beams [1], Bessel-Gauss beams [2],
and Airy beams [3], all of which carry an OAM of [h per photon
and have an azimuthal angular dependence of exp(il¢g)
[1,4-6], where [ is the unbounded azimuthal mode index and
¢ is the azimuthal angle. Fields carrying OAM offer versatile
applications. Some of these applications range from using such
fields to transfer OAM for the rotation of trapped particles [5] to
the entanglement of OAM in parametric down-conversion [6].
The fact that they offer an unbounded state space provides a
larger bandwidth for quantum cryptography [7,8].

We are mainly interested in higher-order non-diffracting
Bessel beams as a form of optical field possessing OAM
and of particular interest is the generation of superimposed
higher-order Bessel beams. One can superimpose higher-
order Bessel beams so as to produce a field which either has
or does not have a global OAM. In the case of generating a
superimposed higher-order Bessel beam, such that there is
no global OAM, a rotation in the field’s intensity profile as it
propagates is evident [9-11]. Such superpositions can be gen-
erated by illuminating Durnin’s ring-slit aperture [12] with
multiple azimuthal phase components at varying radial dis-
tances [9], or by encoding a spatial light modulator (SLM) with
a single ring-slit hologram [10], or by illuminating an axicon
with a superposition of Laguerre-Gaussian beams [13].

In this paper we, theoretically and experimentally, investi-
gate both the near- and far-field intensity profiles of the
ring-slit aperture. Since superpositions of Bessel beams are fre-
quently used in optical tweezers, knowledge of the structure of
the field at planes, other than its Fourier plane, is imperative.
We show that even though the intensity maxima, present in the
far-field as 2] “petals,” arranged on the circumference of a ring
[9], are also present in the near-ring-slit field, the angular rota-
tion of the intensity profile, however, does not exist in both the
near- and far-field regions. It is well known that the far-field
intensity profile rotates as it propagates [9-11] and we show,
both theoretically and experimentally, that this is not the case

1084-7529/12/040567-07$15.00/0

090.1995, 070.6120, 070.3185, 050.4865.

in the near-field, due to the fact that the longitudinal wave
vectors all propagate in the same direction (and do not overlap
one another) in the near-field, but in differing directions (over-
lapping one another) in the far-field.

2. THEORY

In this work we implement Durnin’s ring-slit aperture experi-
ment [12] and encode a digital ring-slit hologram onto a SLM
and illuminate it with an expanded Gaussian beam. We divide
the ring-slit aperture into two ring-slits and encode each with
an azimuthally varying phase. A schematic of the setup is gi-
ven in Fig. 1, where the regions of interest, propagating after
the ring-slit aperture, are planes P; (the near field), the region
Ps (the transition region from near- to far-field) and region P3
(the far-field).

The ring-slit aperture, has the following transmission
function

exp(ily) R, -5<r<R +%
Ur.¢) = | exp(~ilp) Ry-S<r<R,+%. @
0 elsewhere

and apart from being illustrated in Fig. 1, is also represented in
Fig. 2. Ry and R, are the radii of each of the two ring-slits,
respectively, and A is the width of each ring-slit (we have
chosen the widths of the two ring-slits to be equal). ¢ is the
azimuthal angle and [ is the azimuthal mode index.

Since the field illuminating the ring-slit aperture is an ex-
panded Gaussian beam and the ring-slits are extremely thin
(of the order of micrometers), the optical field within the
rings-slit can be described by a plane-wave, exp (i(k,z2—
wt)). k, is the longitudinal wavenumber, z is the propagation
axis and the time varying component, wt, can be neglected as
the plane-wave field is uniform across the entire x — y plane, at
any instant in time. The field produced at the ring-slit aperture
(i.e., at the plane P; where z = z,), is represented as
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Fig. 1. (Color online) Schematic of the generation of the annular
field, propagating from near- (P;) to far-field (P3). The green (red)
rays denote the rays originating from the outer (inner) ring-slit.
The three rings (at the bottom of the schematic) aid the illustration,
as to how the annular fields overlap and become completely indistin-
guishable as the propagation from the aperture increases.

exp(ilp) exp(iki.2p) Ry~ % <r<R;+ %
AP (r,.20) = | exp(~ilg) exp(iks,zy) Ro— S<r<Rr,+4
0 elsewhere
@

k1. and ko, are the longitudinal wavenumbers, defined as
k1. =k cos a; and ks, =k cos a;, where k =2z/1 and a
is the opening angle of the cone on which the wave vectors
(produced by each of the two ring-slits) propagate.

A simple annular field, containing no azimuthally varying
phase factors, is expressed as

()

Fig. 2. (Color online) Density plot of the transmission function
described in Eq. (1) for an azimuthal mode index of I = 3.
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and is depicted graphically in Fig. 3. R, denotes the radius of
the ring-slit, A is the width of the ring-slit, and » assigns the
steepness (or gradient) of the edges of the ring-slit.

The ring-slit aperture that we are considering, consists of
two ring-slits of differing radii, and by taking into account that
the optical field is a linear system, the two annular fields are
additive, resulting in the overall ring-slit field, in the near-field
(Py), been written as

AP (r, ¢, 29) = ARM8L(r) exp(ilg) exp(iky,2o)
+ AN (1) exp(-ilgp) exp(ikqy2)

- exp( ('(”A%/fl))) exp(ild) explikyz0)

vew((557)") exvii) expiitzo)
@

Since the two ring-slits are arbitrary thin and close to one
another, we can assume their radii to be equivalent, i.e.,
R, = Ry = Ry, resulting in the field simplifying to

-(r-Ry)

AP (1. 20) = exp((Tz)") (exp(ile) exp(iki,zo)

+ exp(-il¢) exp(iks;2)). ®)

The intensity of the ring-slit field is determined with the
following relationship: I = AA*, resulting in

1741, .2) = 4 cos? (’flzzo - ’szzzo + 2l¢)

x (cosh (@) —sinh (2(%:%)))2”. (6)

The intensity profile for the ring-slit field, given above in
Eq. (6), illustrates that it is modulated in the azimuthal co-
ordinate, ¢, by the function cos?(2l¢). Therefore, the number
of intensity maxima and minima, arranged on the circumfer-
ence of the ring-slit, is twice the azimuthal mode index, .

The angular rotation, experienced by the intensity profile,
as the ring-slit field propagates in the near-field (P;) along the
z-axis, is then given by

( a ) AI:I:%-Slit ( b)
i i

0.6} |t 10
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0L Ry=2
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14
Fig. 3. (Color online) (a) Density plot and (b) cross-sectional plot of
the ring-slit aperture described in Eq. (3) for the following param-
eters: ring-slit radius, Ry, = 2, ring-slit width, A = 0.5, and gradient,
n = 10 (the units are arbitrary).
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d¢ k2z - klz
dzy 20 @
During the propagation of the ring-slit field, the longitudinal
wave vectors, ki, and ks, both propagate in the same direc-
tion, parallel to the z-axis, which is illustrated in Fig. 1. This
results in no angular rotation existing, as the ring-slit field
propagates,

9 _y

dz 0

®)

In determining the field in the region Ps, the region in which
the field transitions from near- to far-field, the Fresnel diffrac-
tion integral of the field at the ring-slit aperture (Eq. (4)) can
be calculated

P gikz 27 R3+% P1
p) -
A2 (r,¢,2) MzA [eﬁ% A (r,¢,2)
k
X exp(ii(r% +72-2rr; cos(¢; - (f)))?ldrldqﬁl (©))

and is known to produce the Bessel-Gauss function [14,15].
Each of the two ring-slits (the inner having an azimuthal mode
index of [ and the outer, -I) will contribute to a Bessel-Gauss
beam and the resulting superposition of the field in region P,
can be described as
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green and red rays. As the field propagates further towards
the far-field (P3), the overlap in the field, which consists of
both ring-slit contributions, increases, resulting in the angular
rotation becoming more evident.

To determine the far-field of the ring-slit aperture (Ps),
whose transmission function ¢(r, ¢) is given in Eq. (1), the
Kirchoff-Huygens diffraction integral is used

_i (o R2+% . k .
APs(r.,2) = T;A /1;‘-% t(r, ;) exp [zg(l _;)721]
krry

X exp [—zT cos(¢p; — gb)}rldrldgbl. (12)

The contribution resulting from the inner and the outer ring-
slits produces the following superposition, which describes
the far-field of the ring-slit aperture [9]

APy (r, ¢.2) = J,(ky,7) exp(ilg) exp(ik,.2)
+ J_i(ky7) exp(-ilp) exp(iky.2).  (13)

The intensity of the superimposed Bessel field is determined
with the following relationship: I = AA*, resulting in

IP3 (Ta ¢, z) [S3 le (klr’r) + J%L(’Czﬂ’)
+ 2Jl (ker)J—l(kZTT) COS(’{JIZZ - kzzz + 2[(/))

AP (r, ¢, 2) = ABGL (1, b, 2) + ABP(r, p, 2)

1 exp[i(kz - kg—kz - CD(z)) - (

2,

L+ (2) A [i(ke -5 - 0@) - (5

(14)
P - 2}13’(;)) (rz + ('%)2) + ik 2 + il(ﬁ}J L(1+i:c(1;;z,.))+ ) (10)
s aiia) (2 + (%)) + oz = (i)

The functions w(z), R(z) and ®(z) denote the beam size,
radius of curvature and Gouy phase, respectively, and take
on the standard Gaussian beam propagation form. J; is the
lth order Bessel function and k, denotes the transverse wave-
number, associated with each of the two Bessel beams,
namely 1 and 2, and is determined as follows: k, = k sin a.

Similarly the intensity in the region of P, can be determined
by the following relationship: I = AA* (which has been
neglected here, as the equation is very cumbersome) and
the angular rotation results in

dp ks, — ki,

= (1D
The wave vectors in this region all point in opposite directions
resulting in a non-zero rotation rate. However the only section
of the field which experiences this angular rotation is the sec-
tion which consists of the contributions from both ring-slits,
which visually means: the sections which consist of both

Since the annular rings generating the superimposed Bessel
beams are arbitrarily thin and close to one another, we can
assume the transverse wavenumbers to be equivalent (i.e.,
ki, ~ ko = k), resulting in J;(ky,7) ~J;(ks,r) = Ji(k,7). By
implementing the Bessel function identity, J_;(ks,7r) =
(=D (ks,7), the intensity in Eg. (14) can be simplified to
produce

IPs(r,¢,2) ZJ%(kTT)((—l)l +1
+2(-1)! cos(kypz — ko2 + 21)). (15)

The intensity profile for the superimposed Bessel beams, gi-
ven above in Eq. (15), illustrates that it is modulated in the
azimuthal coordinate, ¢, by the function cos(2l¢). Therefore,
the number of intensity maxima is twice the order ! of the two
Bessel beams, resulting in a superposition of a lth order Bessel
beam, with its mirror image, producing an intensity pattern
having 2|l| intensity maxima, or “petals”, arranged on the
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circumference of the set of Bessel rings. This intensity profile
experiences an angular rotation, as the field propagates along
the z-axis, given by

@ — k2z _klz

dz 2 (16)

Since the longitudinal wave vectors all propagate in differ-
ent directions in the far-field and that the field contributions
from the two ring-slits completely overlap (evident in Fig. 1),
the angular rotation is non-zero and the entire field at Ps
experiences the rotation.

3. EXPERIMENTAL METHODOLOGY

The experimental setup used to generate superpositions of
higher-order non-diffracting Bessel beams, for the investiga-
tion of the near-field ring-slit aperture, is denoted in Fig. 4.
Superimposed Bessel beams were generated by illuminating
a ring-slit hologram (an example is given next to LCD; in
Fig. 4) with an expanded Gaussian laser beam (1 ~ 532 nm).
The Gaussian beam was expanded through a 3 x telescope
and directed onto the liquid crystal display (LCD) of a SLM
(HoloEye, PLUTO-VIS, with 1920 x 1080 pixels of pitch
8 um and calibrated for a 2z phase shift at ~532 nm) labeled
LCD;.

The LCD was addressed with a hologram, similar to Dur-
nin’s ring-slit aperture [12], however since a phase-only
SLM was used, an amplitude ring-slit was created digitally
by encoding the area surrounding the ring-slit (the area which
must not transmit any light) with a “checkerboard” pattern.
By assigning alternating sets of pixels in the ring-slit holo-
gram with phase values that are out of phase by z, the light
reflected from LCD; is scattered from its initial propagation
axis [16,17].

Since the “checkerboard” allows one to mimic an amplitude
mask with a phase-only SLM, the azimuthal phase within the
ring-slit can be addressed simultaneously in a single hologram.
Assigning a single ring-slit with an azimuthal phase that varies
from zero to 2z n times, a nth order Bessel beam will form in
the far-field. If the ring-slit is divided into two ring-slits, where
the azimuthal phase in each ring-slit varies in opposite direc-
tions (similar to that in Figs. 1 and 4) a superposition of two
oppositely-handed Bessel beams will be generated. This is il-
lustrated at the Fourier plane, P3, of the ring-slit hologram gi-
ven in Fig. 4. Here, the phase within the inner ring-slit varies
three times in a clockwise direction (I = 3) and three
times in a counterclockwise direction (/e = —3) in the outer
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ring-slit, thus transforming the initial Gaussian beam into a
superposition of two Bessel beams, of orders [ = 3 and -3,
denoted by the “petal” structure (P; in Fig. 4).

More examples of ring-slit holograms are given in the top
row of Fig. 5. It is not shown in the holograms, presented in
Figs. 4 and 5, but in conducting the experiment, a blazed grat-
ing was added to the holograms to separate the undiffracted
and diffracted components reflected from LCD;. A diaphragm,
D, was placed at the focal plane after lens Ls to select only the
first diffraction order and neglect all the other unwanted
diffraction orders.

Apart from positioning a 10 x objective and a CCD camera at
the Fourier plane, P3, of lens Ls, to record the non-diffracting
superimposed Bessel beam, a second lens, L,, was placed a fo-
cal length away from the Fourier plane of lens, Lg, to relay the
field at LCD; to plane P;. This allowed us to investigate the
structure of the ring-slit field (evident at P;) which produces
a “petal” structure in the far-field (illustrated at Ps). The pro-
pagation of the ring-slit field, relayed to plane, P;, was inves-
tigated by positioning a CCD camera on arail and recording the
field from plane P; to plane P, (a distance of two focal lengths
from lens, L,).

In the ‘results’ section of this paper, we will investigate the
fields produced at the three different planes (P;, Ps, and P3)
for various ring-slit holograms, as well as study the evolution
of the field from plane P; to plane P,, for a particular ring-slit
hologram. For convenience we will refer to the Fourier trans-
form of the ring-slit hologram (i.e., the field formed at plane
P3) as a “petal”-field. The field at the ring-slit hologram (i.e.,
the field at plane P;), we will term the “singularity”-field and
that formed at plane P, (a distance of 2f from lens L,) will be
termed as the “spiral”field.

4. RESULTS AND DISCUSSION

All the digital ring-slit holograms, used in the experiment (de-
picted in Fig. 4), are given in the first row of Fig. 5. The first
ring-slit hologram, Fig. 5(1a), consists of a single ring-slit con-
taining an azimuthal phase of [ = +3 and has the following
dimensions (in pixels): R; = 180, A = 20. The next five ring-
slit holograms, Fig. 5(1b)-5(1f), all consist of two ring-slits,
having oppositely varying azimuthal phases, varying in azi-
muthal order from lj,e; = -1 t0 =5 (ljyper = +1 to + 5), re-
spectively. The ring-slit holograms in Figs. 5(1b)-5(1f) each
have the following dimensions (in pixels): R; = 180, Ry = 190,
A = 10. The last two ring-slit holograms [Fig. 5(1g) and 5(1h)]
are divided into three and four ring-slits, respectively, having
the following azimuthal orders Il = -3, lnigge =2,

louter = ]-) and linner = _27 lmiddlel = _]-7 lmiddleZ = 2) louter =1

Fig. 4. (Color online) Schematic of the experimental setup for investigating the field formed by a ring-slit hologram, as well as the propagation and
Fourier transform of such a field. L: lens (f; = 25 mm; fy = 76 mm; f3 = 100 mm; and f, = 100 mm); M: mirror; LCD: liquid crystal display; D:
diaphragm; CCD: CCD camera. The planes of interest are marked Py, Ps, and Ps. Pj is the Fourier plane of the ring-slit hologram; P; is the relayed-
field (in both phase and amplitude) at the ring-slit hologram; and P, occurs a distance of 2f after L,.
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Fig. 5. (Color online) First row: ring-slit holograms addressed to LCD;. A zoomed-in section of three and four ring-slits are depicted as inserts (1g)
and (1h). Second and third rows: experimentally produced and theoretically calculated fields produced in the Fourier plane (i.e., plane Ps), re-
spectively. Fourth and fifth rows: experimental and theoretical fields, respectively, produced at plane P, (i.e., the “singularity”-fields). The white “X”
marks the singularities. Sixth and seventh rows: experimental and theoretical fields, respectively, produced at plane P, (the “spiral’-fields).

The dimensions (in pixels) of the ring-slits in Fig. 5(1g) and
5(1h) are: R; =180, R, =190, R3 =200, A =10, and
R, =168, R, = 176, Ry = 184, R, = 192, A = 8.

The far-fields of the ring-slit holograms, presented in the
first row of Fig. 5, are shown in the second row of Fig. 5, ac-
companied with their theoretical predictions in the third row
[calculated with the use of Eq. (13)]. For a single ring-slit, con-
taining an azimuthal index of I = +3, the field produced in the
Fourier plane, Ps, is a third-order Bessel beam. In the case that
the ring-slit hologram consists of two ring-slits, where the or-
ders of the two azimuthal phases are of equal but opposite
handedness, a “petal”-structure is produced, where the num-
ber of “petals” is denoted by 2|l|, as expected from theory [9].
It is interesting, to note from previous investigations [9,11],
that even though these fields have a global OAM of zero, their
cross-sectional intensity distribution rotates as the “petal’-

field propagates, due to the differing radial wave vectors.
Their rotation rate, which is dependent on the differing radial
wave vectors and the azimuthal index, [, is given in Eq. (16).
The fields produced in the Fourier plane, Ps, for the ring-slit
holograms, contained in Figs. 5(1g) and (1h) are given in
Figs. 5(2g) and (2h), respectively. These two ring-slit holo-
grams consist of three and four ring-slits, respectively, and
produce a non-symmetric superposition of higher-order Bes-
sel beams. Even though it is difficult to intuitively predict how
the field will manifest in the Fourier plane for these two cases,
our experimentally recorded fields (Figs. 5(2g) and 5(2h)) are
in very good agreement with the theoretically calculated fields
(Figs. 5(3g) and 5(3h)). These two fields are calculated by
extending the amplitude distribution, given in Eq. (13), to
represent a superposition of three and four Bessel beams,
respectively.

Fig. 6.

louter =

Distance (pixels)

(Color online) (a) Experimentally recorded field at plane P; for a ring-slit consisting of the following azimuthal phases: ., = +3 and
-3. Theoretical prediction is given as an insert. The red, dashed ring marks the line for which the intensity profile is plotted. (b) The solid

black curve is the experimental intensity profile and the red dashed curve is the theoretical intensity profile, cos (2l¢).
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Fig. 7. (Color online) Experimental intensity profiles of the field cap-
tured at evenly spaced intervals from plane P; to plane P,. The dis-
tances from plane P; are given as (a) 0 mm, (b) 10 mm, (c) 20 mm,
(d) 30 mm, (e) 40 mm, (f) 50 mm, (g) 60 mm, and (h) 70 mm. The white
arrows illustrate the movement of a selected singularity. Inserts are
given for the theoretical predictions.

The optical field produced at the plane of the ring-slit holo-
gram (i.e., at the plane of LCD,) was relayed to plane Py, where
all the other diffraction orders had been removed through the
use of the diaphragm, D, and experimental images are shown in
the fourth row of Fig. 5. It is interesting to note that when the
ring-slit is addressed with a single azimuthally varying phase,
no singularities appear in the ring-slit field. However, by intro-
ducing a second ring-slit (having a different radial wave-vector)
singularities appear in the ring-slit field, where the number of
singularities is denoted by 2|| (the same for the number of “pe-
tals”). The experimental “singularity”-fields (Figs. 5(4a)-5(4f)),
produced at plane P, are in good agreement with those pre-
dicted theoretically, using Eq. (4) (with n = 2) and depicted
in the fifth row of Fig. 5 [Figs. 5(5a)-5(5f)]. By increasing
the number of ring-slits to either three or four, it becomes very
difficult to individually locate each of the singularities in the
“singularity”-field as some of them start to overlap. This is evi-
dent, experimentally, within the yellow rings in Figs. 5(4g) and
5(4h) and theoretically in Figs. 5(5g) and 5(5h). Since it is
difficult to locate the singularities in the “singularity”-field,
when the number of ring-slits is increased, we suggest using
interferometric techniques to aid the categorizing of the
singularities [18].

It is well-known that the intensity of the “petal”-field is
dependent on the function cos(2l¢), evident in Eq. (15). This
cosine behaviour, as a function of the azimuthal angle, of the

Fig. 8. (Color online) First column: ring-slit hologram applied to
LCD;. Second column: corresponding optical fields for the ring-slits.
The white arrows mark the locations of the singularities. Third col-
umn: Fourier transform of the ring-slit hologram. Fourth column: cor-
responding “spiral”-field, produced at plane P,. white arrow marks the
handedness of the “spokes.” Theoretical predictions are accompanied
as inserts.
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Fig. 9. (Color online) Video clip containing experimental images for
the field occurring before and after the Fourier plane for an incoming
“spiral”-field produced at plane P, (Media 1).

intensity profile is also present in the “singularity”-field. This
is evident in Fig. 6 where the intensity profile, as a function of
the angular position in the field, is plotted for the “singularity”-
field, for the case of ljyne, = +3 and loyer = —3. It agrees well
with the intensity profile plotted for the theoretically pre-
dicted “singularity”-field, given in Eq. (6), illustrating that
the intensity maxima of the near- and far-field both depend
on the function cos(2i¢).

Propagating the field a distance of one focal length from
plane P; to plane P, we see that the annular structure contain-
ing singularities transforms into “spirals”. The experimental
fields produced at plane P for each of the eight ring-slit holo-
grams are given in the sixth row of Fig. 5 and accompanied with
theoretical predictions in the seventh row. In the case of a sin-
gle ring-slit, having a non-zero azimuthal mode index, the “spir-
al”-field appears as a diverging version of the “singularity”-field.
For the five holograms, each consisting of two ring-slits, having
opposite azimuthal orders, there are 2|I| “spokes” in the “spir-
al”field, evident in Figs. 5(6b)-5(6f). Introducing more ring-
slits into the hologram results in the “spokes” in the “spiral”-
field to merge, making it difficult to resolve individual “spokes”
(evident within the yellow rings in Figs. 5(6g), 5(6h), 5(7g), and
5(7h)).

The propagation of the “singularity”-field at plane P; to the
“spiral”-field (at plane Py) was recorded and selected experi-
mental images of the field at intervals along its propagation
are given in Fig. 7. It is interesting to note that even though
arotation in the intensity profile for the “petal”-field (in the vi-
cinity of plane Ps, i.e., the far-field) exists as the “petal”-field
propagates, no rotation in the “singularity”-field or “spiral”-
field (i.e., near-field) exists as the field propagates. This is in
accordance with the theoretical prediction given in Eq. (8),
where the rotation rate for such a field is determined to be non-
existent, but becomes more evident the closer the field
propagates to the far-field.

Switching the handedness of the azimuthal phases in the
two ring-slits, is known to cause the “petal”-field, produced in
the Fourier plane, P3, to rotate in the opposite direction [10].
Even though the “spiral”-field, produced at plane P5, does not
rotate as it propagates, swapping the handedness of the
azimuthal phases (within the two ring-slits), results in the
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direction of the “spokes” to switch from clockwise to counter-
clockwise (and vice versa). This is evident in the last column
of Fig. 8 and is in good agreement with the theoretical
prediction.

Apart from investigating the appearance of the field pro-
duced by the ring-slit hologram at different propagation
planes, the far-fields of the “spiral”-field (plane Ps) was also
investigated and is presented as a media clip in Fig. 9. No ro-
tation in the intensity distribution of the field before and after
the existence of the non-diffracting “petal”-field is evident.
The “spokes” compresses towards the propagation axis, over-
lapping and forming a non-diffracting “petal”-field, which ex-
hibits a rotation in its intensity distribution as it propagates,
but then the “spokes” expand outwards reconstructing the
“singularity”-field.

5. CONCLUSION

In this work we have presented a class of beams which exhibit
a rotation in their intensity profile in the far-field, but exhibit
no rotation in the near-field. These beams are superimposed
higher-order Bessel beams which are produced by encoding
multiple azimuthally varying phases at different radial posi-
tions within a ring-slit aperture. We studied the field produced
at the plane of the ring-slit aperture, as well as at various
planes propagating from the ring-slit aperture and witnessed
that the field transforms from an annular structure (embedded
with singularities) to a “spiral” structure, consisting of
“spokes” situated around a ring. The fields produced at the
plane of the ring-slit aperture and at a distance of f from
the ring-slit aperture are in good agreement with those calcu-
lated theoretically. Since Bessel beams, and especially super-
positions of Bessel beams, are widely used in optical tweezing,
understanding the structure of the field at planes other than
the Fourier plane is necessary. The ring-slit field, embedded
with singularities, can be used to trap low-index particles at
set distances on the circumference of a circle. By adjusting the
order, I, of the superimposed Bessel beams, one can control
how many singularities are present in the ring-slit field, used
to trap low-index particles. The ring-slit aperture dimensions
can also be adjusted so as to control the size of the ring-slit
and the distance between the singularities.
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