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Abstract: We propose a new method to determine the wavefront of

a laser beam based on modal decomposition by computer-generated
holograms. The hologram is encoded with a transmission function suitable
for measuring the amplitudes and phases of the modes in real-time. This
yields the complete information about the optical field, from which the
Poynting vector and the wavefront are deduced. Two different wavefront
reconstruction options are outlined: reconstruction from the phase for scalar
beams, and reconstruction from the Poynting vector for inhomogeneously
polarized beams. Results are compared to Shack-Hartmann measurements
that serve as a reference and are shown to reproduce the wavefront and
phase with very high fidelity.
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1. Introduction

Wavefront reconstruction of optical fields has become an important task in many domains of
optics: astronomy, for example, is howadays inconceivable without wavefront measurements.
In combination with deformable mirrors for correction of distorted wavefronts, wavefront re-
construction has become a fundamental part of adaptive optics systems that enable high quality
terrestrial observations [1]. Correction and control of wavefronts is no less essential in the fields
of microscopy, such as 2-photon microscopy [2, 3] and confocal microscopy [4], and ophthal-
mology, such as optical coherence tomography [5] and scanning laser ophthalmoscopy [6].
Another field of application for wavefront control is laser material processing, in particular
processes that require a high beam quality, such as laser cutting and drilling, often performed
by fiber lasers [7, 8]. Concerning the wavefront measurement itself there exists a variety of
different sensor types, including laser ray tracing [9], pyramid sensors [10], interferometric ap-
proaches [11-13] and the widely used Shack-Hartmann sensor (SHS) [14]. Recent advances
have seen the use of computer-generated holograms (CGHS) to encode certain aberrations to
determine the Zernike coefficients [15], the use of ring-shaped phase masks for decomposition
in azimuthal modes [16], and non-linear approaches for high intensity light pulses [17].

In this work we focus on a new approach to wavefront and phase measurement based on the
correlation filter method which makes use of an appropriate computer-generated hologram for
complete modal decomposition of the light [18, 19]. In this method the laser beam under test
illuminates the hologram, which performs the decomposition into a given set of modes (e.g.,
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modes of a fiber or Laguerre-Gaussian modes of free space) due to a specific transmission
function.In the far field diffraction pattern of the CGH, amplitudes and phases of these modes
are measured yielding the complete information on the optical field. We extend this method
and show that arbitrary optical fields can be reconstructed, including the accurate deduction of
the mode content and the wavefront, and illustrate its robustness by measuring the phase and
wavefront of a variety of laser beam classes, including vector beams and singular beams.

2. Modal decomposition

Modal decomposition is an elegant approach to characterize optical fields, where the measure-
ment of a set of corresponding modal expansion coefficients yields amplitude and phase of
the modes that compose the beam. While the concept is well known, only recently has it been
shown to be viable in practical setups using the correlation filter method [18, 19]. For the ben-
efit of the reader we briefly review the core concepts here. Physically, discrete modes appear
in systems such as laser resonators and optical fibers, whereas shape and number of modes de-
pend on the characteristics of the underlying system (e.g., resonator length or refractive index
distribution of the fiber etc.). However, independent of the beam source, every optical field can
be decomposed into a set of modes according to [18]:

N
un =S awi(). 1)
1=1

with r = (x, y) the spatial coordinates, = p€2% the complex expansion coefficielt; (r) =
Yi(r) g the I mode with amplitudep;, intermodal phase differencésp, (phase difference
between two modes, with one mode acting as a reference), polariegtaordN the number of
modes (which may count to infinity). Since the sum of the modes represents the entire optical
field, the intensity and phase distributions of this field are easily computednyie: |U(r)|?
and ®;(r) = argU;(r) for each vector componeht;. To perform the modal decomposition
into a given set of modég, (for example modes of a fiber or Laguerre-Gaussian modes of free
space) and to determine the set of coefficientss described by Eq. (1), is the main task of
the correlation filter method. Note that the modgsare calculated prior to any experiment and
are thus known (an overview of the description of modes can be found in [20]). This enables
the representation of the optical fidlllby a one-dimensional set of coefficiemis since the
spatial information is stored in the modal fielgis

The centerpiece of the technique is a computer-generated hologram (CGH) that is illumi-
nated by the beam. The diffraction pattern of the hologram is recorded in the far field and the
amplitudes and phases of all modes are determined by measuring the intensity at the optical axis
of the pattern, i.e., measuring the correlation signal of the incoming beam with the function in-
scribed in the hologram. This is the well-known measurement of the inner product (cf. [18,21]).
The type of that transmission function depends on the quantity to be measured. Accordingly,
to extract the amplitude of one specific mode, the transmission function is chosen to be the
conjugate complex of the respective mode field [18, 21]:

Ti (r) - wl*(r) ) (2

where the asterisk denotes complex conjugation. Using this transmission function, the intensity
on the optical axis in the Fourier planellf’sD p|2, which is the power of modgy. To measure

the intermodal phase differenéa, of a modey to a chosen reference modg (mostly the
fundamental mode, but in general arbitrary), two transmission functions are necessary, each
representing an interferometric superposition of the two mode fields [18]:

T = W0+ Wi (0]/v2, T = [gg(r) + iy (n)] /v2 3)
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Again, from the correlation of the incoming field with the above transmission functions, result-
ing in intensities!S" O p2 + p? + 2pop cosAP; (corresponding tds") and1£°S 0 p2 + p? +

2popi sinA¢y (corresponding td;**) on the optical axis in the Fourier plane, the intermodal
phase differencAg, is calculated unambiguously according to [18]:

215 p? 931 @

A¢ = —arctan| ———————
” 217% — p? ~ g

To measure modal amplitudes and phaseA¢, simultaneously from one diffraction pattern
we use angular multiplexing. Accordingly, the final transmission funcligm of the hologram
is a superposition of all single transmissions functidpg) (for each modal amplitude and
sine and cosine of the phase), each modulated with a particular carrier fredietacgchieve
spatial seperation of the information in the Fourier plane [18]:

3N-2

z Ta(r) ko’ (5)

Using the angular multiplexing, all amplitudes and phases can be measured simultaneously,
enabling a high measurement rate of currently 30 Hz.

For scalar, i.e., linearly polarized beams, it is sufficient to image the beam plane of interest
to the CGH. In the general case of arbitrarily polarized beams, a complete description of the
optical fieldU is provided by the analysis of the cartesian field compondptndUy, includ-
ing the proper phase differenéebetween them. This can be done by measuring the Stokes
parametersy ... S of the beam, which necessitates six (assuming completely polarized light)
modal decompositions with a quarter-wave plate and a polarizer in appropriate orientations in
front of the hologram [22, 23]:

S [Ux|? + Uy |2 1(0°) +1(90°)

S— Sl — |UX|27|UY|2 — (OO) I( ) (6)
S| 7 |2Jud|Uycoss |(45°) —1(135) |
S 2|Uy||Uy|sind 13/a(457) =1, /4(135)

wherel (a) is the measured (respectively reconstructed) intensity behind the polarizer at angu-
lar orientationsy = 0°, 457, 907, 135’ andl, /4(a) denotes two additional measurements with
the polarizer placed at = 45°, 135 and a preceding quarter-wave plate. Having performed
the depicted six modal decompositions, the optical field, including the polarization properties,
is completely known [24].

3. Wavefront reconstruction

As mentioned in the previous section, the entire optical field is accessible using a CGH in com-
bination with standard polarization optical components. This equally means that the Poynting
vectorP is computable from [22]:

1 a1 i .

P(r) = ED[E(r) x H*(r)] = ED w—goe (N[O xU(r)] xU*(r) |, @)
wherew is the angular frequencyy the vacuum permittivitye the permittivity distribution,
andE andH are the electric and magnetic field respectively, that both obey the decomposition
of Eqg. (1). On the right-hand side of Eq. (H,was assumed to be the vector figéldandE
was calculated according to Maxwell’s Equations. Note that alternatively the vector field could
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have been chosen to be the electric field, which yields the same Poynting vector. The wavefront
is then usually defined as the continuous surface that is normal to the time average direction of
energy propagation, i.e., normal to the time average Poynting Vie¢R%, 26]:

w(r,z) L P(r,z), (8)

wherez denotes the position of the measurement plane. Since there might be no continuous
surface that fulfills this condition, the wavefront can be more generally defined as the continu-
ous surface that minimizes the power density weighted deviations of the direction of its normal
vectors to the direction of energy flow in the measurement plane [25, 26]:

Pt
‘P| ’ — D'[W
[Pl
whereP; = [R, R, 0]'. In the simple case of scalar, i.e. linearly polarized, beams the wavefront
is equal to the phase distributi@v(r) of the beam, except for a proportionality factor [26]:

2
dA— min, 9)

_A
2

It is important to note that this expression is only valid as long as there are no phase jumps or
phase singularities, because the wavefront is always considered to be a continuous surface.

w(r)

a(r). (10)

4. Measurement setup

The experimental setup as schematized in Fig. 1 consisted of a beam source (for example a
laser resonator or an optical fiber) to generate an aberrated wavefront, and the analyzing sys-
tem, comprised of the modal decomposition branch, including CGH and two cameras, and an
optional Shack-Hartmann sensor (SHS) for comparison of results. To decompose the optical
field with the aberrated wavefront into a well defined set of modes regarding number and size,
as well as to achieve arbitrary mode superpositions and polarization properties, the beam source
was chosen to be an optical step-index fiber (core diaméetenm) in the first instance, excited

with a Nd:YAG laser A =1064 nm) and guiding three fiber modes. Hence, the aberrated wave-
front was generated at the fiber end face by multimode interference. The reliability of the modal
decomposition approach was proved by comparing the results to those of a Shack-Hartmann
wavefront sensor. A beam splitter (non-polarizing) was used to analyze the beam with the wave-
front sensor and with the modal decomposition setup at the same time. Two different 4f-setups
with magnifications off 3/ fL1 = 750mm/4mm= 188 andf »/f 1 = 375mm/4mm= 94,
respectively, relay imaged the plane of the aberrated wavefront (here end face of the respective
fiber) to the wavefront sensor and to the CGH (cf. Fig. 1), with the focal lengths chosen that
first, the beam matched the design radius of the hologram, and second, the beam was well sam-
pled by the microlens array of the wavefront sensor. The wavefront sensor consisted of 69x 69
microlenses with an array pitch of 0.108 mm. Via a second beam splitter (non-polarizing), the
fiber end face was simultaneously imaged onto the CGH and a CCD camera for direct recording
of the near field intensity (CCD cf. Fig. 1). Thereby, a polarizer and an optional quarter-wave
plate were used to perform the Stokes measurements, whereas the CGH performed the modal
decomposition for each polarization component. The hologram diffraction pattern of first order
was observed with a second CCD camera (GdDthe far field of the hologram using a single

lens in a 2f-setup fg, = 180mm), and was used to determine the modal powers and phases
of the beam for the scalar projection provided by the pair of quarter-wave plate and polarizer.
Note that for a linearly polarized beam, quarter-wave plate and polarizer would not have been
necessary. The hologram itself was written to either a commercial pixelated phase-only spatial
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Fig. 1. Scheme of the measurement setup: WF aberrated wavefront to be relay imaged
onto the computer-generated hologram (CGH) and the Shack-Hartmann wavefront sen-
sor (SHS), MO microscope objectives, QWP quarter-wave, P polarizer; lenses, FL
Fourier lens, BS beam splitter, Cgp CCD cameras, M mirror.

light modulator (SLM, Holoeye Pluto) [19] or a customized pixelated solid amplitude-only fil-
ter fabricated via laser lithography [18]. Both methods are shown to yield accurate results in
the following.

5. Calibration of the setup

To ensure that both measured wavefronts, from modal decomposition and Shack-Hartmann
measurement, are solely created by the fiber beam itself and not influenced by the optical setup
(lenses, beam splitters, etc.) some kind of calibration is necessary. To avoid impact of especially
defocus and to ensure proper imaging of the plane of the fiber end facet to wavefront sensor
and CGH, the focal length of each used lens was measured with the wavefront sensor, entering
the lenses with a collimating beam and using the Zernike coefficient of defocus to determine
the focal length and principal plane. Placing the lenses at the proper distances the experimental
setup as a whole was calibrated using the fundamental mode of the fiber, which has a flat
wavefront. Accordingly, the setup was adjusted to result in a wavefront as flat as possible in
the detection planes. A pure fundamental mode beam at the fiber end face was guaranteed by
strong fiber bending, which causes all possibly excited higher order modes to experience severe
losses [27]. Fundamental mode illumination on the CGH is used as well to define the optical
axis and to align the hologram. The outcome of this procedure is shown for one example in
Fig. 2. Figure 2(a) and (c) depict the measurement results of the Shack-Hartmann wavefront
sensor. As can be seen, the recorded wavefront is very flat with a maximum deviation from
the plane below 0.09m, which is less thai /10. Additionally, the intensities measured with

the wavefront sensor (Fig. 2(a)) and with the CCD camera (Fig. 2(b)) are in good agreement,
which is, alongside with the flat wavefront, another proof that the optical setup itself adds
no severe aberrations. The modal decomposition results in a modal spectrum (Fig. 2(d)) with
a fundamental mode power of 99% of total power, which demonstrates the pureness of the
reference beam.

6. Scalar beams

After aligning the hologram and the wavefront sensor with the fundamental mode, the position
of the fiber seed beam with respect to the fiber front face was shifted to excite some higher
order modes in the fiber. The experiments were done with a step-index fiber with core diameter
of 7.7um and a numerical aperture of 0.12. Hence, the fiber guides three modes at 1064 nm.
As the CGH we used a solid amplitude-only diffractive device, fabricated via laser lithography,
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Fig. 2. Fundamental mode illumination of CGH and wavefront sensor for calibration. (a)
Intensitymeasured with the wavefront sensor. (b) Intensity measured with the CCD cam-
era. (c) Wavefront measured with the wavefront sensor (scatarin (d) Modal power
spectrum (insets depict respective mode intensities).

for all fiber experiments [18]. To perform scalar experiments a polarizer was placed between
the fiber end face and the first beam splitter that divides the beam for analysis with CGH and
wavefront sensor. This procedure enables the reconstruction of the wavefront from the phase
as described by Eq. 10, which is beneficial because no measurement of Stokes parameters is
necessary. In this way, we reconstructed the wavefront with up to 30 Hz using the CGH, only
limited by the maximum camera frame rate.

Figure 3 depicts the results for a fiber beam with higher order mode content. According to
the measured modal power spectrum (Fig. 3(c)) the beam consists of 44% fundamental mode,
18% mode 2 and 38% mode 3 (modal intensities depicted in insets of Fig. 3). Figure 3(a) and
(b) show with wavefront sensor measured intensity and from the modal decomposition recon-
structed intensity (according to Eqg. (1)). Both intensities are in good agreement, which indicates
the absence of setup induced aberrations and proves the reliability of the modal decomposition.
The wavefront of the beam is measured with the Shack-Hartmann sensor (Fig. 3(d)) and using
the modal decomposition approach. In the latter case, for the scalar beam under test, both re-
construction options, from phase (Eg. (10), Fig. 3(e)) and minimization (Eqg. (9), Fig. 3(f)) are
demonstrated. All wavefront results are in good agreement concerning shape and scale. Obvi-
ously in this case where there are no phase jumps or singularities, Eg. (10) is valid for wavefront
reconstruction. Since aberrations possibly added by the optical setup would have given rise to
deviations in the wavefronts, significant influence of these aberrations can be excluded. Note
that a wavefront reconstruction using the CGH could not incorporate such aberrations, when
the decomposition is done in fiber modes only. As a consequence, only aberrations emerging
from mode superpositions itself can be detected in that case (cf. section 9 for a more general
approach). Additionally, it is important to notice that the wavefront reconstructed with the CGH
(Fig. 3(e) and (f)) is artificially truncated to values where the corresponding intensity exceeds
5% of its maximum value, to enable better comparison with the Shack-Hartmann measurement.
Actually, using the CGH, wavefront and phase are reconstructed in the entire frame and are not
restricted to the depicted area.
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Fig. 3. Wavefront reconstruction for a higher order mode scalar beam. (a) Intensity meas-
uredwith the wavefront sensor (SHS). (b) Reconstructed intensity (inset depicts directly
measured intensity with CGI). (c) Modal power spectrum (insets depict mode intensities).
(d) Wavefront measured with the Shack-Hartmann sensor (scal@)n(e) Wavefront de-
termined from the phase reconstruction according to Eq. (10) (scaim)n(f) Wavefront

from the minimization according to Eq. (9) (scaletim).

7. Vector beams

To reconstruct vector beams, i.e., beams with in general spatially varying polarization, requires
a higher number of CGH-measurements. To incorporate the vector nature of the beam, the po-
larization properties need to be determined to correctly reconstruct the wavefront. This is done
by a combination of a classical measurement of Stokes parameters and a modal decomposi-
tion with the CGH. Thereby the knowledge of polarization properties accompanied with the
modal information completely characterizes the vector field [24]. The experiment is performed
by placing a quarter-wave plate and a polarizer in front of the hologram and performing six
modal decompositions according to Eq. (6). This yields the field compobgmatsdUy as well

as their relative phase differendeand hence, the entire optical field, including the Poynting
vectorP. The wavefrontv is infered according to Eq. (9) by numerically minimizing the di-
rection deviations of Poynting vector and wavefront normal vectors, weighted with the power
density|P|. Results of this procedure are depicted in Fig. 4. In this example, the beam con-
sists of 63% fundamental mode, 23% mode 2 and 14% mode 3 as shown in Fig. 4(c) (modal
powers of x- and y-component added up). As seen from the intensity plots Fig. 4(a) and (b),
the beam is shifted slightly off-axis due to modal interference. Measured intensities from both
the Shack-Hartmann (Fig. 4(a)) and the CGH reconstruction (Fig. 4(b)) are in very good agree-
ment. Regarding the wavefronts, results from direct Shack-Hartmann measurement (Fig. 4(d))
and from minimization based on Eq. (9) (Fig. 4(f)) correlate very well. However, since there is
no phase of the entire vector field (each component has its own phase) in this case, there is no
way to determine the wavefront according to Eq. (10).
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Fig. 4. Wavefront reconstruction for a higher order mode non-scalar beam. (a) Intensity
measuredvith the wavefront sensor (SHS). (b) Reconstructed intensity (inset depicts di-
rectly measured intensity with CGR (c) Modal power spectrum. (d) Wavefront measured
with the Shack-Hartmann sensor (scaleuim). (e) Phase distribution is not well defined.

(f) Wavefront from the minimization according to Eq. (9).

8. Beams with phase singularities

It is pertinent to apply the technique to singular beams: beams containing optical vortices. An
interesting example of a such a beam is a scalar donut beam, because of its exceptional phase
distribution. Such a donut beam is formed by a coherent superposition of the two higher order
fiber modes (cf. insets of Fig. 5(c)), each with nearly equal content and a relative phase differ-
ence ofrt/2. The fundamental mode is absent in this special case. The described superposition
forms a phase singularity in the center of the beam with a corresponding zero intensity point.
Results for such a superposition are depicted in Fig. 5. The illustrated example was achieved
by tuning excitation position of the seed laser with respect to the fiber, mostly to obtain equal
power of the higher order modes and zero power for the fundamental. The relative phase dif-
ference necessary to create the ring-shape at the fiber output was tuned by bending the fiber.
Again, the intensity distributions recorded with Shack-Hartmann sensor and reconstructed with
the CGH are depicted in Fig. 5(a) and (b), next to the modal power spectrum Fig. 5(c), reveal-
ing nearly equal power in mode 2 and 3. The interesting part is now to compare the wavefront
results (Fig. 5(d)-(f)). Since the example depicts a scalar beam with a well defined phase dis-
tribution, it is tempting to infer the wavefront according to Eq. (10). As expected the phase
distribution, and following Eq. (10) also the wavefront, is a spiral with a singularity in its center
(Fig. 5(e)). However, comparing this result to those achieved by the Shack-Hartmann sensor
(Fig. 5(d)) and the reconstruction from minimization (Fig. 5(f)), it appears that both wave-
fronts are flat (wWax < 0.1um). This deviance is actually based on the problem of defining
the wavefront as a physical quantity itself. Other than the phase, the wavefront is connected to
the Poynting vector [26]. It is known that the Poynting vector spirals for a vortex beam [28],
so one might expected a spiralling wavefront too. On the other hand, the definition according
to the 1ISO-standard defines the wavefront as a continuous surface, which excludes jumps and
singularities [26]. Considering a surface perpendicular to the direction of the Poynting vector,
it becomes obvious that no continuous surface exists that fulfills that condition, even though
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Fig. 5. Wavefront reconstruction for a scalar donut beam. (a) Intensity measured with the
wavefront sensor (SHS). (b) Reconstructed intensity (inset depicts directly measured in-
tensity with CCD). (c) Modal power spectrum. (d) Wavefront measured with the Shack-
Hartmann sensor (scale pmm). (e) Wavefront determined from the phase reconstruction
(scale inum). (f) Wavefront from the minimization according to Eq. (9).

the Poynting vector spirals continuously. Accordingly, the only continuous surface, that min-
imizes the integral in Eq. (9), is a flat surface. Instead of pretending that this surface has a
physical reality, one must argue that in the case of a vortex beam, the wavefront is not well
defined. However, the phase distribution is defined and is easily reconstructed revealing the he-
lical structure. Hence, it is redundant to ask for a wavefront since the optical field is known by
the modal decomposition and no additional information is achieved by asking for a wavefront.
So, this example nicely reveals the difference between phase (here spiral) and wavefront (here
flat) of a beam, which are often equal in shape, but which are in fact two different physical
guantities [25]. This discrepancy has been pointed out by others using the Shack-Hartmann
approach to measure wavefronts of vortex beams [29].

9. Decomposing beams including extrinsic aberrations

As discussed earlier, decomposing a fiber beam into its modal components is beneficial because
of the well defined number and scale of the modes in that case. However, the reconstruction of
aberrations is limited to those that arise from multimode interference of individual fiber modes
only, since the set is constrained to a certain number and adapted to the fiber geometry. The most
general case of reconstructing arbitrary aberrations is done by decomposing into a set of free
space modes, as Hermite-Gaussian or Laguerre-Gaussian modes. The benefit of universality
is payed dearly for the large number of modes that might be necessary, since in constrast to
the fiber mode set, the free space mode set is mathematically complete only with an infinite
number of modes. However, from a practical point of view a truncation to a reasonable number,
depending on the complexity of the contained aberrations, can always be found. To demonstrate
the principle, the optical fiber was replaced by a helium-neon laser emitting a fundamental
Gaussian beam, which was externally aberrated on purpose. For convenience, we chose the
aberration to be defocus, easily achieved by letting the beam pass a positive lens. The plane of
the lens was 4f-imaged onto the CGH to decompose the aberrated beam. The hologram was
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Fig. 6. Wavefront reconstruction of a fundamental Gaussian beam with extrinsically added
wavefront curvature using a lens of focal length= 1000 mm. (a) Modal power spec-

trum (insets depict Laguerre Gaussian modes,d-Gsed for decomposition). (b) Inter-
modal phase differences. (c) Comparison of reconstructed (CGH) and theoretically ex-
pected (Sim) wavefront (cross section through center). The inset in (c) depicts the measured
two-dimensional wavefront (same scale as (c)). Bedia 1for the decay of higher order
modesignal in the diffraction pattern of the hologram, aviddia 2for the corresponding
hologramphase pattern, both for a lens b= 500 mm.

now implemented using a phase-only spatial light modulator (SLM) to attain more flexibility
regarding the properties of the mode set (hnumber, size, curvature) [19].

Results are shown in Fig. 6 for a lens of 1000 mm focal length. Adding a wavefront curva-
ture onto the field by means of the lens results in a modal spectrum with higher order mode
content, which decays towards higher orders. These higher order modes are, in combination
with the saw-tooth shaped modal phase pattern, necessary to reconstruct the field with curved
wavefront. Note that only L modes respond in case of pure defocus. The good agreement
between the expected wavefront for a lens with focal lerfgth 1000 mm and the measured
one is emphasized in Fig. 6(c), depicting a wavefront slice through the center. Another proof of
accuracy for the measured wavefront is to incorporate the conjugated curvature into the modal
basis set and running the decomposition again, easily achieved by changing the hologram on
the SLM. This time, as shown in Fig. 7(b), the modal spectrum consists to 99% of fundamental
mode. Since the conjugate of the measured curvature is already included in each mode on the
hologram, this procedure yields a perfectly adapted mode set and consequently a response of
the fundamental mode only. Or in other words, the curvature of the physical lens is balanced by
the conjugated curvature programmed on the hologram. Hence, the modal spectrum resembles
that of a modal decomposition performed without a physical lens in place and into modes with
a flat wavefront, as illustrated in Fig. 7(a).

10. Discussion of techniques

The two wavefront measurement techniques using a Shack-Hartmann sensor and a computer-
generated hologram are very different in their physical approach to reconstruct the wavefront.
Whereas the Shack-Hartmann sensor deduces the wavefront from the foci positions of the mi-
crolenses and therewith from the wavefront slope, the CGH-technique provides a modal de-
composition of the beam, yielding the complete information about the optical field, from which
the wavefront can be deduced by Eq. (9) or Eq. (10). This great difference in strategy is equally
reason for a number of advantages and disadvantages.

In view of the measurement rate both techniques are very similar with maximum rates of
30 Hz (limited by the frame rate of the camera). On the contrary, in case of inhomogeneously
polarized beams the wavefront reconstruction with the CGH takes roughly a minute, caused by
the Stokes measurement and the running time of the minimization routine. On the other hand,
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Fig. 7. (a) Modal decomposition without physical lens and decomposition into modes with-
out curvature. (b) Modal decomposition into modes that incorporate the wavefront curva-
ture measured in Fig. 6 for a physical lehs- 1000 mm. The insets depict the correspond-
ing mode intensities.

the wavefront reconstruction using a CGH is very beneficial for some reasons. One is the spatial
resolution: whereas the Shack-Hartmann sensor is very limited in resolution by the number of
microlenses, the resolution of the wavefront determined by the CGH has no theoretical limit.
Since the directly measured values (modal powers and phases) are scalar numbers, the resolu-
tion from a practical point of view is given by the number of pixels per unit length with which

the modal fields can be calculated. A second advantage is the extension of the measurement
area of the wavefront. Regarding the Shack-Hartmann sensor it is immediately clear that the
wavefront cannnot be measured at points where there is little or no intensity, as for example at
phase singularities. Of course this is also limiting for the minimization of the integral in Eq. (9).

In contrast, the phase of the beam, as determined by the CGH, is defined everywhere, i.e., also
in regions with no intensity. Another issue is represented by the measurable wavefront slope.
The slope limit for the Shack-Hartmann sensor is given by the case where the focus of one
microlens is shifted to the evaluation area of an adjacent lens. Concerning the reconstruction
with the CGH there is no theoretical limit regarding the wavefront slope, e.g., phase jumps are
easily detected.

11. Conclusion

In conclusion, we presented a new method to reconstruct wavefronts based on modal decom-
position using computer-generated holograms. We have illiustrated the power of the method by
reconstructing wavefronts from both fiber and free space modes by a modal decomposition of
the field. The versatility of the approach was demonstrated by studying arbitrary mode superpo-
sitions, complex polarization properties, vortex beams and aberrated Gaussian beams. Different
reconstruction options were outlined, such as reconstructing the wavefront from the phase dis-
tribution for scalar beams without phase singularities and jumps, and reconstruction from the
Poynting vector for the general case of inhomogeneously polarized beams. Our results were
validated by comparison with Shack-Hartmann measurements. Pros and cons of wavefront re-
constructions based on modal decomposition with respect to Shack-Hartmann measurements
were discussed regarding applicability, measurement rate, spatial resolution, area of measure-
ment, and measurable wavefront slope. The most striking advantages of our method is seen in
spatial resolution, area of measurement, and measurable slope.
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