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Abstract. This study considers the numerical sensitivity calculation for discontinuous gradient-
only optimization problems using the complex-step method. The complex-step method was
initially introduced to differentiate analytical functions in the late 1960s, and is based on a
Taylor series expansion using a pure imaginary step. The complex-step method is not subject
to subtraction errors as with finite difference approaches when computing first order sensitiv-
ities and therefore allows for much smaller step sizes that ultimately yields accurate sensitivi-
ties. This study investigates the applicability of the complex-step method to numerically com-
pute first order sensitivity information for discontinuous optimization problems. An attractive
feature of the complex-step approach is that no real difference step is taken as with conven-
tional finite difference approaches, since conventional finite differences are problematic when
real steps are taken over a discontinuity. We highlight the benefits and disadvantages of the
complex-step method in the context of discontinuous gradient-only optimization problems that
result from numerically approximated (partial) differential equations.

Gradient-only optimization is a recently proposed alternative to mathematical pro-
gramming for solving discontinuous optimization problems. Gradient-only optimization was
initially proposed to solve shape optimization problems that utilise remeshing (i.e. the mesh
topology is allowed to change) between design updates. Here, changes in mesh topology result
in abrupt changes in the discretization error of the computed response. These abrupt changes
in turn manifests as discontinuities in the numerically computed objective and constraint func-
tions of an optimization problem. These discontinuities are in particular problematic when
they manifest as local minima. Note that these potential issues are not limited to problems
in shape optimization but may be present whenever (partial) differential equations are ap-
proximated numerically with non-constant discretization methods e.g. remeshing of spatial
domains or automatic time stepping in temporal domains.
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1. INTRODUCTION

Numerical sensitivity computation for smooth continuous functions is well estab-
lished. A number of well-known strategies are available which include (semi)-analytical
sensitivity computations using direct and adjoint approaches, numerical finite difference tech-
niques that are prone to cancellation errors for small step sizes and forward and reverse mode
automatic differentiation. However, also available are the lesser known complex variable sen-
sitivity methods that were proposed in the late 1960’s. The complex-step method [8] and
Fourier differentiation [7] are of particular interest. The latter has significant advantages for
the computation of higher order derivatives, but it requires steps on the complex plain i.e.
steps that have both real and complex components. In turn, the complex step method only
requires steps along the imaginary axis. Hence, steps only have a complex component and no
real component to compute first order sensitivity information. This is an important distinc-
tion that we will explore further in detail. Since gradient-only optimization only requires first
order sensitivity information we will focus on the complex step method, which is well suited
to compute accurate first order sensitivity information. We note that for the computation of
higher order sensitivities, the complex-step method is also prone to cancellation errors (see
[5]).

In particular, we consider the computation of first order sensitivity information when
dealing with discontinuous objective functions, i.e. functions that are not differentiable at the
discontinuities. Non-differentiable objective and constraint functions are not new to engineer-
ing optimization problems, with [13] considering continuous functions with discontinuous
gradients i.e. C0 continuity. Since non-differentiable functions are not everywhere differen-
tiable, the concept of subgradients was introduced to allow the gradient field to be defined
everywhere. Recently, Wilke et al. [18] proposed gradient-only optimization as an alternative
approach to mathematical programming to solve discontinuous optimization problems, which
are non-differentiable and not continuous. The gradient field is defined everywhere via as-
sociated gradients, which allows sensitivity information to be defined at a discontinuity. The
associated gradient is given by the Calculus gradient when the gradient exists. Where the
Calculus gradient does not exist, it is defined by only the left or right sided limit as detailed in
[18]. In this study we highlight the connection between the complex-step derivative and the
associated derivative.

We note that gradient-only optimization is not a general strategy for solving discon-
tinuous optimization problems. For the purposes of this discussion we distinguish between
two types of discontinuities that may be present in objective and constraint functions. Firstly,
discontinuities can be physical in a computed response e.g. contact problems or shock-waves.
Secondly, discontinuities can be non-physical but are present due to errors in a computational
strategy. For example, it is well known that abrupt changes in the discretization error of a
numerical strategy e.g. remeshing in finite element based shape optimization results in dis-
continuities (see [2]. Gradient-only optimization is concerned with solving the latter type of
optimization problems and therefore we will only consider non-physical discontinuities from
hereon. In particular we only address problems when changes in candidate designs require
changes in the temporal and/or spatial domains during optimization e.g. shape optimization.
Here, an analyses is conducted for each candidate design and consequently the objective func-
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Figure 1. Finite difference step over a (a) lower semi-continuous and (b) upper semi-
continuous function with an inconsistent step discontinuity.

tion is constructed from multiple independent analyses. The relation of the discretization error
between analyses influences the differentiability of the objective function. This is in stark con-
trast to once-off analyses where temporal and/or spatial domains may also change, but for a
single analysis this only influences the solution quality of the current analysis.

Instead of finding the minimum of these non-physical discontinuous optimization
problems, gradient-only optimization aims to find positive projective points of these prob-
lems. Positive projection points are characterized by a positive directional derivative at all
points in a small ball around such a point. The direction vector is defined by the point in the
ball where the directional derivative is to be computed and the positive projection point itself
[18].

After the proposal of the complex-step method by Lyness and Moler [8], it remained
unexploited for almost 20 years until the revival paper was written by Squire and Trapp [14].
Since then it has been used in a number of computational fluid dynamics solvers [10,15], non-
linear structural analysis [4], pseudo-spectral simulations [1], dynamical systems [3], fatigue
analysis [17] and shape sensitivity [16].

As we will now demonstrate, conventional finite differences are severely hampered
when the finite difference perturbation occurs within the vicinity of a discontinuity. This
occurs when the discretization topology (i.e. number of elements and/or nodal connectivity
of elements) changes abruptly during the finite difference perturbations, which results in the
computation of inconsistent sensitivity information [12]. To allow for the computation of con-
sistent sensitivity information using non-constant discretization strategies, usually requires the
non-constant discretization strategy to be modified to allow for only smooth and continuous
variations of discretizations during the sensitivity computations.

2. SENSITIVITIES OF DISCONTINUOUS FUNCTIONS

Consider the lower and upper semi-continuous functions depicted in Figures 1(a) and
(b), respectively. Since an n-dimensional gradient vector is defined by it’s n 1-dimensional
partial derivatives, we will restrict ourselves to a 1-dimensional discussion without loss of
generality.

It is clear that the derivative is not defined at the discontinuity. However, the associated



derivative [18] is defined everywhere and it is given by the left hand limit for lower semi-
continuous functions and by the right hand limit for upper semi-continuous functions at the
discontinuity. The benefit of the complex-step derivative is that it computes the associated
derivative and allows the computation of sensitivity information even at a discontinuity. As
we will consider in detail, the complex-step method achieves this by only taking an imaginary
step without the need to take a real step over the discontinuity.

In turn, conventional finite difference schemes requires a real step to be taken, with
undesired consequences. Consider the following finite difference computations on the lower
semicontinuous function depicted Figure1 (a): forward (FD), backward (BD) and central dif-
ference (CD) schemes computes the derivative as:(

df
dx

)
FD

≈ y3−y2
x3−x2

> 0,(
df
dx

)
BD

≈ y2−y1
x2−x1

< 0,(
df
dx

)
CD

≈ y3−y1
x3−x1

> 0,

(1)

whereas the upper semicontinuous function in Figure1 (b) results in the following:(
df
dx

)
FD

≈ y3−y2
x3−x2

< 0,(
df
dx

)
BD

≈ y2−y1
x2−x1

> 0,(
df
dx

)
CD

≈ y3−y1
x3−x1

> 0.

(2)

It is clear that finite differences in the context of discontinuous functions are severely prob-
lematic, with inconsistencies not only in the magnitude but also the direction (sign) of the
computed sensitivities.

In contrast, the complex-step method avoids these problems. Consider the complex
Taylor series expansion of an analytic function f(x) using a complex step i∆h,

f(x + i∆h) = f(x) + i∆hf ′(x)−∆h2f
′′(x)

2
+ higher order terms, (3)

By equating the imaginary parts of both sides of the equation, the complex-step derivative
approximation Im[f(x+i∆h)]

∆h
is obtained as a second order accurate approximation to f ′(x).

The advantage of the complex-step method is that only a complex step i∆h on the
imaginary axis is required, as opposed to a step along the real axis when using conventional
finite differences. Hence, even at the discontinuity the derivative would be computed at that
point as if the function was smooth in the vicinity of that point. Therefore, derivative informa-
tion can always be computed. Similarly, derivative information can also always be computed
when using (semi)-analytical or automatic differentiation strategies. The computed sensitivi-
ties are the associated derivative [18] that can be used for gradient-only optimization.

To demonstrate our arguments, consider the following simple piece-wise linear step
discontinuous function:

f(x) =

{
x < 1 : −2x− 0.5
x ≥ 1 : −2x

. (4)

Mathematically, the derivative is not defined at x = 1. However, the associated derivative of
this function is continuous and -2 everywhere, including at x = 1. Computing the derivative
with the complex step method yields exactly -2 everywhere, including x = 1, allowing a full
field computation of the derivative of a discontinuous function.



The truncation error is 0 for all finite difference schemes on each section of the piece-
wise linear function. The choice for a piecewise linear function allows us to isolate the error
due to the discontinuity, and not be influenced by rounding errors.

Consider the results presented in Figure 2. The absolute round-off error as a function
of step size is presented in Figure 2 (a) for the linear function −2x, using forward, backward
and central difference schemes. The combined round-off and discontinuity error for the func-
tion given in (4) is presented in Figure 2 (b). The derivative at x = 1 was approximated
using the forward, backward and central difference schemes. The step sizes in both figures
are varied between 100 and 10−20. The results of the complex-step method is not presented as
it exactly recovers a sensitivity of -2, everywhere.
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Figure 2. Finite difference computations for the (a) linear function f(x) = −2x and (b) linear
function with discontinuity as given in (4).

The behaviour of the difference schemes corresponds to the anticipated behaviour as
described in (2). As expected the discontinuity error dominates and increases as the step size
is reduced. It is easy to envisage a simple modification to finite difference schemes from
the observation above that may be able to overcome the associated problems. For example,
when the signs amongst the three computed derivatives differ, a simple modification may be
to choose the derivative that is the most negative when considering minimization problems as
given in (1) and (2). However, when considering multidimensional problems the discontinu-
ities may not be isolated as is the case in Figure 1, with forward and backward steps occurring
over different discontinuities.

Unfortunately, the complex-step method only allows for direct or forward mode com-
putations of sensitivities. Hence, when dealing with a large number of design variables and
only a few functions the benefits of adjoint or reverse mode sensitivities cannot be exploited
[11]. In addition, complex number calculations requires additional memory and computa-
tional resources. Fortunately, modifications to programs mostly require only the accommoda-
tion of complex variables, overloading a few functions and reviewing some branching state-
ments. The authors found the guidelines presented by [9] more than adequate for all examples
presented in this paper.



3. SENSITIVITIES OF VARYING DISCRETIZATIONS

As pointed consistent sensitivity information needs to be computed when considering
objective functions that rely on solutions of partial differential equations [12], which usually
requires a modification to non-constant discretization strategies to avoid any inconsistencies
during the sensitivity computations.

As a practical example consider a linear elastic finite element based shape optimization
problem, where the objective function F(x) is an explicit function of the nodal displacements
u. The nodal displacements u(Λ) in turn is a function of the discretization Λ (computational
mesh) defined on the domain Ω with boundary ∂Ω. The computational mesh

Λ ∈ {X = (X i)i=1,...,nn;T = (T k
j )j=1,...,ne;k=1,...,nv}, (5)

describes the position X ∈ R3 of the nn nodes, and gives for each computational element
j = 1, . . . , ne the set T k=1,...,nv

j of its’ nv vertices [6]. For now we limit the nodal positions
to two dimensions X ∈ R2. The computational mesh Λ(x) in turn is a function of the design
variables x, which controls the discretized geometrical domain.

Following the usual finite element discretization of the linear elastic solid mechanics
boundary value problem we obtain

Ku = f , (6)

where K represents the assembled structural stiffness matrix and f the consistent structural
loads. The system in Eq. (6) is partitioned along the unknown displacements (uf) and the
prescribed displacement (up), i.e.

Ku =

[
K ff K fp

Kpf Kpp

]{
uf

up

}
=

{
f f
f p

}
, (7)

where f f represents the prescribed forces and f p the reactions at the nodes with prescribed
displacements. The unknown displacements (uf) are obtained from

K ffuf = f f −K fpup. (8)

Recall that the objective function F(x) is an explicit function of the nodal displace-
ments u. Using gradient based optimisation algorithms, we therefore require the sensitivity
of the structural response u w.r.t. the design variables (control variables) x. In general, the
stiffness partition matrices K ff and K fp, the nodal displacement vector uf and the load vector
f f in Eq. (8) depend on the design variables x, i.e. K ff(x)uf(x) = f f(x)−K fp(x)up(x).

The analytical gradient duf
dx

is obtained by differentiating Eq. (8) w.r.t. the control vari-
ables x, i.e.

K ff
duf

dx
=

df f

dx
−

dK fp

dx
up −K fp

dup

dx
− dK ff

dx
uf. (9)

In this study the load vector f f is assumed to be independent of the control variables x, hence
df f
dx

= 0. For Dirichlet boundary conditions, up = 0, and Eq. (9) reduces to

K ff
duf

dx
= −dK ff

dx
uf. (10)



Eq. (10) is solved to obtain duf
dx

, using the factored stiffness matrix K ff, available from the
primary analysis when solving Eq. (8). The unknown dKff

dx
is computed from

dK ff

dx
=

dK ff

dX
dX
dx

, (11)

where dKff
dX is obtained by differentiating the stiffness matrix analytically with respect to the

nodal coordinates X . This is done on the element level and then assembled into the global
system.

To complete the sensitivity analysis, we still need to evaluate dX
dx

present in Eq. (11).
To compute consistent sensitivity information the current number of nodes nn and element
nodal connectivity T as defined in (5) needs to remain unchanged and any change in nodal
positions needs to be smooth and continuous [2,12]. In particular, when semi-analytical sen-
sitivities are used to compute dX

dx
using conventional finite differences.

However, computing the sensitivity analytically yields consistent sensitivity informa-
tion as no perturbation is required that may change the computational mesh Λ. Similarly, the
benefit of the complex-step method is that the computational mesh Λ remains unchanged on
the real axis as only a pure imaginary step is required to compute the sensitivity information.

Again, we highlight that accurate associated sensitivity information is computable
everywhere although the functions is not everywhere differentiable. This can be achieved by
analytical sensitivities, consistent semi-analytical sensitivities, automatic differentiation or the
complex step method.

4. NUMERICAL EXPERIMENTS

Consider the linear elastic bow-tie structure depicted in 3(a), with eight control vari-
ables xi = 1, 2, . . . , 8, that define the geometry as indicated. A force F is applied as shown
and uF indicates the displacement in the vertical direction at the point where the force is
applied.

(a) (b)

Figure 3. (a) Bow-tie structure used to compare the various sensitivity strategies and (b)
corresponding discretized geometry.

We compute the sensitivity of uF w.r.t. xi = 1, 2, . . . , 8 using a remeshing strategy.
We compute both consistent sensitivities i.e. no changes in mesh topology is allowed as well



as inconsistent sensitivities i.e. the mesh topology is allowed to change during the sensitivity
computation.

The absolute error for both the consistent and inconsistent sensitivity computations
for the forward difference, backward difference, central difference and complex-step method
are depicted in Figures 4 and 5. The inconsistent sensitivities for points 1-4 are depicted in
Figures 4 (a), (c), (e) and (g) respectively, while the absolute sensitivity error for points 5-8
are depicted in Figures 5 (a), (c), (e) and (g). In turn, the absolute error for the consistent
sensitivities are depicted in Figures 4 (b), (d), (f) and (h) and in Figures 5 (b), (d), (f) and (h)
for respectively points 1-4 and 5-8 respectively.

Note that the absolute error of the complex-step sensitivities are unaffected whether
the non-constant discretization strategy preserves the mesh topology or not. This is in stark
contrast to the finite difference strategies who’s absolute error severely degrades for incon-
sistent sensitivities as opposed to consistent sensitivities. Consider the inconsistent sensitiv-
ity computation of point 3, as depicted in Figure 4(e). It is clear that neither the forward,
backward, or central difference schemes compute appropriate sensitivities and hence even a
modified difference strategy as discussed in Section 2 would fail to give accurate sensitivities,
independent of the step size.

Consider the absolute error of the backward difference computed sensitivity error de-
picted in Figure 5(e). As indicated, a jump in the absolute error of the sensitivity occurs for
a step size change from 10−8 to 10−9, with the latter significantly more accurate. The jump
in error is a result of a change in the mesh topology from being inconsistent for the 10−8 step
size to being consistent for the 10−9 step size. This is clearly depicted in Figure 6, where
the initial mesh (in dashed lines) is superimposed onto the finite difference perturbed mesh
for step sizes 10−8 and 10−9 respectively in Figures 6(a) and (b). Changes in the perturbed
mesh is evident in the lower left part of the bow-tie structure. Although these changes in mesh
topology are removed from point 7 where the sensitivity is computed as well as the point
where the load is applied, the discretization error in the stiffness of the structure is significant
enough to adversely affect sensitivity computations.

5. CONCLUSION

We demonstrated the benefits of the complex-step method to compute accurate sen-
sitivity information for discontinuous functions. The complex-step method allows for the
computation of sensitivity information at a discontinuity where the derivative is not defined.
We showed that the complex-step method is a viable numerical strategy to compute associated
derivatives or associated gradients, as required by gradient-only optimization.

We highlighted the well known need for consistent sensitivity computations when us-
ing non-constant discretization strategies during objective or constraint computations. The
complex-step method allows for the computation of consistent sensitivity information with
similar ease as for conventional finite differences, without having to modify non-constant dis-
cretization strategies to preserve discretization topology during sensitivity calculations. Only
minor modifications are required, which include the handling of complex variables, the over-
loading of some functions and reviewing some branching statements.
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Figure 4. Absolute error of the finite difference sensitivities for points 1-4 on the bow-tie
structure computed inconsistently in respectively (a), (c), (e) and (g) and computed consis-
tently in respectively (b), (d), (f) and (h).
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Figure 5. Absolute error of the finite difference sensitivities for points 5-8 on the bow-tie
structure computed inconsistently in respectively (a), (c), (e) and (g) and computed consis-
tently in respectively (b), (d), (f) and (h).
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Figure 6. Consider the inconsistent backward difference sensitivity computation of point 7
with absolute error depicted in Figure 5(e). Depicted are the initial mesh (dashed line) super-
imposed onto the backward difference mesh (solid line) with step sizes of (a) 10−8 and (b)
10−9, respectively. The change is mesh topology is evident in the lower left of (a) as opposed
to no change in mesh topology in (b).
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