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Abstract

A novel algorithm is presented for detecting trophic status (chlorophyll-a), cyanobacterial blooms
(cyano-blooms), surface scum and floating vegetation in coastal and inland waters using top-of-
atmosphere data from the Medium Resolution Imaging Spectrometer (MERIS). The Maximum
Peak Height algorithm (MPH) uses a baseline subtraction procedure to calculate the height of
the dominant peak across the red and near-infrared (NIR) MERIS bands between 664 and 885
nm caused by sun-induced chlorophyll fluorescence (SICF) and particulate backscatter. Atmo-
spheric correction of the MERIS TOA reflectance data for gaseous absorption and Rayleigh
scattering proved adequate given the spectral proximity of the relevant bands and the sufficiently
large differential spectral signal. This avoided the need to correct for atmospheric aerosols, a
procedure which is typically prone to large errors in turbid and high-biomass waters. A com-
bination of switching algorithms for estimating chl-a were derived from coincident in situ chl-a
and MERIS bottom-of-rayleigh reflectance measurements. These algorithms are designed to si-
multaneously handle a wide trophic range, from oligotrophic/mesotrophic waters (chl-a < 20
mg.m−3), to eutrophic/hypertrophic waters (chl-a > 20 mg.m−3) and surface scums or dry float-
ing algae or vegetation (dystrophic, chl-a > 500 mg.m−3). In addition, cyanobaceria-dominant
waters were differentiated from those dominated by prokaryote species (dinoflagellates/diatoms)
on the basis of the magnitude of the MPH variable. This is supported by evidence that vac-
uolate cyanobacteria (e.g. Microcystis aeruginosa) possess enhanced chl-a specific backscatter
which is an important bio-optical distinguishing feature. This enables these broad algal classes
to be distinguish with some certainty from space. A flag based on cyanobacteria-specific spectral
pigmentation and fluorescence features was also used to identify cyanobacterial dominance in
eutrophic waters. An operational algorithm for use with prokaryote-algae for chl-a in the range
0.5 − 350.4 mg.m−3 gave a coefficient of determination of 0.71 and a mean absolute percent-
age error (mape) of 60% (N=48). An algorithm for cyano-dominant waters had an r2 of 0.58
for chl-a between 33 and 362.5 mg.m−3 and an error of 33.7% (N=17). Example applications
demonstrate how the MPH algorithm can offer rapid and effective assessment of trophic status,
cyano-blooms, surface scums and floating vegetation in inland and coastal waters.

Keywords: Trophic status, eutrophication, water quality, cyanobacterial-dominance,
cyanobacteria, surface scums, floating vegetation, MERIS, southern Africa, optical remote
sensing, chlorophyll-a, Benguela, Hartbeespoort, Zeekoevlei, Loskop
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1. Introduction1

The needs of near-coastal and inland users are generally not addressed by global ocean colour2

algorithms, which primarily have an open-ocean focus and are not designed for the predomi-3

nance of case II and eutrophic waters encountered in close proximity to land. User needs for4

such waters are typically focused on water quality rather than biogeochemistry, and a greater5

emphasis is placed on the use of earth observation data for sustainable resource management;6

operational detection of trophic state, and phenological characterization of eutrophication over7

time as a primary longer-term research goal. The optical complexity and sometimes extreme8

concentration of constituents in these coastal and inland waters calls for new atmospheric and9

bio-optical scientific capabilities; whilst the shift in scientific application calls for new and more10

applied product types such as eutrophication indices. The Medium Resolution Imaging Spec-11

trometer (MERIS), and the planned OLCI sensor on the Sentinel 3 platforms, are likely the12

current and planned optimal sensors for near real-time frequent monitoring applications for spa-13

tially constrained inland and transitional coastal waters (Guanter et al., 2010; Matthews, 2011).14

Chlorophyll a (chl-a) algorithms for MERIS in turbid, high-biomass inland and coastal waters15

have historically been based on the water-leaving reflectance (Gons et al., 2002; Gons, 2005;16

Gitelson et al., 2008, 2009; Moses et al., 2009a,b). However, the limited ability of routinely17

implemented atmospheric corrections for accurately resolving the shape of the water-leaving re-18

flectance in the red-NIR MERIS bands in high biomass bright-pixel waters, has hampered these19

efforts (Schiller & Doerffer, 2005; Guanter et al., 2010; Matthews et al., 2010). Here, for the first20

time, a novel red-edge baseline-subtraction algorithm is presented for retrieving phytoplankton21

abundance estimates (chl-a) directly from MERIS bottom-of-rayleigh reflectance (BRR) in low22

and high biomass phytoplankton-abundant inland and coastal waters. The algorithm is named the23

Maximum Peak Height or MPH algorithm, because it switches to exploit the position and magni-24

tude of the chl-a fluorescence and particulate backscatter/absorption related peaks in the MERIS25

red/NIR bands. The top-of-atmosphere (TOA) approach used by the MPH avoids error-prone26

aerosol atmospheric correction procedures used to derive the water leaving reflectance, while the27

algorithms baseline-subtraction calculation effectively normalizes for atmospheric effects. The28

MPH is derived from coincident measurements of in situ chl-a and MERIS reflectance in four29

diverse phytoplankton-abundant southern African systems. These are the southern Benguela30

marine coastal upwelling system, and the three inland freshwater reservoirs of Zeekoevlei, Hart-31

beespoort dam and Loskop dam. The MPH is designed to provide a quantitative measure of32

trophic status through chl-a estimates. It simultaneously handles a wide trophic range, from olig-33

otrophic (chl-a < 10) through to dystrophic (chl-a > 300) waters, while also offering the ability34

to identify surface scums and floating vegetation. A method is proposed that enables prokary-35

ote and cyano-dominant assemblages to be distinguished based on the magnitude of the MPH36

variable and a flag using reflectance features related to chl-a and phycocyanin fluorescence. The37

MPH algorithm is intended for operational trophic status determination, and for providing early38

warning indicators for cyanobacteria and HABs in phytoplankton-dominant coastal and inland39

systems. The study continues with a thorough description and error assessment of the datasets40

used for algorithm derivation, then provides details on the MPH algorithm, and concludes with41

example applications of the MPH algorithm in various local and global systems.42
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2. Description of study areas43

The MPH was derived using datasets collected from four diverse study areas. The four sys-44

tems are similar with regard to phytoplankton abundance and the occurrence of HABs, but natu-45

rally differ considerably with regards their phytoplankton community structure, biochemistry and46

ecological drivers. The southern Benguela is an extremely dynamic and productive upwelling47

system off the west coast of southern Africa that is affected by frequent HAB events (Pitcher &48

Calder, 2000). In bloom conditions, the phytoplankton assemblage is typically composed of a49

variety of dinoflagellate or diatom species varying in toxicity, or autrophic ciliates such as Meso-50

dinium rubrum (Fawcett et al., 2007). The optical water type can be described as an extreme Case51

1, with phytoplankton being the dominant causal IOP, and minerals and gelbstoff playing lesser52

roles (Bernard et al., 2001). In the Benguela, the concentration of chl-a is extremely variable,53

and may range from less than one mg.m−3 in non-bloom conditions, to greater than 500 mg.m−3
54

in peak bloom conditions (Pitcher & Weeks, 2006). Therefore, the southern Benguela represents55

an extremely variable coastal upwelling system, and a challenging environment for ocean colour56

remote sensing.57

Loskop dam is the most similar of the three inland waters to the Benguela with regards to58

water type and algal assemblage composition. Located at about 1000 m asl in South Africa’s59

Mpumalanga province 150 km north east of Johannesburg, the lake shows pronounced longi-60

tudinal zonation with riverine, transitional and lacustrine zones that range from hypertrophic61

to oligotrophic, respectively (Oberholster et al., 2010). During winter sampling in July/August62

of 2011, the riverine zone was dominated by a dense bloom of the large celled dinoflagellate,63

Ceratium hirundinella, which turned the water a chocolate brown colour. Chl-a values of up to64

500 mg.m−3 were recorded in this bloom. In the transitional and lacustrine zones further down-65

stream, lower biomass blooms of chlorophytes and diatoms were present. Chl-a values were near66

20 mg.m−3 in the mesotrophic transitional zone, and less than one mg.m−3 in the oligotrophic67

main basin representing the lacustrine zone. Importantly, dense blooms of the cyanobacteria Mi-68

crocystis aeruginosa become dominant in the riverine and transitional zones in summer months69

as the water temperature increases. These are present alongside prokaryote species during these70

months. Additional measurements found that there were also significant contributions from gelb-71

stoff and minerals, indicating a case 2 water type (Matthews, unpublished).72

The final two study areas, Zeekoevlei lake and Hartbeespoort dam, represent two of the73

most productive freshwater reservoirs in southern Africa, and indeed the world (Harding, 1997;74

Robarts & Zohary, 1984). Their phytoplankton assemblages are near-permanently dominated by75

the colonial cyanobacterium Microcystis aeruginosa and regularly exhibit dense surface blooms76

called hyperscums (Zohary, 1985). Chl-a values in these systems average around 200 mg.m−3,77

with values in excess of 1000 mg.m−3 being frequently recorded. Despite the similar trophic78

status and phytoplankton assemblages, the two systems differ considerably in their morphology79

and limnology. Zeekoevlei Lake, located at 5 m asl south of the City of Cape Town in the80

Western Cape province, is a small (2.5 km2), shallow (average depth of 2 m) and continuously81

mixed (hypermictic) naturally occurring freshwater pan. Hartbeespoort dam is by comparison82

larger (20 km2), deeper (average depth of 10 m), monomictic and stratified, and is at an altitude of83

around 1000 m asl in the Highveld province of Gauteng. Despite these differences, the bulk IOPs84

of both lakes are overwhelmingly dominated by phytoplankton and detrital material (Matthews85

et al., 2010, unpublished). However, significant contributions by minerals and gelbstoff means86

that the lakes are by strict definition case 2 waters.87
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3. Data sets and uncertainties88

3.1. Chl-a measurements89

3.1.1. Description of combined in situ chl-a dataset90

The combined data set consists of 74 in situ surface chl-a measurements with corresponding91

simultaneously acquired MERIS full resolution (FR) or reduced resolution (RR) radiometry as92

follows: Benguela (N=37), Loskop (N=20), Zeekoevlei (N=9) and Hartbeespoort (N=8). The93

chl-a data from the four systems were acquired through numerous fieldwork campaigns span-94

ning a period of 9 years from 2003 - 2011. In all circumstances, surface water samples were95

collected from a small boat with care being taken to minimise disturbance of the delicate surface96

blooms (if present). Chl-a was determined using a different analytical technique in each of the97

study areas. For the Benguela chl-a was measured by fluorometric analysis using 90% acetone98

(Holm-Hansen et al., 1965) in accordance with accepted marine protocols (Ducklow & Dick-99

son, 1994). For inland waters, spectrophotometric analyses with 90% or 95% boiling ethanol100

was used due to the improved extraction efficiency of ethanol with blue-green algae dominated101

assemblages (Sartory & Grobbelaar, 1984). Inevitably there will be differences between the ex-102

traction efficiencies of the solvents, and between the detection limits of the fluorometric and103

spectrophotometric techniques. However, no attempt was made to quantify these errors and they104

are likely to be small compared to the relative standard error of measurement. With the excep-105

tion of the Benguela dataset, all chl-a analyses were performed in triplicate, using the mean as106

the representative value. The mean relative standard error (mrse) for chl-a was calculated as the107

standard deviation of triplicate results divided by the mean of the triplicate results. In this way,108

the mrse was determined as 17.1% (N = 31) for Zeekoevlei, 6.5% (N=38) for Hartbeespoort and109

29.7% (N=54) for Loskop. It is important to consider the high frequency (> 50%) of low chl-a110

values (< 10 mg.m−3) for the Loskop dataset, leading to larger relative errors. In the absence of111

triplicate measurements, an mrse of 15% was used for the Benguela.112

3.1.2. Error in chl-a due to bloom patchiness: single-point sampling error113

Several authors have questioned the usefulness of single point samples for validating re-114

motely sensed chl-a due to bloom patchiness (Galat & Verdin, 1989; Kutser, 2004, 2009). Sin-115

gle point surface samples that neglect the horizontal and vertical components may lead to mis-116

representative biomass estimates especially in high biomass waters exhibiting patchy blooms,117

such as in this dataset. There are also significant dilution effects associated with the distur-118

bance of delicate buoyant surface blooms during sampling. Previous estimates of the horizontal119

patchiness in cyano-blooms in Hartbeespoort (Robarts & Zohary, 1992) and the Gulf of Finland120

(Kutser, 2004) show that these errors can exceed two orders of magnitude. This leads to substan-121

tial within-pixel variability in chl-a values making it difficult to validate chl-a values retrieved122

from remote sensing data using single point samples.123

In order to guage the likely relative magnitude of the error due to horizontal and vertical124

patchiness for the dataset, coincident measurements from a Hyperspectral Tethered Surface Ra-125

diometer Buoy (Satlantic Inc.) were used. The TSRB measures the upwelling spectral radiance126

at a depth of 0.66 m, Lu(0.66), and the downwelling irradiance above the surface, Ed(0+), in the127

spectral range 400 to 800 nm with a frame rate of 1 Hz, a resolution of 3.3 nm and an accuracy of128

0.3 nm. During sampling, the TSRB is allowed to drift freely in the sample area and acquire data129

for no less than three minutes. This sampling time and drift is considered sufficient to capture130

bloom patchiness occurring in the sample areas. The relative standard error of the 710 nm band,131

known to be significantly correlated with chl-a values in high phytoplankton biomass waters132
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(Gitelson, 1992; Schalles et al., 1998), is calculated from the typical three minute burst sampling133

time and can be used as an approximate index for biomass patchiness. The results indicated that134

for Hartbeespoort, a highly stratified system with severely patchy cyano-blooms, the error due135

to bloom patchiness had a mean of 14.8% and a maximum of 44.8% (N=17). For the Benguela,136

a more mixed system with occasional surface blooms, the mean error is 10.8% (N = 44). For137

the hypermictic Zeekoevlei the mean error is reduced to only 8.6% (N=18). These mean errors138

were used as the typical expected error to single point chl-a measurements resulting from bloom139

patchiness for the dataset (patchiness error for Loskop was estimated at 10%).140

Therefore, the total uncertainty of in situ chl-a measurements was calculated by adding the141

mrse of measurement and the single point sampling error estimates. The total mean expected142

error for chl-a values from single-point surface samples for the four systems are estimated as143

39.7% for Loskop, 25.8% for the Benguela, 25.7% for Zeekoevlei and 21.3% for Hartbeespoort.144

These errors are shown as error bars are on the plots.145

3.2. MERIS reflectance data146

3.2.1. Data processing and atmospheric correction147

MERIS data were processed using the Basic ENVISAT Toolbox for (A)ATSR and MERIS148

(BEAM) V. 4.9.0.1. The L1b data were first corrected for the SMILE effect, detector-to-detector149

systematic radiometric differences, and recalibrated using the Level 1 Radiometry Processor V.150

1.0.1 (Bouvet & Ramoino, 2009). An improved cloud product was calculated using the Cloud151

Processor V. 1.5.203 ( c© ESA, FUB, and Brockmann Consult, 2004). In order to account for152

the effects of gaseous absorption in the red bands from water-vapour (H2O), ozone (O3) and153

molecular Rayleigh scattering, the bottom-of-Rayleigh reflectance processor V. 2.3 was then154

used to compute the bottom of Rayleigh reflectance data (BRR), or ρBR (Santer et al., 1999;155

ACRI, 2006). The simplified atmospheric correction procedure is a first attempt to normalise the156

TOA signal for gaseous and Rayleigh effects, whilst ignoring the more complicated and variable157

effects of absorbing aerosols (particles like smoke and dust). Importantly, the procedure corrects158

for the significant absorption by water vapour in the band centered at 709 nm. For comparison,159

and to assess the impact of the adjacency effect, the Improve Contrast between Ocean and Land160

(ICOL+) processor V. 2.6 was also implemented to give the adjacency effect corrected (AEC)161

BRR reflectance, or ρAECBR (Santer, 2010). The adjacency effect from Rayleigh scattering and162

aerosols was computed taking into account the aerosol type over water and case 2 waters.163

The limited geographical extent of the inland water bodies in this study necessitates the use164

of MERIS full resolution (FR) data, whereas in the Benguela FR data are not systematically165

acquired and reduced resolution (RR) data are more frequently available for routine processing.166

As a result, a combination of FR (inland) and RR (Benguela) data are used in this study. A167

comparison of the Level 1 FR and RR data for the pixels of interest was performed in order to168

assess whether any discrepancies potentially impacted upon the comparative use of FR and RR169

data. RR pixels are made up of an averaging of 16 (4x4) FR pixels. Due to the complexities of170

geolocation and the fact that this averaging is done on-board the satellite before any subsetting171

takes place, it is difficult to select exactly these 16 pixels from a FR image (which is necessarily172

a subset of the RR image) and manually recreate an existing RR pixel. Instead, a pixel-by-pixel173

approach was undertaken, and only the pixel closest to the sampling station was selected from174

each FR and RR image. 8 co-incident FR/RR images, with chl-a values ranging from 8 mg.m−3
175

to 172 mg.m−3 were used for this experiment. All the images were processed using IPF-5.02 and176

above. The results showed excellent agreement in the FR/RR radiometry, with relative unsigned177
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Table 1: Relative unsigned percentage errors in TOA radiances between FR and RR data in all 15 MERIS bands.
λ (nm) 412 442 490 510 560 620 665 681
Error (%) 0.242 0.4372 0.530 0.456 0.870 1.842 1.940 2.373
λ (nm) 709 754 761 779 865 885 900

Error (%) 4.098 3.140 3.667 3.666 3.922 5.002 5.570

percentage errors in TOA radiances in all 15 bands shown in Table 1. An overall correlation178

of y = x − 0.23 was observed across all bands (TOA radiances in mW.m−2.sr−1.nm−1), with a179

slight negative offset in the RR. This can be explained by the averaging process which somewhat180

dampens localised elevated signals in the higher resolution data. The higher relative percentage181

errors in the red and NIR are to be expected where the signal is very small. Likewise in the 709182

nm region which is very reactive to varying chl-a concentrations, a relative error of 4% is quite183

acceptable given the magnitude of the signal and the increased likelihood of patchiness in the184

water in high biomass scenarios. The overall error associated with the reflectance based inde-185

pendent variables was determined through error propagation analysis using the combined FR/RR186

and systematic bias uncertainties. The systematic bias in TOA radiance determined through on-187

board calibration has been estimated at less than 2% (Sotis, 2007). Therefore, taking account of188

error propagation, the error from MERIS radiometry in the algorithm was estimated as no greater189

than 4%.190

3.2.2. MERIS bottom-of-Rayleigh reflectance data191

MERIS reflectance spectra from single pixels were extracted from processed MERIS scenes192

corresponding to in situ match-up stations. The time difference between the in situ surface sam-193

ple collection and the MERIS overpasses is less than 2 hours (but often less than 30 minutes)194

for the entire marine and freshwater dataset. Fig. 1 shows the bottom-of-Rayleigh reflectance195

data for the match-up dataset. The spectra have been arranged to aid comparison of the spectral196

shapes associated with the different waters, with spectra with fluorescence effects (681 nm) and197

absorption/backscatter (709 nm) maximum peak positions displayed separately. Fig. 1.A shows198

spectra from the Benguela with a prominent 681 nm fluorescence peak that are otherwise rel-199

atively flat at longer wavelengths towards the NIR. The spectra from Loskop in fig. 1.B have200

less obvious fluorescence peaks and are noisier towards the NIR, although the magnitudes are201

very similar to those in fig. 1.A. The spectra in fig. 1.C from Loskop and Benguela have clearly202

distinguishable peaks at 709 nm and belong to the absorption/backscatter domain. However,203

there is a clear difference between spectra from the Benguela, which typically slope downwards204

toward the NIR, and those from Loskop which have a continuous upward slope. The increased205

NIR reflectance values from Loskop are most likely caused by the adjacency effect in the small206

inland water body, or even partial contamination of the pixels from nearby land. This effect is207

also apparent in fig. 1.B. Finally, fig. 1.D presents spectra from the cyanobacteria-dominated208

waters of Hartbeespoort and Zeekoevlei. Three features specific to fig. 1.D are worth noting:209

the larger magnitudes of the 709 nm peak relative to fig. 1.C; a marked trough at 681 nm (arrow210

1); and a small peak at 664 nm (arrow 2). These features make these spectra unique from those211

in the other panels. The increased magnitude of the 709 peak is thought to be due to cyanobac-212

terial ultrastructure and is examined in detail in section 4.3. The 681 nm trough (arrow 1) is213

caused by a reduction in SICF in cyanobacteria dominant waters. Cyanobacteria possess very214

inefficient SICF as most of the chl-a is located in photosystem I (Seppälä et al., 2007). Based on215

this evidence, a 681 nm fluorescence signal cannot be used for chl-a estimation in cyanobacteria216
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Figure 1: Bottom-of-Rayleigh reflectance spectra from single pixels corresponding to coincident chl-a measurements
from each of the four study areas as indicated. The left hand side panels (A, B) display spectra possessing a 681 nm
fluorescence related maximum peak position, while the right hand side (C, D) those with a 709 nm backscatter related
maximum peak position. For more detail see section 3.2.1.

dominant waters. Arrow 2 showing the elevated reflectance in the 664 nm band, overlaps the flu-217

orescence emission domain of the pigment phycocyanin (PC), the main light harvesting pigment218

in cyanobacterial species (Bogorad, 1975). This sun induced PC fluorescence (SIPF) feature will219

be shown later to be critical in identifying cyanobacteria-dominant waters (see section 4.4), used220

in conjunction with the absorption maxima of PC near 620 nm.221

4. The MPH algorithm222

A modified baseline-subtraction algorithm has been implemented, named the maximum peak223

height or MPH algorithm (Version 1.0). The MPH is similar in form to the fluorescence line224

height (FLH) algorithm (Gower et al., 1999). However, instead of having a fixed peak position,225

the MPH searches for the position and magnitude of the maximum peak in the red/NIR MERIS226

bands at 681, 709 and 753 nm (bands 8, 9 and 10) caused by either phytoplankton fluorescence227

or absorption/backscatter. The MPH uses a constant baseline between MERIS bands 7 (664 nm)228

and 14 (885 nm) to measure the height of the red peak: this constant baseline was found to give229

more robust results than a spectrally shifting baseline. The MPH is calculated as follows:230
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MPH = ρBRmax − ρBR664 − ((ρBR885 − ρBR664) × (λmax − 664)/(885 − 664)) (1)

231

232

where λmax and ρBRmax are respectively the position and magnitude of the highest peak in the233

MERIS bands at 681, 709 and 753 nm.234

The MPH is designed to simultaneously handle three cases, each with two sub-cases, com-235

monly occurring in phytoplankton-dominant and HAB affected waters. These can be summarised236

as follows, and are discussed in detail in the following sections:237

1. Mixed oligotrophic/mesotrophic low-medium biomass waters (chl-a < 30 mg.m−3)238

a) Prokaryote-dominant assemblages with SICF signal (predominantly diatoms/dinoflagellates)239

b) Special case: low biomass cyano-blooms (no observable SICF)240

2. High biomass eutrophic/hypertrophic waters (chl-a > 30 mg.m−3)241

a) Prokaryote-dominant assemblages242

b) Cyanobacteria-dominant assemblages243

3. Extremely high biomass (dystrophic, chl-a > 500 mg.m−3) with surface scums (hyperscums)244

or dry floating algae or vegetation245

a) Prokaryote scums (chl-a > 500 mg.m−3) and floating aquatic macrophytes246

b) Cyanobacterial scums (chl-a > 500 mg.m−3)247

4.1. Fluorescence domain: mixed oligotrophic/mesotrophic low-medium biomass waters248

The first case relates to mixed oligotrophic/mesotrophic low to medium biomass conditions249

with chl-a less than approx. 30 mg.m−3. In these waters where phytoplankton is optically dom-250

inant, the concentration of chl-a is known to be highly correlated with the line height of the251

sun-induced chl-a fluorescence (SICF) peak at 681 nm (Neville & Gower, 1977; Gower, 1980;252

Gitelson et al., 1994; Letelier & Abbott, 1996; Hoge et al., 2003; Giardino et al., 2005; Zhao253

et al., 2008), which is typically larger than the peaks at 709 and 753 nm due to strong absorp-254

tion by water. In these conditions, the MPH algorithm emulates the fluorescence line height or255

FLH algorithm Gower et al. (1999), calculating the line height of the fluorescence peak using256

the MERIS bands 7, 8 and 14. Available validation studies in inland and coastal waters us-257

ing an FLH type algorithm with MERIS have shown the significant potential of this approach258

(Gower & King, 2007; Lee et al., 2007; Gons et al., 2008; Binding & Greenberg, 2011). An259

important distinctionfrom previous studies is that this study demonstrates the ability to detect260

SICF using a type of TOA reflectance, rather than water-leaving reflectance data. The possibil-261

ity to detect chl-a fluorescence at high altitudes despite atmospheric effects was demonstrated262

by Neville and Gower (1977) and is further confirmed here. Any algal assemblage possessing263

SICF is theoretically detectable using this approach, while not taking into account complica-264

tions introduced through variable fluorescence quantum yields between species, diel and other265

photo-physiological variations (Suggett et al., 2009).266

A special case is encountered with low-medium biomass cyanobacteria-dominated algal as-267

semblages. These blooms will not be detectable using a SICF approach, as cyanobacteria possess268

very inefficient SICF as most of the chl-a is located in photosystem I (Seppälä et al., 2007). An269

alternative approach is to take advantage of the phycocyanin fluorescence/absorption features270

visible in MERIS bands at 619 and 664 nm (see fig. 1.D). However, model studies show these271

features only become clearly distinguishable at chl-a concentrations larger than 8-10 mg.m−3,272
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assuming a SNR of 1000 or greater for the satellite sensor (Metsamaa et al., 2006). In this case,273

given a TOA type approach, these PC related features are probably only distinguishable at chl-274

a values larger than around 20-30 mg.m−3 (representing medium-high biomass) (Kutser et al.,275

2006). The ratio of PC:chl-a is also highly variable due to intracellular and physiological pro-276

cesses (Simis et al., 2005, 2007), rendering unsound chl-a estimates from PC related features.277

Therefore detection of cyano-bloom initiation may not be feasible with current instruments − for278

example, PC concentrations less than 50 mg.m−3 may not even be detected with confidence using279

in situ spectroradiometric data (Simis et al., 2007). It is also important to consider how frequently280

this special case scenario might occur in nature. Given that cyanobacteria have a strong tendency281

to become dominant in eutrophic high-biomass conditions, the risk of cyanobacterial dominance282

at chl-a < 20-30 mg.m−3 is small (Downing et al., 2001). For example, at chl-a concentrations283

< 10 mg.m−3, the risk of cyanobacterial dominance is < 10%. Furthermore, the WHO alert level284

two gives a cyanobacterial chl-a concentration equal to or larger than 50 mg.m−3 for the issuing285

of cyanobacteria health warnings; however, this may drop to between 12-25 mg.m−3 for more286

toxic species (WHO, 1999). Given the above considerations, it is probably only possible, and287

arguably only necessary, to detect cyano-blooms of high biomass from an operational risk iden-288

tification perspective. For these cases we can assume that the signal from absorption/backscatter289

related effects becomes apparent which, as now discussed, is the second case handled by the290

MPH algorithm.291

4.2. The absorption/backscatter domain: high biomass eutrophic/hypertrophic waters292

The second case for the MPH concerns high biomass eutrophic/hypertrophic water with chl-a293

concentrations greater than approx. 30 mg.m−3 (incidentally 30 mg.m−3 is the WHO classifica-294

tion threshold for eutrophic fresh water). These conditions are typically encountered in HAB af-295

fected systems during bloom periods. In this case, the red peak shifts towards longer wavelengths296

from the fluorescence peak at 681 nm (if present), to the phytoplankton backscatter-induced297

peak near 700 nm. In these phytoplankton dominant waters, chl-a is known to be highly corre-298

lated with the height (and position) of the 709 nm peak (Gitelson, 1992) and various algorithms299

have been designed to exploit this feature (e.g. Gitelson et al., 1993; Gons, 1999; Dall’Olmo300

& Gitelson, 2005; Zimba & Gitelson, 2006; Gitelson et al., 2009; Le et al., 2011). When the301

absorption/backscattering peak becomes more distinct than the fluorescence peak, the MPH is302

calculated using the 709 nm band and a baseline drawn between MERIS bands 7 and 14. This303

is similar to the scattered/reflectance line height algorithms (Dierberg & Carriker, 1994; Yacobi304

et al., 1995), and also the maximum chlorophyll index or MCI (Gower et al., 2005). Unfortu-305

nately, MERIS and OLCI are the only current and planned ocean colour sensors with appropriate306

bands near 700 nm able to utilise these types of algorithms.307

4.3. A method for the discrimination of cyanobacteria-dominant waters308

A simple but robust method for distinguishing high-biomass cyanobacteria-dominant waters309

from prokaryote dominant blooms is also implemented. The method is based on two theoretical310

and observable suppositions related to the unique pigment complement of cyanobacteria (section311

3.2.2):312

1. Cyanobacteria dominant waters possess no observable SICF peak at 681 nm (arrow 1, fig.313

1.D)314

2. Cyanobacteria dominant waters possess an observable SIPF peak at 664 nm (arrow 2, fig.315

1.D)316
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Based on these observable features, it is possible to distinguish waters dominated by cyanobac-317

teria (fig. 1.D) from those dominated by prokaryote chl-a fluorescing species (fig. 1.C). This318

presents itself in the MERIS waveband configuration by an observable trough at the 681 nm319

band, and an observable SIPF peak in the 664 nm band, respectively. Using the baseline sub-320

traction technique, these two features are used to identify high biomass cyanobacteria dominant321

waters. The two baseline subtraction variables may be calculated as follows:322

S ICFpeak = ρBR681 − ρBR664 − ((ρBR709 − ρBR664) × (681 − 664)/(709 − 664)) (2)
323

S IPFpeak = ρBR664 − ρBR619 − ((ρBR681 − ρBR619) × (664 − 619)/(681 − 619)) (3)

324

The following condition, most easily expressed as a logical statement, is then used to raise a325

cyano-flag for the presence of cyano-dominance:326

I f S ICFpeak < 0 and S IPFpeak > 0, cyano f lag = TRUE (4)

327

The cyano-flag correctly distinguished cyano-dominant water from those dominanted by328

prokaryote species in the dataset (fig. 1). However, for operational applications it is impor-329

tant to consider the detection limits of this kind of technique. As already shown for the special330

case related to low-biomass cyano-blooms, the PC fluorescence features may only be distinguish-331

able at chl-a concentrations larger than 8-10 mg.m−3, assuming a SNR of 1000 or larger for the332

satellite sensor (Metsamaa et al., 2006). In this case, using ρBR these features are probably only333

distinguishable at chl-a values larger than 20-30 mg.m−3 (Kutser et al., 2006).334

4.4. Handling of cyanobacterial surface scums and floating vegetation335

The third case handled by the MPH is extremely high biomass conditions associated with336

surface scums, or hyperscums, and dry floating algae or vegetation. Surface scums form during337

calm conditions as upwardly-buoyant algae (often cyanobacteria) accumulate on the water sur-338

face in dense mats or rafts. This is commonly observed, for example, in the coastal waters of the339

Gulf of Finland (Kutser, 2004), and in cyano-dominant lakes (Zohary, 1985; Hu et al., 2010b). In340

these extreme conditions, the red peak shifts towards 750 nm or higher wavelengths, because the341

absorbing effect of water is excluded or minimized. Consequently, the water leaving reflectance342

resembles dry vegetation rather than water (Richardson, 1996; Kutser, 2004; Kutser et al., 2009).343

For MERIS, the transition between a maximum peak position of 709 (band 9) and 754 nm (band344

10) probably occurs at chl-a values close to or larger than 500 mg.m−3 (see fig. 3 in Kutser,345

2004). Therefore, a flag is raised for surface scums using a threshold condition of chl-a > 500346

mg.m−3 as a general classification (Kutser, 2004). This is because quantitative measures of chl-a347

in surface scum possesses much uncertainty as the dataset did not include any data within this348

range, and because surface scums have variable optical properties (Kutser et al., 2009).349

Floating aquatic macrophytes, such as the notorious waterhyacinth Eichhornia crassipes,350

represent a substantial problem in inland waters. For example, water hyacinth is often present351

in Hartbeespoort dam in relatively small quantities, but can become widespread rapidly if not352

manually controlled using costly control measures (van Wyk & van Wilgen, 2002). Floating353

macrophytes have spectra resembling terrestrial dry vegetation (e.g. Cavalli et al., 2009) and354

may be detected by enlarged reflectance in the 754 nm band. In these instances where the maxi-355

mum peak position is 754 nm, a flag is raised for floating vegetation. For these cases, the MPH356
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resembles the floating algae index (FAI) algorithm used to detect floating surface scums in Lake357

Taihu, China with MODIS (Hu et al., 2010b). Quantitative chl-a estimation for floating vegeta-358

tion detected by the MPH algorithm is not currently accounted for, although might be feasible359

following correct parameterisation on a species basis. The separation of land and water pixels360

also becomes more challenging when dealing with highly enlarged reflectance data in the NIR361

caused by floating macrophytes.362

Cyanobacterial and prokaryotic surface scums were distinguished from one another using the363

cyano-flag from section 4.3. This is based on the assumption that the optical properties of the364

scums are not too deviant from algal cells in suspension. For pixels identified as cyanobacteria365

dominant and having either a chl-a value > 500 mg.m−3, or a maximum peak position of 754 nm,366

a flag is raised for cyanobacterial scum (cyano-scum) . The presence of cyano-scum indicates a367

substantial risk for significant levels of toxin production. More than 50% of cyano-scums anal-368

ysed in a sample of 50 scums in the U.K. were found to be toxic (Codd, 2000). Therefore, cyano-369

scums represent a substantial health risk. Since reflectance signatures from floating macrophytes370

do not possess the distinctive pigment-induced reflectance features of cyanobacteria, it is rather371

simple to distinguish between these and cyano-scum, using equation 4.372

In summary, the MPH is designed to seamlessly handle low, medium and high biomass373

blooms, and surface scums occurring in HAB affected waters. In addition the MPH handles374

cyanobacteria dominant waters separately by distinguishing it from prokaryote blooms and float-375

ing vegetation. The MPH is trained using the combined dataset of 74 in situ chl-a observations376

with matching MERIS BRR spectra from the study areas. The spectra are each assigned class377

membership based on the position of the peak with the maximum height: the fluorescence do-378

main (681 nm peak), the backscatter domain (709 nm peak), and the dry domain (753 nm peak).379

For each domain, a series of least squares fitting procedures correlated the observed matching in380

situ chl-a concentration with the MPH. In each case, the following functions were tested: expo-381

nential growth function of form y = a × exp(bx), quadratic function of form y = ax2 + bx + c,382

power law function y = axb, and linear fit y = a+bx. The goodness of fit was in each case judged383

by the value of the root mean square error (rmse). The results of the analysis are presented in384

section 5.2.385

5. Results and discussion386

5.1. An analysis of adjacency effect corrections using ICOL+387

To assess the effect of the ICOL correction, a comparison between AE corrected bottom-of-388

Rayleigh reflectances and uncorrected bottom-of-Rayleigh reflectances was performed (fig. 2).389

Some unusual and unexpected spectral shapes were obtained following correction with ICOL390

and these are illustrated using a few selected spectra (fig. 2.A). Against expectations, many of391

the corrected spectra showed elevated values at 885 nm and unusual shapes in the 753 − 778392

nm region (compare to fig. 1). To gauge the overall effect of ICOL on the red bands, the mean393

percentage difference between uncorrected and corrected spectra was calculated (fig. 2.B). As394

expected, the effect of ICOL was to decrease the overall magnitude of the bands in the red. The395

mean percentage difference was -12.6% at 664 nm, -12.2% at 681 nm, -13.5% in at 709 nm,396

-10.7% at 753 nm and -5.2% at 885nm. ICOL had the greatest relative effect on the 709 nm397

band, while the effect further in the NIR is roughly half that. This result appears to be against398

expectations, given that other studies suggest that the adjacency effect is relatively larger in bands399

further towards the NIR (e.g. Odermatt et al., 2008). There is an expectation that bands further400
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Figure 2: Comparison between uncorrected bottom-of-Rayleigh reflectances (ρBR) and those corrected for the adjacency
effect using the ICOL+ processor (ρAECBR). Panel A shows selected spectra identified because of their unusual shapes
following correction with ICOL. The change in the MERIS red bands following correction with ICOL is show in panel
B. Similarly, panels C and D show the change in the MPH variable after application of ICOL, for low (C) and high ranges
(D) of MPH.

towards the NIR have relatively larger correction factors. Therefore, there appears to be an401

overcorrection of smaller wavelengths (<709 nm) and an under-correction at larger wavelengths.402

Fig. 2.C and 2.D illustrate the effects of ICOL on the MPH variable (section 4.1). It was found403

that the height of the maximum peak in the red was reduced following ICOL by mean value of404

12.0%, which had a significant effect on the value of the MPH variable. The MPH generally405

became smaller and there were more negative values (fig. 2.C). The mean percentage difference406

between the corrected/uncorrected MPH values was -47.2%, which was heavily influenced by a407

small number of large outliers.408

Evidently, ICOL has a large influence on the MPH variable and significant effects on the red409

bands. ICOL was implemented in a way that calculates the aerosol type (that is the Angstrom410

coefficient (α)) and the aerosol optical thickness (AOT) over water while taking into account411

case 1 or case 2 water (based on the BRR at 709 nm). This means that the retrieval of the412

AOT and the aerosol type (α) is determined simultaneously from NIR bands and extrapolated413

to smaller MERIS bands (Santer, 2010). Therefore, the selection of an incorrect aerosol type414

could lead to the unusual effects (bias) observed in the ρAECBR. Therefore, the unexpected effects415
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appear to be associated with the retrieval of the AOT and aerosol type selection. Based on these416

findings, an adjacency correction only taking into account Rayleigh effects is preferable, based417

on the recommendation of Santer & Schmechtig (2000) for operational AE corrections. The418

main reason for this is due to the large influence that the vertical aerosol distribution has on the419

aerosol AE, which is unknown. It seems that an AE correction including aerosol effects over420

these targets is currently not well performed and introduces artifacts in the data that cause more421

negative and erratic MPH values. Due to the sensitivity of the MPH to relative changes in the422

red/NIR bands and based on these initial analyses, ICOL+ is not recommended for application423

with the MPH algorithm at this stage. Undoubtedly, the small size and eutrophic conditions of424

the water targets makes them extremely challenging targets for any atmospheric or adjacency425

effect correction procedure.426

5.2. Derivation of MPH427

5.2.1. The fluorescence 681 nm domain428

Figure 3: Chl-a versus the MPH for the fluorescence domain calculated using a maximum peak height position of 681
nm (panel A). Only data from Loskop and Benguela study areas belonged to this domain. Outliers are shown in grey.
The observed chl-a versus that predicted by the MPH algorithm is shown in panel B.

Separate fits were used to best describe the fluorescence and absorption/backscatter domains.429

In the fluorescence domain the best fit was given as (fig. 3):430
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Chl a = 2.72 + 6903.13 × MPH (5)

431

The rmse is 3.5 mg.chl-a.m−3 and the mape is 69% for chl-a in the range 0.5 − 30 mg.m−3 (r2
432

= 0.71, p = 0.00, F=83, N=36). Therefore the algorithm is sensitive to a minimum chl-a value of433

approximately 3.5 mg.m−3. To improve the goodness of fit, the algorithm is constrained to data434

points with maximum peak positions at 681 nm and corresponding chl-a values < 30 mg.m−3.435

This resulted in several outliers being excluded that had chl-a values > 30 mg.m−3 (N=3). This436

is because quantification of the fluorescence signal is challenging for chl-a values > 30 mg.m−3
437

Babin (1996), and to improve the algorithm’s sensitivity at lower values. Further to this, outliers438

(show in grey on fig. 3) were also excluded from the regression, on the basis of a 95% confidence439

interval for studentized residuals (N=2). This also served to improve the goodness of fit.440

Fig. 3 includes several data points with negative MPH values, all of which are from Loskop.441

These negative values are within the 95% confidence interval and occupy an expected region442

of low chl-a concentrations. For these reasons the data are not excluded. In determining an443

explanation for the negative MPH values, the specific conditions related to the target (Loskop),444

and the mechanisms whereby the MPH becomes inverted must be considered. Firstly, the data445

points are from the very dark oligotrophic main basin in Loskop lake. Atmospheric correction446

over similar, dark, oligotrophic lakes is extremely challenging due to stray light adjacency effects447

and the dark nature of the target (for the impact of the AE in subalpine lakes see Guanter et al.,448

2010; Odermatt et al., 2010). Such effects would cause reflectances in the red and NIR bands449

to be enlarged resulting in an inverted (negative) MPH. This seems to be the most plausible450

explanation for the negative values and highlights the difficulty associated with handling small,451

oligotrophic inland waters.452

Despite this finding, the algorithm’s performance in the florescence domain seems to be very453

robust given that it is capable of detecting chl-a with a sensitivity of less than 4 mg.m−3 from454

bottom-of-Rayleigh reflectance data. As fig. 3 shows, there were no data points from cyanobac-455

teria dominant waters (Zeekoevlei/Hartbeespoort) belonging to the fluorescence domain. Table456

2 shows statistics associated with the MPH variable used to determine discrete threshold values457

for the fluorescence domain.458

5.2.2. The absorption/backscatter 709 nm domain459

When plotting the absorption/backscatter domain, it immediately became apparent that there460

was a large offset in MPH values between data points from cyano-dominant waters (Zeekoevlei461

and Hartbeespoort) and those from prokaryote dominant waters (Loskop/Benguela) (fig. 4).462

Concurrently, there was excellent agreement between the data for each of these water types.463

Therefore, separate fits were used for cyano-dominant waters (eukaryotes) and for waters with464

phytoplankton assemblages made up predominately of dinoflagellates or diatoms (prokaryotes)465

(fig. 4.A). For dinoflagellate/diatom dominant waters, the best fit was given as:466

Chl a = 37.18 + 11228.38 × MPH (6)

467

The rmse is 88.8 mg.m−3 which equates to a mean percentage error (mpe) of 104% (r2=0.384,468

p=0.042, F=5.6). According to studentized residual values, there were no outliers. The algorithm469

was not constrained further due to the small sample number (N=11). The relatively low statistical470

significance and large mpe must be taken into account given the small sample size and the large471
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Figure 4: Performance of the MPH for the absorption/backscatter domain (panel A). Separate fits were used for cyano-
dominant waters (Hartbeesport/Zeekoevlei) and prokaryote dominant waters (Loskop/Benguela). The observed vs. pre-
dicted chl-a is shown in panel B.

range of chl-a values over which the algorithm is expected to perform (a range of 343 mg.m−3).472

An exponential fit was obtained for cyano-dominant waters:473

Chl a = 22.44 × exp(35.79 × MPH) (7)

474

The robust nonlinear least squares estimation gave an rmse of 46.6 mg.m−3 corresponding to475

a mape of 33.7% (r2=0.58, N=17). All of the data from cyano-dominant waters had a 709 peak476

position and MPH values > 0.02 (see table 2). Based on the intercept of the algorithm, only chl-a477

values greater than 22.4 mg.m−3 can be estimated using the algorithm.478

5.2.3. Theoretical considerations related to cyano-dominant waters479

The large discontinuity in fig. 4 enables us to distinguish cyano-blooms purely on the basis480

of the magnitude of the MPH variable. These large and quantifiable differences in the red-NIR481

reflectance between prokaryote and eukaryote dominated waters requires closer examination.482

Assuming phytoplankton is the dominant constituent with regards to causal IOPs, the magnitude483

of the 709 nm peak will be dependent upon the specific backscattering coefficient (bb∗) of the484
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dominant phytoplankton species, which is known to vary by several orders of magnitude between485

different species/classes (Whitmire et al., 2010; Stramski et al., 2001). Therefore, the large ob-486

served discontinuity could be explained on the basis that cyanobacteria (e.g. Microcystis sp.)487

have significantly greater backscattering per unit chl-a (chl-a specific backscatter coefficients,488

bb∗) in the red than dinoflagellate/diatom species. This would lead to larger MPH values such489

as observed in cyano-dominant waters since remote sensing reflectance is directly proportional490

to backscatter (R ≈ bb/(a + bb)), while also providing a robust theoretical explanation for the491

observations. However, is there any evidence for this hypothesis?492

Firstly, there is a significant amount of evidence that gas vacuoles found in certain cyanobac-493

terial species (incl. Microcystis aeruginosa) are very efficient light scatterers in the forward and494

backward direction (Walsby, 1994). For example, in a turbid reservoir dominated by Microcystis495

spp., Ganf et al. (1989) found that 80% of light scatter could be attributed to the intracellular gas496

vacuoles. Further evidence can be found in the findings of Volten et al. (1998) who showed that497

the presence of gas vacuoles altered the scattering properties of phytoplankton considerably, in498

agreement with the earlier findings of Dubelaar et al. (1987) who found anomalous light scatter499

in vacuolate Microcystis aeruginosa. Because morphological differences and intracellular struc-500

ture has been shown to have a large influence on backscattering (Whitmire et al., 2010; Svensen501

et al., 2007), the effect of gas vesicles in cyanobacterial cells on backscattering is likely to be502

substantial.503

Secondly, phytoplankton with small diameters (d) possess larger backscatter per unit chl-a504

(bb∗) than intermediate and large celled species (Ahn et al., 1992; Bernard et al., 2009). There-505

fore, per unit chl-a, small celled cyanobacteria may backscatter up to two orders of magnitude506

greater than larger non-cyanobacterial species. Therefore, based on the presence of vacuoles,507

and on theoretical explanations and experimental observations related to cell size, cyanobacteria508

should in many instances posses larger bb∗ than prokaryote species.509

To verify whether this can be observed in natural waters, ancillary measurements of spectral510

backscattering collected using a Hydroscat 2 metre (Hobilabs Inc.) in Microcystis aeruginosa511

dominant blooms in Hartbeespoort and in a dense (chl-a > 500 mg.m−3) dinoflagellate Ceratium512

balechii bloom in the southern Benguela (see Pitcher & Probyn, 2011) were used. The Hydroscat513

was configured to measure the backscattering coefficient at 420 and 700 nm. The conversion be-514

tween the measured volume scattering function at 120 ◦ (minus pure water) to backscattering was515

based on a single conversion factor (χ) obtained from instrument calibration. A single conversion516

factor is known to be generally sufficient for use with various algal classes (e.g. Whitmire et al.,517

2010). From co-incident backscatter and chl-a measurements, a mean chl-a specific particulate518

backscatter (bbp∗) in Hartbeespoort was calculated as 0.4×10−3 m−1 at 420 nm and 1.98×10−3
519

m−1 at 700 nm (N = 13). In contrast, bbp∗ in the Benguela was 0.116×10−3 m−1 at 420 nm and520

0.141×10−3 m−1 at 700 nm, an order or magnitude smaller than for Microcystis. These measure-521

ments, made in blooms when phytoplankton was demonstrably the dominant contributor to bulk522

IOPs, are within the range of those presented in Ahn et al. (1992) and Whitmire et al. (2010).523

If anything, the value for Microcystis is underestimated given that the measurements were made524

at a depth of 0.68 m and the blooms were floating. Nevertheless, the measurements reveal that525

for Microcystis aeruginosa, backscatter is slanted towards the red and is at least an order-of526

magnitude larger in the red than for the dinoflagellate Ceratium balechii.527

Further conclusive evidence is found in Whitmire et al. (2010) who showed that for single528

species of cultured marine phytoplankton, there is a significant linear relationship between chl-a529

and bbp, and that the magnitude and slope of bbp is distinctive enough to distinguish between530

different species (see Fig. 5 in Whitmire et al., 2010). Substantial experimental and theoretical531
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grounds therefore exist for the result in fig. 4. This might offer significant justification for the532

finding that cyano-blooms are distinguishable from non-cyanobacterial blooms based purely on533

the magnitude the absorption/backscatter-induced 709 nm peak, rather than on the observation534

of accessory pigment related reflectance features (such as those of phycocyanin). Given that the535

algal assemblages in our study areas were made up of comparative species, either Microcystis536

aeruginosa or Ceratium spp., the relationship between chl-a and bbp was maintained between537

the systems, allowing derivation of algorithms specific for each of the algal classes.538

5.3. An operational switching MPH algorithm539

Figure 5: The switching operational MPH algorithm for prokaryote-dominant waters showing class membership (panel
A). The MPH algorithm for cyano-dominant waters (panel B). The combined algorithms scope and performance is shown
in panels C and D. Panel D shows the algorithms performance relative to trophic status classification.

Table 2: Statistics for the MPH variable grouped by the position of the maximum peak height.
Domain Mean Min. Max. Range St. dev. Chl-a min. Chl-a max.
Fluorescence 0.00073 -0.00034 0.0026 0.00029 0.00078 0.5 26.85
Backscatter (dino/diatom) 0.0105 0.0022 0.0203 0.0180 0.0059 7.7 350.4
Backscatter (cyano) 0.0465 0.0217 0.0752 0.0536 0.0124 33.0 362.5
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In order to obtain an algorithm suitable for operational use, a single algorithm for prokaryote540

algal assemblages and another for waters identified as cyano-dominant was developed. Table 2541

shows the descriptive statistics for the MPH variable obtained from the statistical fits in figs. 3542

and 4. The continuity between the fluorescence domain and the backscatter domain for prokary-543

otes is good, with some overlap. Therefore, in order to obtain a single continuous algorithm for544

chl-a estimation in prokaryote dominant waters, a 4th order polynomial was fitted after sorting545

the data (fig. 5) to obtain the following equation:546

Chla(Prokaryotes) = 5.24×109mph4−1.95×108mph3 +2.46×106mph2 +4.02×103mph+1.97
(8)

547

The mean absolute percentage error of the algorithm is 59.9% and the r2 value is 0.71. The548

operational algorithm is designed to operate seamlessly between the fluorescence and absorp-549

tion/backscatter domains for prokaryote SICF possessing algae. Similar 4th order polynomials550

are also used for the operational empirical algorithms for MODIS (OC3M) (Campbell & Feng,551

2005) and SeaWiFS (OC4) (O’Reilly et al., 1998), which use the maximum value of several band552

ratios, similar to the maximum peak selection of the MPH algorithm. The polynomial fit is ad-553

vantageous because it provides good continuity between the different domains of the algorithm,554

shown in fig. 5.A. It is important to consider that the algorithm here is not the best fit for the555

data - the data has been sorted to give this fit - but rather the polynomial provides the smallest556

difference between predicted and observed chl-a values measured by the mean absolute percent-557

age error (mape). For waters identified as cyanobacteria based on the flag in section 4.3, eq. 7558

was used (fig. 5.B). The combined performance of the algorithms (fig. 5 C and D) in each of559

the trophic status classes is: oligotrophic, mape=71%, N=26; mesotrophic, mape=19%, N=9;560

eutrophic, mape= 131%, N=3; hypertrophic, mape=37%, N = 10.561

6. Application and conclusions562

6.1. Application to study areas563

The operational MPH algorithm (section 5.3) was applied to imagery from the study areas in564

order to test its performance (fig. 6). The following cases were used to assess different aspects565

of the algorithm:566

1. Identification of cyano-scums and cyano-dominant water in the hypertrophic waters of Hart-567

beespoort Dam.568

2. Trophic status detection over a wide range of trophic states from oligotrophic to hypertrophic569

in prokaryotic-dominated assemblages in Loskop Dam.570

3. High biomass HAB event detection in the waters of the southern Benguela and comparison571

with standard MERIS L2 algal products.572

For the first test case, the cyano-flag correctly identified cyano-dominant water as well as573

cyano-scums that were observed at Hartbeespoort in situ during October 2010 (fig. 6.B). As574

a control, the algorithm was also applied to a scene from winter of the same year, before the575

onset of the spring cyano-bloom (fig. 6.A). In this case the algorithm did detect the presence576

of cyanobacteria in the lake, although this may be a result of chl-a concentrations below the577

detection limits of the cyano-flag (< 30 mg.m−3). . Nevertheless, the example illustrates how578
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the algorithm might be used for cyano-detection in small hypertrophic inland waters, and serve579

as a warning product for both commercial and recreational users. The cyano-flag also appeared580

robust when applied to a time series of the data (not shown here).581

For the second test case, the MPH algorithm reproduced the strong longitudinal chl-a gradi-582

ent observed in situ in Loskop during August of 2011 (fig 6.C). The hypertrophic water towards583

the riverine zone in the south west corner shows the presence of a persistent Ceratium dinoflag-584

ellate bloom, which was correctly identified as prokaryote-dominated (not cyanobacteria) by the585

algorithm. Towards the north east and the main basin of the lake, a gradual gradient is followed586

until oligotrophic water is found with chl-a less than 3 mg.m−3. This demonstrates the algo-587

rithm’s ability to operate over a large trophic range, switching smoothly between the 681 nm588

fluorescence and 709 nm absorption/backscatter-induced peaks as the optimal signal source. A589

second image from October 2011 shows that the bloom has moved further downstream towards590

the main basin of the lake most likely in response to the first spring rainfall. This example illus-591

trates the capability of the MPH to operate across a wide range of trophic states in a small lake592

with some confidence and shows how the MPH might be used as a trophic status indicator in593

small inland waters.594

The final test case is a high-biomass Prorocentrum triestiunum bloom that occurred in the595

southern Benguela during March 2005 (fig. 6.E, 6.F). Chl-a derived from the MPH algorithm596

correctly estimated the extremely high concentrations (> 300 mg.m−3) that were observed in situ597

towards the coastline, and which occurred occasionally in dense patches (fig. 6.F). Compara-598

tively, the standard MERIS L2 algal2 product (fig. 6.E) failed to reach these high concentrations,599

severely underestimating the bloom biomass. To achieve a more detailed comparison between600

the MPH algorithm derived chl-a and those from the standard MERIS algal1 and algal2 products,601

pixels were extracted from the rectangular boxes drawn in fig. 6.E, and scatter plots made (fig.602

7). For waters with chl-a less than 25 mg.m−3, the MPH estimates were found to be highly co-603

variant (r2 = 0.93) with the algal1 product. However, the MPH chl-a estimates were consistently604

and significantly larger than those from algal1 (fig. 7.A). This is likely a result of the lower sen-605

sitivity of the MPH algorithm, which is near a minimum of 3.5 mg.m−3. The significant positive606

bias suggests that the MPH may overestimate chl-a in clear oligo/mesotrophic marine waters.607

This is expected given the dataset from which the algorithm is derived.608

In waters surrounding the peak area of the bloom, chl-a estimates from the MPH algorithm609

were highly covariant with those from algal2 (r2=0.88) when constrained to an upper range of610

45 mg.m−3 (fig. 7.B). Although chl-a from the MPH is positively biased, the values estimated611

in the range between 15 − 30 mg.m−3 are quite similar. For chl-a > 45 mg.m−3, there was no612

correlation, since algal2 has an upper training range of around 30 mg.m−3. However, the chl-a613

estimates > 45 mg.m−3 neatly occupied an expected position on the graph indicating that that the614

MPH algorithm is operating well above the upper limits of algal2 which is unsuited to southern615

Benguela waters in bloom conditions.In summary, the MPH provides reasonable and stable com-616

parisons with the MERIS L2 standard products, however, in this instance its usefulness appears617

to be limited to blooms with chl-a values larger than around 10 mg.m−3, due to the algorithm’s618

sensitivity. As there are currently no alternative quantitative ocean colour algorithms giving rou-619

tine estimates > 30 mg.m−3, no comparisons were possible inside this range. It remains to be620

seen how the MPH might compare with alternative ocean colour algorithms designed for extra621

high-biomass waters. Further testing of the algorithm using in situ data sets (such as NOMAD)622

is not feasible as these lack sufficient chl-a data from high biomass waters and reflectance data623

for the appropriate red/NIR reflectance bands required by the MPH algorithm.624
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6.2. Global application examples625

The MPH algorithm was applied to various well-known study areas in order to demonstrate626

its cross-applicability for both cyanobacteria and floating algae detection in diverse environ-627

ments. The Baltic sea is frequently affected by very large cyano-blooms in summer months that628

form surface scums, and these have often been observed using remote sensing (e.g. Reinart &629

Kutser, 2006). Fig 8.A. shows the MPH algorithm applied to a MERIS RR scene on 17 July 2002630

(note RGB image alongside for comparison). The MPH correctly identifies the cyanobacterial631

bloom (shaded pixels) which are most likely Aphanizomenon flos-aquae, Nodularia spumigena,632

or Anabaena circinalis. This demonstrates the cyano-flag correctly identifies marine species of633

cyanobacteria in the Baltic sea. The range of chl-a values estimated by the algorithm are also634

within the ranges of those estimated by local algorithms for blooms occurring in the same month635

(Reinart & Kutser, 2006). Therefore initial results from the MPH algorithm indicates that it636

might be well-suited for application with cyano-blooms in the Baltic Sea, where conventional637

algorithms most often often fail.638

Lake Taihu in China is well know for outbreaks of severe Microcystis spp. blooms that ac-639

cumulate in dense cyano-scums on the surface. These have recently been observed in a ten year640

time series using MODIS and the floating algal index (FAI) (Hu et al., 2010a). Initial results641

from the MPH algorithm in Lake Taihu show that it correctly identifies these cyano-blooms and642

scums, reproducing the observations of Hu et al. (2010a) (fig. 8.B). This result is expected as643

the MPH algorithm is derived from lakes with Microcystis spp. dominated assemblages similar644

to Lake Taihu. As can be seen in the south eastern parts of the Lake, the MPH algorithm also645

detected floating macrophyte vegetation (magenta pixels). Macrophytes are know to occur in646

this region of the Lake and are most likely Potamogetan maackianus (pondweed) or Vallisneria647

natans (eelgrass) (Qin et al., 2007) which are emergent and floating-leaf species. A final exam-648

ple is given from Lake Victoria, which experiences severe eutrophication and cyano-dominance649

in some regions (e.g. Lung’ayia et al., 2000). Floating vegetation such as waterhyacinth (Eich-650

hornia crassipes), Nile Cabbage (Pistia stratiotes), and water lily (Nymphaea caerulea) are also651

present in the Lake in standing crops (Cavalli et al., 2009). Fig 8.C. shows a MERIS FR scene652

indicating a large bloom identified as cyanobacteria, most likely Microcystis or Anabaena spp.653

(see Lung’ayia et al., 2000), extending into the central parts of the Lake, along with cyano-scum654

accumulations along the shoreline. This example, together with those above, demonstrate how655

the MPH algorithm and cyano-flag might be used for global monitoring of trophic status and656

cyano-blooms.657

6.3. Conclusion658

In conclusion, the MPH algorithm provides a new and efficient method for trophic status659

determination, cyano-bloom monitoring and floating vegetation detection in inland and coastal660

waters. The findings demonstrate that chl-a estimates for trophic status determination might661

be given with considerable accuracy using a top-of-atmosphere approach by taking advantage662

of absorption/backscatter and fluorescence related features in the red/NIR wavelengths of TOA663

reflectance data from the MERIS sensors. These features are clearly discernible in the TOA664

reflectance signal and the baseline-subtraction calculation of the MPH algorithm provides an665

effective normalisation of atmospheric effects, assuming that aerosol effects are not too spectrally666

deviant between the 664 and 885 nm bands. Therefore for broad trophic status assessment,667

simple Rayleigh atmospheric corrections are likely sufficient and avoid the more complicated668

and error-prone aerosol atmospheric corrections in turbid case II waters. The advantages of a669
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TOA-type approach are also evident in improved processing times and simpler implementation670

for operational monitoring systems.671

The MPH variable presents itself as a suitable parameter for distinguishing prokaryotic phy-672

toplankton from vacuolate cyanobacteria species. Large differences were observed in MPH mag-673

nitude between assemblages dominated by eukaryotic cyanobacteria Microcystis spp. (Zeeko-674

evlei/Hartbeespoort) and prokaryotic dinoflagellates/diatoms (Benguela/Loskop). These differ-675

ences allow for the discrimination of these algal classes in high biomass circumstances based on676

the magnitude of the MPH variable. This is substantiated by evidence that cyano-dominant wa-677

ters have considerably higher backscatter per unit chl-a (b∗b), leading to the increased magnitude678

of the MPH variable. This finding indicates the potential for ‘tuning’ of the MPH algorithm for679

various phytoplankton species using differences in the magnitude of chl-a specific backscatter680

(cf. Whitmire et al., 2010). Radiative transfer modeling studies will undoubtedly be valuable in681

confirming and further substantiating this finding, providing that appropriate parameterisations682

of the the relevant phase functions and IOPs are available. In addition, a flagging method was683

defined which allows cyano-dominant waters to be distinguished from other blooms on the basis684

of cyanobacteria-specific spectral pigmentation features related to enhanced SIPF and reduced685

SICF. Initial results from cases with coincident in situ observations, and examples from global686

applications, suggest that this flag is a robust method for detecting high-biomass occurrences687

of cyano-blooms (chl-a > 30 mg.m−3). Further application of this technique will undoubtedly688

have significant implications for cyanobacteria-oriented early warning remote sensing systems,689

as well as for frequency/risk analysis applications and bloom phenology.690

The uncertainties related to the chl-a algorithms originate from the ‘single point’ sampling691

error, chl-a quantification methods, and atmospheric and sub-pixel variability. Notwithstanding692

the relatively small magnitudes of these errors, chl-a estimates are likely confident to within693

3.5 mg.m−3 for chl-a < 30, and > 50 mg.m−3 for chl-a < 500 mg.m−3. Detection of cyano-694

bloom initiation (< 30 mg.m−3 ) remains challenging due to a lack of appropriate signal caused695

by a relative absence of SICF. Low-biomass waters having high mineral content also present696

a challenge due to interference with the SICF signal (Mckee et al., 2007). Therefore, the MPH697

algorithm is best suited for application in waters where phytoplankton is the dominant contributor698

to the bulk IOPs.699

The MPH algorithm presents a new approach for empirical algorithms estimating chl-a in700

inland and coastal waters. This is one of only a few studies showing that empirical chl-a mea-701

surements are significantly correlated with a variable derived from top-of-atmosphere MERIS702

reflectance data (see also Giardino et al., 2005; Matthews et al., 2010). Furthermore, this is the703

first study where cyano-dominant waters have conclusively been distinguished from prokaryote-704

dominant algal assemblages on the basis of variable chl-a specific backscatter as observed in705

the 709 nm peak in MERIS band 9. This finding has substantial implications for empirical706

and model-based algorithms aimed at identifying algal classes in eutrophic waters from space.707

A new technique presented for cyanobacteria detection based on cyanobacteria-specific spectral708

pigmentation and fluorescence features should provide more information on cyano-dominance in709

inland and coastal waters. In conclusion, the MPH algorithm is useful for estimating trophic sta-710

tus, cyano-dominance, and the occurrence of surface scums and floating vegetation, and presents711

a substantial opportunity for monitoring systems aimed at filling information gaps on the sever-712

ity and extent of these problems in inland and coastal waters. The routine generation of such713

products will have a broad range of conservation, trend analysis, status determination, quality714

auditing and ecosystem analysis applications.715
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Figure 6: Example applications of MPH V. 1.0 to Hartbeespoort Dam (A, B) Loskop Dam (C, D) and the southern
Benguela (E, F). Shaded and faceted pixels indicate where the flag for cyanobacteria has been raised while dark green
pixels indicate surface scum (chl-a > 500 mg.m−3). Box 1 shows the pixels extracted for comparison with the algal2
product, while box 2 shows those extracted for comparison with algal1.
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Figure 7: Comparison between MERIS standard level 2 products, algal1 (panel A) and algal2 (panel B) and chl-a derived
from MPH in the southern Benguela in a large dinoflagellate bloom on 30 March 2005. The boxes in fig. 6 show where
the data was taken from within the scene.
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Figure 8: Global examples of the MPH in A) the Baltic sea during and intense cyanobacteria bloom (likely Aphani-
zomenon flos-aquae), B) Lake Taihu (Microcystis aeruginosa), and C) Lake Victoria (unidentified species). Pixels with
shading indicate where cyanobacteria is detected with certainty. RGB images are shown alongside for comparison.
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