The influence of Pr3+ co-doping on the photoluminescence and cathodoluminescence properties of SiO₂:Eu³⁺/Tb³⁺.

G H Mhlongo^{1,2}, M S Dhlamini³, O M Ntwaeaborwa^{2*}, H C Swart, K T Hillie^{1, 2**}

¹National Centre for Nano-structured Materials, CSIR, PO Box 395, Pretoria, ZA0001

²Department of Physics, University of Free State, Bloemfontein, ZA9300.

³Department of Physics, University of South Africa, P.O. Box 392, Pretoria, ZA0003

E-mail: ntwaeab@ufs.ac.za, THillie@csir.co.za

Abstract. Tb³⁺- Pr³⁺, and Eu³⁺- Pr³⁺ ion pairs co-doped in a SiO₂ matrix were prepared by a sol-gel method. Red and green photoluminescence associated with ${}^5D_0 \rightarrow {}^7F_2$ ${}^5D_4 \rightarrow {}^7F_5$ transitions of Eu³⁺ and Tb³⁺ singly doped in SiO₂ were observed at 614 and 543 nm respectively. Co-doping of Eu³⁺ and Tb³⁺ ions with Pr³⁺ in SiO₂ resulted in the quenching of Eu³⁺ and Tb³⁺ emissions with increasing Pr³⁺concentrations. The quenching was also confirmed by cathodoluminescence measurements recorded from the same powders. The quenching effects are discussed.

1. Introduction

Enhanced luminescence induced by energy transfer between trivalent rare earth co-activators in host matrices has been demonstrated in nanophosphors. The enhanced luminescence is investigated in a variety of studies for potential application in different types of light emitting devices. Such studies have provided information about the interaction between the activators and the host matrix, as well as an insight in regard to the long-range interactions and energy transfer between the activator ions. For example, Mahato et al [1] studied energy transfer between Pr³⁺ and Tb³⁺ and observed that increasing the Pr^{3+} concentration reduced the emission intensity of Tb^{3+} while that of Pr^{3+} was enhanced indicating the energy transfer from the 5D_4 level of Tb^{3+} to the 3P_0 level of Pr^{3+} . Wang et al [2] observed the energy transfer from both 1S_0 and 3P_0 states of Pr^{3+} ions to Er^{3+} ions co-doped in CaAl₁₂O₁₉. In some cases, co-activators quench the luminescence intensity instead of enhancing it. For example, Meijerink et al [3] observed quenched luminescence of Pr3+ when Eu3+ and Pr3+ were codoped in YF₃.

In the present paper, we have synthesized Pr3+ co-activated SiO2:Eu3+/Tb3+ using the sol-gel method. The effect of Pr³⁺ co-doping in the luminescence properties under excitation of ultraviolet (UV) light and an electron beam was demonstrated. Fluorescence quenching effects due to Pr³⁺ codoping are discussed.

O.M Ntwaeaborwa, ntwaeab@ufs.ac.za

T. K. Hillie, thillie@csir.co.za

2. Experimental

SiO₂ phosphors co-doped with different concentrations of Pr³⁺-Tb³⁺ ion pairs were prepared by mixing 0.05 mol of tetraethylorthosilicate (TEOS), 0.1 mol of H₂O, 0.1 mol of ethanol, and 0.145 mol of dilute nitric acid. The mixture was stirred at room temperature for 1 hour. The resulting transparent sol was mixed with a desired amount of Pr(NO)₃.6H₂O dissolved in 5 ml of ethanol and was stirred for 30 minutes. A desired amount of Tb(NO)₃,6H₂O dissolved in 5 ml of ethanol was also added to the solution and stirred further for 30 minutes until a gel formed. The gel was then dried at room temperature for 3-8 days. The dried gel was ground and annealed in air at 600 °C for 2 hrs. A similar procedure was used to prepare SiO₂:Pr³⁺-Eu³⁺phosphors with different concentrations of Eu³⁺ and Pr³⁺.

The cathodoluminescence (CL) data of the samples were recorded using an Ocean Optics S2000 Spectrometer. The photoluminescence (PL) data were recorded using a DongWoo Optron Co. setup equipped with a Xe Arc lamp DL180-Xe. The particle morphology was analyzed using a JEOL 2100 High Resolution Transmission Electron Microscopy (HRTEM) while the chemical composition was analyzed by Energy Dispersive Spectrometer (EDS).

3. Results and discussion

3.1. HRTEM, particle morphology and size

Fig. 1 (a), (b), and (c) show the HRTEM images of SiO₂:Tb³⁺-Pr³⁺, SiO₂:Eu³⁺-Pr³⁺, and pure SiO₂, respectively. As indicated in Fig. 1 (c), pure SiO₂ was amorphous while fig. 1 (a) and (b) revealed the presence of smaller spherical particles enveloped in amorphous SiO2. As confirmed by EDS data (not shown) these particles were composed of Pr, Eu, and Tb.

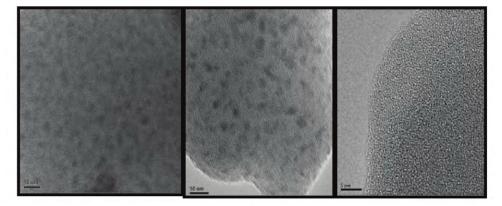


Fig. 1. HRTEM images of (a) SiO₂:Tb³⁺-Pr³⁺, (b) SiO₂:Eu³⁺-Pr³⁺, and (c) pure SiO₂.

3.2. Photoluminescence (PL) properties of SiO_2 : Eu^{3+} - Pr^{3+} and SiO_2 : Tb^{3+} - Pr^{3+}

In order to evaluate the effect of Pr3+ co-doping in SiO2:Eu3+, the PL properties were investigated. In fig. 2, the PL emission spectra of SiO₂:1 mol% Eu³⁺ and SiO₂:1 mol% Eu³⁺-0.2 mol% Pr³⁺ obtained after excitation at 395 nm using a Xenon lamp are compared. It can be seen from the spectra that the emission associated with the ${}^5D_0 \rightarrow {}^7F_{J(J=0,1,2,3,4)}$ transitions of Eu³⁺ with the intense red emission at 614 nm corresponding to the ${}^5D_0 \rightarrow {}^7F_2$ transition was observed. The assignment of these emission peaks is in accordance with the previous work reported by Changqing et al [5] and Wang et al [6] for SiO2:Eu3 phosphors. It can be noticed from the spectra that the Eu³⁺ emission is well pronounced even after Pr³

co-doping and no emission from Pr3+ was observed, which indicates no contribution from Pr3+. Also, the relative intensities of SiO₂:Eu³⁺ and SiO₂:Eu³⁺-Pr³⁺ show that the luminescence from Eu³⁺ ion is strongly quenched due to addition of 0.2 mol% of Pr3+. These results confirm the observation of Kandpal et al [7] for Pr³⁺-Eu³⁺ ion pairs co-doped in a dimethylsulphoxide (DMSO) system.

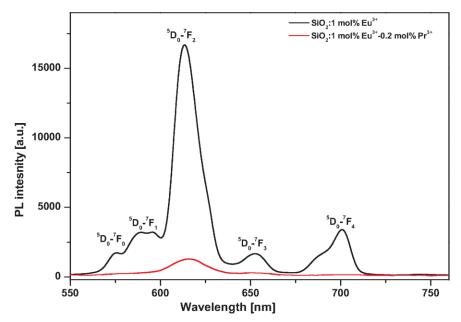


Fig. 2. Emission spectra of SiO₂:1 mol% Eu³⁺ and SiO₂:1 mol% Eu³⁺-0.2 mol% Pr³⁺ obtained during excitation at 395 nm at room temperature.

The emission spectra of SiO₂:1 mol% Tb³⁺ and SiO₂:1 mol% Tb³⁺-0.2 mol% Pr³⁺ are compared and shown in figure 3. These spectra were collected during excitation at 371 nm at room temperature. Both spectra exhibit green emission at 543 nm which can be attributed to the ${}^5D_4 \rightarrow {}^7F_5$ transition and the minor emission peaks associated with ${}^5D_4 \rightarrow {}^7F_{J\,(J=0,1,2,3,4)}$ transitions of Tb³⁺ were also observed at 489, 543, 549, 584, 622 nm, respectively. These results agrees well with results reported elsewhere [1,8-10]. Again, when adding Pr³⁺ the luminescence intensity from Tb³⁺ was significantly quenched but to a lesser extent when compared to the data in Figure 2.

The strong quenching of the PL intensity is apparent from all Pr3+ co-doped SiO2:Eu3+/Tb3+ phosphor powders. There are two possible reasons which may cause this. First, the aggregation of Pr³⁺ ions or pairing of Pr³⁺ ions with Eu³⁺/Tb³⁺ ions. Such a process leads to migration of excitation energy from one activator ion to its nearest ion by nonradiative transitions and via a large number of transfer steps, before the energy is released. During the transfer process, the energy can be transferred to defects which act as energy sinks within a transfer chain thus leading to a significant decrease in the PL intensity. In this case, it is most likely to happen that the energy may be exhausted by killer or/and defects during the energy transfer process among one kind of Pr³⁺ ions prior to the other kind of Tb³⁺/Eu³⁺ ion. Secondly, it is also possible that the interaction between Pr³⁺-Eu³⁺ and Pr³⁺-Tb³⁺ ion pairs is through a Pr⁴⁺-Eu²⁺ and Pr⁴⁺-Tb²⁺ metal-to-metal charge transfer state and this energetically overlaps the $Tb^{3+}(^5D_4)$ level or $Eu^{3+}(^5D_0)$ level hence the strong quenching [3].

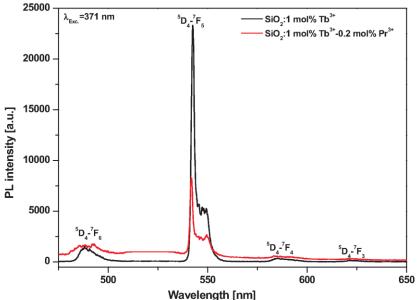


Fig. 3. Emission spectra of SiO₂:1 mol% Tb³⁺ and SiO₂:1 mol%Tb³⁺-0.2 mol% Pr³⁺ obtained after excitation at 371 nm at room temperature.

3.3. CL properties of SiO_2 : Eu^{3+} - Pr^{3+} and SiO_2 : Tb^{3+} - Pr^{3+}

The CL properties of Pr^{3^+} co-doped in SiO_2 : Eu^{3^+}/Tb^{3^+} phosphor powders were also investigated under electron beam bombardment. In Fig. 4, the CL spectra of SiO_2 :1 mol% Tb^{3^+} , SiO_2 :1 mol% Tb^{3^+} -0.2 mol% Pr^{3^+} phosphor powders obtained under irradiation with a 2 keV beam of electrons and 20 μ A beam current in a high vacuum chamber at a base pressure of $\sim 1.6 \times 10^{-8}$ Torr are compared. It was realized that under electron beam excitation, both SiO_2 : Tb^{3^+} and SiO_2 : Tb^{3^+} - Pr^{3^+} phosphor powders exhibited typical emission lines of Tb^{3^+} and a significant decrease in Tb^{3^+} emission with addition Pr^{3^+} concentration was also observed. However, in comparison with the SiO_2 : Tb^{3^+} , SiO_2 : Tb^{3^+} - Pr^{3^+} phosphor powders excited by UV light, extra emission peaks associated with the $^5D_3 \rightarrow ^7F_{3,4}$ transitions of Tb^{3^+} in the blue region can be obviously observed for identical samples in the CL spectrum in fig. 4. The insert in fig. 4 shows the CL intensity behavior of the phosphor powders when the concentration of Tb^{3^+} is kept constant at 1 mol% while that of Pr^{3^+} is varied from 0.2, 0.5, and 1 mol%. The Tb^{3^+} emission was shown to significantly decrease with increasing Pr^{3^+} concentration.

Fig. 5 presents the CL spectra of SiO₂:1 mol% Eu³⁺, SiO₂:1 mol% Eu³⁺-0.2 mol% Pr³⁺ phosphor powders under irradiation with a 2 keV, $20~\mu$ A electron beam in a high vacuum chamber containing a base pressure of $\sim 1.6~x~10^{-8}$ Torr. Under electron beam irradiation, the addition of 0.2 mol% of Pr³⁺ into SiO₂:1 mol% of Eu³⁺ completely suppressed the Eu³⁺ emission and only emission from Pr³⁺ associated with *f-f* transitions from $^3P_0 \rightarrow ^3H_4$, 3H_6 , 3F_2 , $^3F_{3,4}$ and $^1D_2 \rightarrow ^3H_4$, 3H_5 , 3F_4 with the main red emission at 614 nm assigned to $^3P_0 \rightarrow ^3H_6$ was observed. It was realized that the CL intensity of SiO₂: Eu³⁺-Pr³⁺ kept on dropping with increasing concentrations of Pr³⁺ (0.5 and 1 mol%) as shown in an insert in fig. 5. Such results confirm the observations of Zachau et al [11].

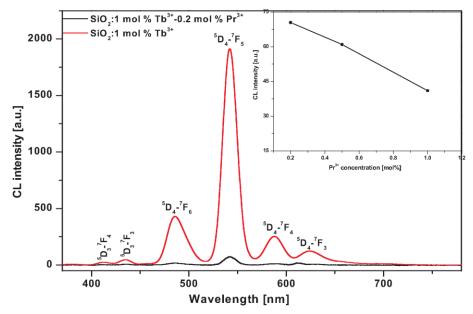


Fig. 4. CL intensities of SiO₂1 mol% Tb³⁺ and SiO₂:1 mol% Tb³⁺-0.2 mol% Pr^{3+} at 2 keV, 20 μA in a high vacuum pressure of 1.6 x 10⁻⁸ Torr. The inset shows the CL intensity from SiO₂:Pr³⁺-Tb³⁺ as a function of 0.2, 0.5, and 1 mol% Pr³⁺ concentrations.

The CL analysis also revealed the strong quenching with Pr3+ addition of the luminescence from both SiO₂: Eu³⁺-Pr³⁺ and SiO₂: Tb³⁺-Pr³⁺ phosphor powders. However, we observed an obvious difference between the CL and PL spectra. Such difference between the CL and PL spectra obtained from phosphor samples may be attributed to two possible factors. First, the differences of the excitation mechanisms involved during the PL and CL. During the PL process, the photons used for excitation have energy less than the bandgap of the host matrix so that no electron-hole pairs are generated. While in the case of CL, the generation of charge carriers (electrons and holes) under irradiation by energetic electrons occurs through impact ionization. As a result, the accelerated electrons create a multiplicity of charge carriers and the excitation energy is transferred by excitons to luminescent centres. Secondly, in comparison with the UV excitation, the excitation intensity and excitation density of luminescence centres are very high under electron beam bombardment. For example, in the case of Tb^{3+} doped samples, the cross relaxation ${}^5D_3 + {}^7F_6 \longrightarrow {}^5D_4 + {}^7F_0$ may be depressed to some extent, hence, the appearance of the ⁵D₃ emission with electron beam irradiation.

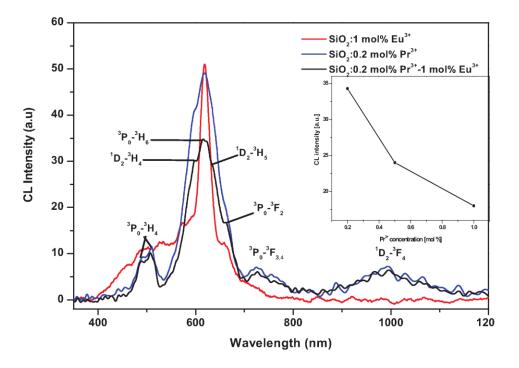


Fig. 5. CL intensities of SiO₂:1 mol% Eu³⁺, SiO₂:0.2 mol% Pr³⁺, and SiO₂:1 mol% Eu³⁺-0.2 mol% Pr³⁺ at 2 keV, 20 μ A in a high vacuum pressure of 1.6 x10⁻⁸ Torr. The inset shows the CL intensity from SiO₂:Pr³⁺-Eu³⁺ as a function of 0.2, 0.5, and 1 mol% Pr³⁺ concentrations.

4. Conclusion

The CL and PL properties of SiO₂:Tb³⁺/Eu³⁺ co-doped with Pr³⁺ derived from sol gel method were studied by varying the concentration of Pr³⁺. The strong fluorescence quenching with increasing Pr³⁺ concentration was observed from both SiO₂:Tb³⁺/Eu³⁺ co-doped with Pr³⁺ phosphor powders and no sign of Pr3+ emission was observed. The possible reasons which might have been the main cause of this quenching are discussed in detail.

5. Acknowledgements

This work was financially supported by the Department of Science and Technology of South Africa and the Council for Scientific and Industrial Research of South Africa. Authors would like to thank Dr P Solarz and Prof. W Ryba-Romanowski from the Institute of Low Temperature and Structure Research in Polish Academy of Sciences, Poland for assisting with PL measurements.

6. References

- Mahato K K, Rai S B, 2000 Spectrochim. Acta Part A 56 2333-2340
- Wang X-J, Huang S, Lu L, Yen W M, Srivastava A M, Setlur A A, 2001 Optics Comm. 195
- [3] Meijerink A, Wegh R, Vergeer P, Vlugt T, 2006 Opt. Mater. 28 575-581
- Mhlongo G H, Ntwaeaborwa O M, Dhlamini M S, Swart H C, Hillie K T, 2011 J. Alloys Compd. 509 2986-2992
- Changqing H, Ting S, Weijian T, Baoping Z, 2006 J. Rare Earths 24 134-137
- Wang R Y, 2004 J. Lumin. 106 211-217
- Kandpal H C, Tripathi H B, 1979 Solid State Comm. 29 139-142
- Liu X, Pang R., Li Q, Lin J, 2007 J. Solid State Chem. 180 1421-1430
- [9] Silversmith A J, Boye D M, Brewer K S, Gillespie C E, Lu Y, Campbell D L, 2006 J. Lumin. 121 14-20
- [10] Wakefield G, Keron H A, Dobson P J, Hutchison J L, 1999 J. Phys. Chem. Sol. 60 503-508
- [11] Zachau M, Zwaschka F, Kummer F, 1998 Proceedings- Electrochem. Soc. 97(29) 314–324