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Abstract

In this paper we investigate the invertability of a branching 1D arterial blood �ow network.

We limit our investigation to a single bifurcating vessel, where the material properties, unloaded

areas and variables characterizing the input and output boundary conditions are included as free

parameters. The synthetic time data used for the optimization problem, as well as the blood �ow

analysis is performed using a 1D �nite volume vascular network model. We pose and investigate

four di�erent problem formulations based on synthetic data which could hypothetically be measured

experimentally. We will demonstrate the invertibality of the problem based on synthetic time data

at a single location within the bifurcation as well as demonstrate the in�uance of the number of data

points included within these time signals. Lastly, we will show how the addition of increasing levels

of noise to the synthetic data in�uences the ability of obtaining the correct system parameters. For

purposes of the inverse optimization we make use of a bounded BFGS algorithm where the gradients

are approximated using the complex step method.

Keywords: Inverse parameter identi�cation, 1D branching blood �ow, complex step method.

1 Introduction

Mathematical and numerical modelling of the cardiovascular system has received considerable attention
in recent years. In this context, simpli�ed models, including 1 dimensional models have demonstrated
potential in providing useful information and insight pertaining to the global �ow through the vascular
network at computationally reasonable times. To illustrate typical results achievable with a 1D model
consider Figure 1, which depicts the pressure pulse propagation through the ascending aorta, left femoral
artery and left tibial artery. The pressure pulses are generated using a 1 dimensional �nite volume model
[1] for blood �ow through a 55 artery network model.

P
r
e
s
s
u
r
e
[d
y
n
e
/
c
m

2
]

Figure 1: Pressure pulse pro�les for blood �ow through a 55 vascular network model computed using a
1D �nite volume blood �ow model [1].

Such a model could indeed be useful to medical practitioners, provided that the model can be
characterised to produce physiologically realistic �ows for the unique pathology of a given patient. The
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model can be used by surgeons to obtain insight into the e�ect of planned surgery, for example the global
e�ect on blood �ow when inserting a vascular graft, or choosing the size of an arterial-venous shunt to
be inserted for purposes of haemodialysis treatment. It could further be used to assist in ascertaining
post-operative success of various surgeries or be used to provide patient speci�c boundary conditions for
a higher �delity 3 dimensional �uid structure interactions (FSI) model for a given area of interest.

This does however require that such a model be capable of being characterised to the unique vascular
pathology of a given patient. Several studies to date have demonstrated the invertibility of a 1 dimen-
sional model to determine the material properties of a single artery. The studies have predominantly
focused on using synthetic data obtained using a full 3D FSI simulation for an artery with a single ho-
mogeneous material property [3] as well as for arteries with non-uniform properties due to the presence
of abnormalities such as aneurysms [2].

It is possible, through both invasive and non-invasive techniques to obtain time data at one or more
locations of either pressure, volume �ow rate or area for �ow through the vascular system. This can be
done through invasive pressure probes inserted into an artery or non-invasive imaging techniques such
as MRI or ultra-sound scans. In this paper we aim to investigate the invertibility of a branching 1D
vascular network using data of this nature.

The analysis is performed using a 1D �nite volume (FV) code implemented on a staggered grid
to solve the one dimensional area-velocity continuity equations. The model has been demonstrated to
accurately capture the various re�ecting pressure waves for a network with arbitrary discontinuities in
compliance as well as branching vessels.

2 1D Blood Flow Model

2.1 Governing Equations

The mass and momentum equations for a cylindrical vessel with compliant walls expressed in terms of
area and velocity can be shown to be [5, 6]:

∂A

∂t
+
∂ (Au)

∂x
= 0 (1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
+KR

u

A
= 0 (2)

where A, p and u are cross-sectional luminal area of the vessel, �uid pressure and velocity respectively.
KR is a function representing viscous losses. Assuming fully developed steady �ow with a �at velocity
pro�le the viscous losses can be approximated by

KR
u

A
= −8πµu

A
, (3)

where µ is the blood viscosity.
The mass (1) and momentum (2) equations however have 3 unknowns. To close the set of equations,

an algebraic area-pressure relationship is used which is of the form:

p = pext + φ (A,A0, β) (4)

where pext represents external pressure, A0 is the initial unloaded area (artery area when pext = 0) and β
is a function describing material properties. In this paper we use a non-linear pressure-area relationship
of the form [5]

p = pext + β
(√

A−
√
A0

)
, (5)

where β is de�ned as

β =

√
πhE

A0 (1− σ2)
, (6)

and h is the artery thickness, E is Young's modulus and σ is Poisson's ratio.
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2.2 Numerical Discretization

In this paper, equations (1) and (2) are solved using the FV method on a staggered grid (see Figure 2).
This allows for as many equations as there are unknowns, and hence no additional compatibility equations
are required.

Firstly, the mass and momentum conservation equations are modi�ed to be in terms of the quantities
to be conserved, i.e. volume �ow rate Q = Au and total pressure p0 = 1

2ρu
2 + p.

To this end, the mass (1) and momentum (2) equations become

∂A

∂t
+
∂Q

∂x
= 0, (7)
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+
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+KR
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= 0, (8)
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p0 = pext + β
(√
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A0

)
+

1

2
ρ

(
Q

A

)2

. (9)

Consider Figure 2(a). There are two sets of control volumes (CVs). Areas and pressures are associated
with the one set of CVs, indicated by subscript i, and momentum conservation is associated with the
other set of CVs indicated with subscript I. The midpoint of each of the groups is de�ned such that
their quantities are at the face centres of the second group.

Assuming a uniform �nite di�erence mesh (all ∆xI = ∆xi = ∆x ) the FV discretization of the mass
and momentum equations for a generalised integral in time become:

Ai −A0
i

∆t
∆x = −θ (QI −QI−1)− (1− θ) (QI −QI−1)

0
, (10)
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where the superscript '0' refers to the previous time step t and no superscript refers to time step t+ ∆t.
Furthermore, integration in time is �rst order explicit if θ = 0, second order Crank-Nicholson for θ = 1/2

and �rst order implicit for θ = 1. The area at the centre of the momentum CV is de�ned as AI = Ai+1+Ai

2
and the discretised total pressure is

pi0 = pi
ext

+ βi
(√

Ai −
√
Ai0

)
+

1

2
ρ

(
Qi
Ai

)2

, (12)

where Qi = QI+QI−1

2 .

Discretisation at branching vessels: For a branching vessel we use a staggered grid shown in
Figure 2(b), where area and pressure node values are located at the centre of the branching CV. With
this grid discretisation, both the momentum and mass conservation equations are naturally treated.

The mass and momentum discretised equations for the mesh in Figure 2(b) (for a uniform �nite
di�erence mesh where ∆xi = ∆xI = ∆x) at the branching point become:

A2 −A0
2

∆t

(
3

2
∆x

)
= −θ (Q3 +Q2 −Q1)− (1− θ) (Q3 +Q2 −Q1)

0
(13)
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(a) (b)

Figure 2: Staggered grid discretisation with associated control volumes for (a) linear vessel and
(b) branching bifurcation.

The discretised total pressure equation becomes

p02 = pext2 + β2

(√
A2 −

√
A02

)
+

1

2
ρ

(
Q2i

A2

)2

. (15)

In order to compute Q2i at the bifurcation, we make the assumption that Q1 = Q2 +Q3 (i.e. values
of Q at cell centres = Q at face centres). Based on this assumption, volume �ow rate at the bifurcation
can be approximated as Q2i = 1

2 [(Q1) + (Q2 +Q3)]. It should be noted that when generating the mesh,
the area and material properties at the bifurcation are interpolated to be consistent with this choice of
Q interpolation.

3 Problem Formulation

3.1 Problem Description

In this paper, we will limit our discussion to the analysis of a single bifurcating vessel, as depicted in
Figure 3. We will demonstrate that a single bifurcation is su�ciently complex to warrant analysis, while
many of the conclusions drawn can be extrapolated to a larger network.

In order to uniquely de�ne the bifurcating artery would require knowing the material property β,
initial unloaded area A0 and length L of each of the three arterial segments. It would further be
necessary to characterise both the input and each of the respective outputs along with blood �ow
properties including density ρ and viscosity µ.

In this paper we will make the following simplifying assumptions. We will assume µ = 0, such that
there are no frictional losses, density will be �xed at ρ = 1g/cm3 while it will further be assumed that
each of the artery lengths are known.

The input pulse is modelled as a half sine wave of the form:

pin = Ksin

(
2πt

T

)
, t ≤ T

2

pin = 0, t >
T

2
(16)

where K and T are the input wave amplitude and period respectively.
The artery outlets are modelled using a resistance coe�cient such that Rt = 0 for non-re�ecting

outlet boundary conditions and conversely Rt = 1 for a fully re�ecting outlet condition. The resistance
coe�cient is applied as demonstrated in [5] using the system characteristics.

3.2 Problem formulation and cost function

To demonstrate the ill-posed nature of the problem consider the three sets of material properties de�ned
in Table 1. The pressure vs. time plot at the centre of vessel A for the three bifurcations are shown
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Figure 3: Depiction of bifurcating vessel.

(a) (b)

Figure 4: Synthetic data at the centre of vessel A computed using the 1D FV solver for the material
properties presented in Table 1 depicting (a) pressure-time data, where despite the large di�erences in
material properties, the variation in the pressure-time data is minimal and (b) the volume �ow rate
which is distinct for the three sets of bifurcation properties.

in Figure 4(a). Despite the material properties in many instances varying close to 500%, the resulting
pressure pulses vary only slightly, well within reasonable bounds of measurement error.

Table 1: Vessel properties for the bifurcating artery and the parameters to characterise the inlet and
outlet boundary conditions used to generate the synthetic time data presented in Figure 4.

βA βB βC A0A
A0B

A0C
K T(

dyne/cm3
) (

dyne/cm3
) (

dyne/cm3
) (

cm2
) (

cm2
) (

cm2
)

RtB
RtC

(
dyne/cm2

)
(s)

Bifurcation 1 113487 226974 453948 4.0 0.5 3.5 0.5 0.5 15× 104 0.3

Bifurcation 2 85750.2 148762.8 269660.2 10.0 1.14 7.94 0.5 0.52 15× 104 0.3

Bifurcation 3 100000 99091.6 136406 30 2.42 17 0.5 0.57 15× 104 0.3

LA = 10cm, LB = 20cm, LC = 10cm

There are several well known techniques to treat mathematically ill-posed problems. The most
popular of these techniques is known as regularisation, whereby the inverse solution is mildly biased
towards a set of assumed reasonable values for the given design variables. Regularisation does however
heavily depend on having some understanding of what the solution should be prior to commencing the
inverse analysis. This is somewhat problematic when considering the vascular network. For example,
there is still no agreed upon range for arterial material properties β. This is partially due to the lack
of in-vivo experimental measurements as well as the large variation from one individual to another.
Furthermore, material properties can easily di�er by several orders of magnitude as a result of diseased
arteries, naturally occurring anomalies or even as a result of surgical intervention in the form of grafts.

For this reason we have opted to investigate the possibility of enriching the pressutre-time data with
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additional non-related information. In this paper we will investigate 4 options, where hypothetically
each option can be implemented based on existing medical data capturing devices.

Option 1: Pressure-time data only. As a �rst step, we will analyse the invertibility of the bifur-
cating vessel as a function of the pressure-time data only. The cost function to be minimised is de�ned
as:

F1(DV ) =

N∑
i=0

(p(ti)− pgiven(ti))2 (17)

where N is the total number of data points within the pressure-time data and the design variables are
DV = [βA, βB , βC , A0A , A0B , A0C , RtB , RtC ,K, T ].

Option 2: Including volume �ow rate information. While the problem is ill-posed when consid-
ering only pressure-time data, it is possible to augment the information by including further information
such as the volume �ow rate, Q, at the same point. To illustrate this consider Figure 4(b) which depicts
Q at the same measurement location for the three bifurcations. The additional information related to
the 3 bifurcations are now distinct.

This cost function is de�ned as:

F2(DV ) =

N∑
i=0

[
1

104
(p(ti)− pgiven(ti))2 + (Q(ti)−Qgiven(ti))

2

]
(18)

where the pressure data is divided by 104 to provide similar weight to both sets of data. DV =
[βA, βB , βC , A0A , A0B , A0C , RtB , RtC ,K, T ].

Option 3: Fixing a single A0 value. Since the �ow through the vascular problem is predominantly
a ratio based problem, the simplest means by which to render the problem well posed is to �x a single
unknown area A0 or material property β. In so doing, the remaining unknown variables can be obtained
as a function relating to the single known quantity. For the purposes of this paper we assume that the
unstressed area of vessel A (A0A) is known where the cost function is thus based only on the pressure-time
data with A0A removed from the list of design variables:

F3(DV3) =

N∑
i=0

(p(ti)− pgiven(ti))2 (19)

for DV3 = [βA, βB , βC , A0B , A0C , RtB , RtC ,K, T ].

Option 4: Including travel time between two points. The �nal option investigated for rendering
the problem well posed is to include the travel time of the pressure pulse between two points in the
branching network. This can be done by using two measuring devices placed at two locations along
the vascular tree to record the instances in time when the pressure pulse propagates past the particular
points of measurement.

We therefore assume we know the travel time between the centre of vessel A to the centre of vessel B
and can hence formulate a function relating the di�erence between the computed time and the measured
time such that

E = (∆timecomputed −∆timegiven)
2

where the cost function can then be de�ned as

F4(DV ) =

N∑
i=0

log
(

(p(ti)− pgiven(ti))2
)

+ 10E. (20)
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It should be noted that the two contributions to the cost function are normalised such that their respective
contributions are of similar order of magnitude.

It should further be noted that including a travel time as an additional constraint may cause the
problem to remain ill-posed and result in a multi-modal functional space, especially if the measurement
points extend over several di�erent arterial vessels. This is because there are several possible combina-
tions of artery pressure pulse speeds over a range of connecting vessels that can result in the same travel
time. It thus remains important to have reasonable bounds to the inverse problem or have several such
time measurement points.

3.3 Complex step gradients

The inverse optimisation problem is solved here using a limited-memory BFGS algorithm with bounded
constraints [7]. It therefore is important to have available accurate and reliable gradients of the cost
function with regards to the design variables. There are several means by which to obtain problem
sensitivities, and often of concern are their respective accuracies, computational expense and ease of
implementation. When considering optimisation problems involving a single cost function with several
design variables, analytic or semi-analytic methods, whether the gradients are computed directly or via
the adjoint method is often the preferred means when considering both expense and accuracy. It is
however di�cult to justify the additional e�ort required in obtaining these gradients while still in the
early stages of solving an optimisation problem when issues such as problem formulation, cost function
and choice of design variables are still uncertain and likely to change often.

Finite di�erences have gained popularity in this regards, primarily for the ease of implementation
despite not being either particularly accurate, reliable or computationally e�cient. For this reason we
make use of the complex step method [4]. The method is arguably as easy to implement as �nite
di�erencing, but provides analytical or near analytical approximations to the function gradients.

Consider a simple forward di�erencing approximation:

f ′(x) =
f(x+ h)− f(x)

h
+O(h), (21)

where h is the step size. Via Taylor series expansion it can be shown that the error is O(h) and hence the
approximation is �rst order accurate. It is desirable to use as small a step size as possible to minimise
the truncation error. However, this often leads to inaccuracies due to di�erencing errors.

Using the complex step method, the gradient is approximated as:

f ′(x) =
Im (f(x) + ih)

h
+O(h2), (22)

where the gradient is approximated as the imaginary part of a complex perturbation of the function
divided by the real magnitude of the perturbation size. Taylor series expansion in the complex space
shows that the error of the real solution is O(h2) [4]. However, since there are no possible di�erencing
errors one can use arbitrarily small perturbations. The complex step method does however require
that the solver generating the function values be capable of treating complex numbers. Often this only
requires modifying variable declarations from real to complex.

To illustrate the accuracy of the complex step method, consider the results in Table 2. In the table
the approximate gradients ∂F1

∂βA,B,C
is shown at a particular point in the design space for a complex

perturbation of h = i10−15. The results are shown for a range of convergence tolerances of the 1D FV
solver. It can be noted that the gradients are exact to the accuracy of the function evaluations based on
the respective convergence tolerances.

In Table 3 we now compare the complex step gradient of ∂F1

∂βA
to those obtained using �rst order

accurate forward di�erencing and second order accurate central di�erencing for a solver convergence
tolerance of 10−10. The results illustrate the unreliability of the di�erencing methods, particularly with
respect to step size. As the step sizes are reduced below 10−4 the di�erencing errors start to dominate
and the approximated gradients tend away from the real gradients. The second order central di�erencing,
for a step size of 10−4, is accurate up until the eight decimal place but requires 2N function evaluations
where as the complex step method requires only N function evaluations.
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Table 2: Function gradient with respect to material properties as approximated by the complex step
method as a function of the FV solver convergence tolerance.

Convergence

tolerance ∂F1/∂βA ∂F1/∂βB ∂F1/∂βC

10−4 -0.25026927 0.07442945 0.19017041

10−6 -0.25024582 0.07440200 0.19015768

10−8 -0.25024616 0.07440078 0.19015755

10−10 -0.25024616 0.07440078 0.19015755

Table 3: Approximated gradient ∂F1/∂β using �nite di�erencing.

Forward Central

h Di�erence Di�erence

10−2 -0.24900826 -0.25026592

10−3 -0.24978347 -0.25024629

10−4 -0.24805891 -0.25024619

10−5 -0.22972142 -0.25025599

10−6 0. -0.25031112

complex step approximation (for h = i10−15): -0.25024616

For the remainder of the paper, all gradients are computed using the complex step method with a
step size of h = i10−15.

4 Results

4.1 Test Case 1: invertibility of the problem

As a �rst test, we investigate the invertibility of the problem for each of the 4 cost functions de�ned in
Section 3.2. We will attempt to recover the design variables for Bifurcation 1 de�ned in Table 1. The
BFGS upper and lower bounds are set to be a factor 10 greater or smaller than the known values used
to generate the synthetic data, where the same starting point is used in all test cases. The synthetic
data, for both the pressure-time data as well as the Q-time data contain 1000 data points in time.

The converged design variables for the 4 cost functions is shown in Table 4. Both cost function 2
and 3, where respectively Q-time data is included and A0A is �xed was capable of obtaining the exact
design variables (within convergence tolerance). While it is di�cult to judge whether the design spaces
for F2 and F3 are multi-modal, numerical experimentation suggests that they are not. The problem is
however ratio based with respect to both β and A0, where the design space has a very complex valley.
It is therefore not too surprising that over 200 BFGS iterations are required to obtain convergence for
only 10 and 9 design variables respectively.

Using only pressure-time data as has been demonstrated is ill-posed and therefore the design space is
easily shown to be multi-modal. The results in Table 4 con�rms this, where F1 has converged to a local
minimum. Including a 'time for arrival' constraint (F4) does not remove this multi-modality. In order
to apply these two cost functions will therefore require either random multi-start (when using gradient
based optimisation algorithms) or a global optimiser.

4.2 Test Case 2: Number of data points in time

Using only cost function F2, we now compare the dependency of the problem to the number of data
points (N) contained within both the pressure-time and Q-time signals. The results of the 10 design
variables is shown in Table 5 for a range of N = [20 : 1000]. It may be noted that there is no observable
deterioration of the results for a decreased number of data points. In fact, the problem appears to be
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Table 4: Converged design variables for the inverse optimisation formulations.

Cost Function Formulation
Exact F1 F2 F3 F4

# BFGS Iterations - 160 230 223 201

#Func and Grad Eval. - 193 270 293 370

βA 113487 102926.5 113488.2 113483.4 109724.0

βB 226974 205851.0 226973.6 226970.4 219450.4

βC 453948 411702.3 453909.1 453971.9 438891.1

A0A 4.0 4.8630862 4.0000796 - 4.2789722

A0B 0.5 0.6078757 0.4999945 0.5000146 5.3487395

A0C 3.5 4.2545903 3.4997997 3.5003841 3.7446442

RtB 0.5 0.50000653 0.4999977 0.49999203 0.5000045

RtC 0.5 0.5000056 0.5000046 0.5000022 0.4999761

K 1.5× 104 1.49997× 104 1.4999× 104 1.50001× 104 1.50003× 104

T 0.3 0.29999997 0.3 0.2999998 0.3000001

Table 5: Comparison of the converged design variables as a function of the number of data points N
located within the pressure-time and Q-time signals using cost function F2.

Exact N = 1000 N = 200 N = 100 N = 50 N = 20
# BFGS Iterations - 230 331 385 160 176

#Func and Grad Eval. - 270 370 403 197 241

βA 113487 113488.2 113490.4 113251.6 113489.5 113487.0

βB 226974 226973.6 226979.7 226460.5 226977.6 226976.

βC 453948 453909.1 453955.8 452861.4 4.5393113 453983.2

A0A 4.0 4.0000796 3.9998163 4.0175384 4.0000034 4.0000481

A0B 0.5 0.4999945 0.4999732 0.5023955 0.4999873 0.4999893

A0C 3.5 3.4997997 3.4998280 3.5086637 3.5000985 3.5005494

RtB 0.5 0.4999977 0.5000019 0.4998767 0.5000085 0.5000066

RtC 0.5 0.5000046 0.4999972 0.5001626 0.5000070 0.5000195

K 1.5× 104 1.4999× 104 1.5000× 104 1.4997× 104 1.5000× 104 1.4999× 104

T 0.3 0.3 0.3 0.299997 0.3 0.3

better behaved for fewer data points. These results however should be viewed with some caution. The
synthetic time signals are for a single bifurcating artery which are fairly simple time signals. Should the
complexity of the network be increased the resulting time signals' complexity will also increase, in which
case more data points might be necessary.

4.3 Test Case 3: Addition of random noise

The last problem we investigate is the invertibility of the problem for increasing levels of noise in the
synthetic data. The random noise is added point for point such that:

P (ti) = P (ti) +Ri1Pmax, for i = 1, .., N

Q (ti) = Q (ti) +Ri2Qmax, for i = 1, .., N (23)

where Ri1 and Ri2 is a di�erent uniform random number for each data point between 0 and 1. Sub-
scripts ·max refer to the maximum value in the P and Q time signals.

Table 6 show the results using the cost function F2 for added noise levels of 1%, 5% and 10% of the
magnitude of the signals with N = 1000. The invertibility of the branching vascular problem is highly
dependant on the added noise. Noise levels of 10% leads to converged design variables that di�er in
many instances by more than a factor two from the expected quantities.
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Table 6: Comparison of the converged design variables as a function of the level of noise within the
pressure-time and Q-time signals using cost function F2.

Exact No Noise 1% Noise 5% Noise 10% Noise
# BFGS Iterations - 230 215 112 103

#Func and Grad Eval. - 270 256 130 124

βA 113487 113488.2 120712.26 171451.7 226974.0

βB 226974 226973.6 227281.0 228564.2 214775.9

βC 453948 453909.1 425771.7 324143.3 297761.7

A0A 4.0 4.0000796 4.0364606 4.3439269 4.1243062

A0B 0.5 0.4999945 0.5029177 0.5188061 0.6673710

A0C 3.5 3.4997997 3.6517644 4.1530419 4.3944750

RtB 0.5 0.4999977 0.49711447 0.4807226 0.39750310

RtC 0.5 0.5000046 0.52435923 0.6087471 0.7027408

K 1.5× 104 1.4999× 104 1.5216× 104 1.6271× 104 1.7853× 104

T 0.3 0.3 0.300219 0.301145 0.299832

5 Concluding remarks and future work

In this paper we investigated the invertibility of a single bifurcating artery where a uniform β and A0 for
each of the vessels in a bifurcation were de�ned as design variables along with variables characterising
both the input and output boundary conditions. We demonstrated, given a pressure-time signal at a
single location, in addition to either the Q-time signal at the same location or �xing a single vessel A0

parameter leads to a uniquely invertable problem. There appears to be little dependence on the number
of data points located within these time signals. However the signals must be fairly accurate, where the
measurement noise levels should not be much higher than a few percent.

Future work will focus on extending the inverse analysis to a larger vascular network.
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