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Abstract

This conference contribution focusses on the invertibility of non-ideal material tests to accurately
determine material parameters. This is done by attempting to model non-ideal test cases and
comparing strains as well as force history to the experimental data. An inverse analysis is performed
that determines material properties and boundary conditions simultaneously.

This idea is investigated using virtual experimental data. The virtual experimental data is
obtained by performing a finite element analysis with known material parameters and boundary
conditions. The inverse analysis then aims to recover the known material and boundary conditions
without using any prior knowledge of the true parameters. This is done to see if such a problem is
in fact invertible and if the material and test parameters can be estimated simultaneously.
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1 Introduction

Material testing usually makes use of a simple geometry subjected to a simple load case. The goal is to
obtain uniform stress states so that simple analytical post processing would produce stress-strain curves.
Specific standards and procedures are in place for these tests. If a compression test is performed under
ideal conditions, experimental data can be used to calibrate a material model with little effort.

However, in the case of hard material compression testing, the high stiffness of the specimen com-
pared to the effective stiffness of the test machine can result in a non-ideal material test. For this work,
experimental data (hydraulic cylinder displacement, load cell and strain gauges) for a number of com-
pression tests are available at different temperatures. This data demonstrates that a non-uniform stress
state develops during the compression test, possibly due to compliance of the test frame. The data also
indicates that the strain rate in the specimen is not constant, even though the crosshead speed of the
hydraulic cylinder is.

The finite element method is used to simulate the non-ideal compression tests. The effective stiffness
of the testing frame is included in the model, and a non-uniform axial displacement is gradually applied
to the specimen as the test proceeds, keeping the average rate of displacement constant. Using the
available experimental data as a reference, the current work aims to find the material model parameters,
testing machine stiffness and displacement boundary conditions that best reproduce the experimental
data by solving an inverse problem on virtually constructed experimental data. The material model
chosen is the Mechanical Threshold Stress (MTS) model [1]. This model uses a state variable based
work hardening law that is strain rate and temperature dependent.

1.1 The Mechanical Threshold Stress model

The mechanical threshold stress is defined as the material flow stress extrapolated to 0 K. The flow stress
σy of a material is developed by scaling of the mechanical threshold to account for rate and temperature
dependence [1]. The mechanical threshold, σ̂, is separated into an athermal component σ̂a and thermal
components σ̂κt .

At different temperatures T and plastic strain rates ε̇, the contributions to the flow stress σκt are
related to their reference counterparts σ̂κt through the scaling functions Sκt (ε̇, T ), so that the flow stress
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of a material, σy, is expressed as

σy
µ

=
σ̂a
µ

+
∑
κ

σκt
µ

=
σ̂a
µ

+
∑
κ

Sκt (ε̇, T )
σ̂κt
µo
. (1)

µo is a reference value of the shear modulus µ, which is modeled by [2]

µ = µ̃(T ) = µo −
Do

exp
(
To

T

)
− 1

, (2)

in which To and Do are empirical constants. The temperature dependence of µ is included in the scaling
functions Sκt . The material elastic modulus is also coupled to these constants by

E = 2µ(1 + ν), (3)

where ν is chosen as 0.21 for this work.
In this work, an Arrhenius expression is used to describe interaction kinetics for short-range obstacles.

A phenomenological relation is now used for the free energy function of stress [3]. In the standard MTS
model, and the one used here, there are two thermal components, i.e. σ̂κt , κ = 1, 2. Using the notation
σ̂1
t = σ̂i and σ̂2

t = σ̂ε, Eq.(1) is written

σy
µ

=
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µ

+ Si(ε̇, T )
σ̂i
µo

+ Sε(ε̇, T )
σ̂ε
µo
, (4)

where
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and Sε =

[
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(
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ε̇

)1/qε
]1/pε

. (5)

The thermal portion of the yield stress (which does not evolve) is described by σ̂i while σ̂ε describes
the interaction of mobile dislocations with the forest dislocation structure (which does evolve). In the
scaling functions Si and Sε, k is the Boltzmann constant and b is the magnitude of the Burger’s vector.
goi and goε are the normalized activation energies for dislocations to overcome the obstacles; ε̇oi and ε̇oε
are constants while p and q are statistical constants that characterize the shape of the obstacle profiles
(0 ≤ pi, pε ≤ 1 , 1 ≤ qi, qε ≤ 2) [3].

The evolution of σ̂ε is given in rate form, by

dσ̂ε
dε

= θ(T, ε̇, σ̂ε) = θo − θr(T, ε̇, σ̂ε), (6)

where θo is the hardening due to dislocation accumulation (assumed constant) and θr is the dynamic
recovery rate. The functional form of the hardening rate θ is chosen to fit experimental data. In this
work it takes the tanh form [1, 4]

θ = θo

1−
tanh

[
ασ̂s

ε

σ̂εs

]
tanh(α)

 (7)

with α = 2 [1]. σ̂εs is the saturation threshold stress while θo assumes the role of the initial hardening
rate. The saturation threshold stress σ̂εs is a function of both strain rate and temperature, through the
relation [4]

ln
ε̇

ε̇εso
=
goεsµb

3

kT
ln

σ̂εs
σ̂εso

(8)

where ε̇εso, goεs and σ̂εso are empirically obtained constants.
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Figure 1: Normalised experimental strains and load cell data at room temperature. (a) Strains recorded
by the strain gauges spaced evenly around the circumference of the test section with (b) the load cell
data of the same experiment. (c), (d) and (e) Strain gauge measured strains of three other experiments.

1.2 Experimental Data

The experimental data is obtained from compression tests where 3 strain gauge readings are available
at room temperature, along with hydraulic cylinder displacement and load cell data. The strain gauges
are fixed to the centre of the experimental test specimen, 120◦ apart. Higher temperature data is also
available at 150◦C, 250◦C, 350◦C and 500◦C. At these elevated temperatures however, only a single
extensometer strain measurement is available.

The materials tested are used in high temperature and pressure applications. The specific application,
exact material compound and grade is proprietary information and for this reason, figure axes and
material parameter values are normalized in this report. A material test specimen similar to the one
described by [5] is used for the experimental compression tests. This compression test specimen is
essentially a modified version of a conventional cylindrical tensile specimen. The length of the test
section is reduced in an attempt to avoid buckling and shear deformation modes during the compression
test.

One of the demanding aspects of compression tests on these hard materials is the very high compres-
sive strength and stiffness. The testing machine stiffness, which should ideally be orders of magnitude
greater than that of the specimen, is inadequate in this case. Experimental data indicates that for a
typical test the hydraulic cylinder displaces 1.4 mm, while the specimen test section only decreases height
by about 0.4 mm. Elastic deformation of the testing machine frame seems to account for the remaining
1.0 mm displacement. From the strain gauge data of various room temperature compression tests seen in
Figures 1(a), (c), (d) and (e) there appears to be some compressive instability, eccentric load condition
or equivalent bending moment. Unfortunately, data for only a single extensometer is available for the
elevated temperature tests. From all the room temperature data it seems plausible that the elevated
temperature tests may also have experienced a similar non-ideal loading condition, but this cannot be
taken into account due to the limited data.

The data suggests that there is no constant thermal stress component σ̂i. The constant thermal stress
component of the mechanical threshold stress definition in Equation (4) therefore falls away. Neither k
nor b are used anywhere other than the relationships k/goεb3 and k/goεsb3 , so these two relationships are
grouped into single variables. A list of the remaining MTS material parameters used as optimisation
variables and constant parameters are given in Table 1.

In this work, the virtual experimental data is obtained by first conducting a finite element analysis.
A varying displacement boundary condition is applied to the room temperature simulation so that a
distribution of strain is recovered around the circumference of the test specimen centre. Two different
displacement fields are used to set up two different virtual experiments at room temperature. These
displacement fields produce strain distributions that have approximately the same order of magnitude
difference at the end of the simulation as seen in the actual experimental data. Since the values of the
material parameters used in the virtual experiment is known, an inverse analysis may be performed to
determine the accuracy with which these known parameters and boundary conditions can be retrieved.
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Figure 2: (a) Simple schematic illustrating the test section modelled with artificial material sections to
accommodate the machine test frame stiffness. The two variables A and B that are used to describe the
boundary displacement at a specific time are visible in (b) and (c).

2 Finite Element model

The central 35 mm of the test specimen is modelled with elastic properties as well as plastic behaviour
using an MTS material model implemented into an Abaqus [6] user subroutine. 5 mm of artificial elastic
material is added to the ends of the specimen. A representation of this can be seen in Figure 2(a).
Hydraulic cylinder displacement can now be used as a boundary condition while the stiffness of the
artificial material section can be changed during the inverse analysis procedure. By modelling it in this
way, the experimental hydraulic cylinder displacement can be applied to the artificial material section. A
correct choice of artificial material stiffness would then result in an effective strain rate and displacement
experienced by the test specimen that best resembles the uniaxial conditions experienced during the
actual test.

A spatially varying displacement field is applied to the artificial material section. If the uniaxial
direction is chosen as the z-axis in the finite element analysis, a top face node n experiences a z-
displacement of the form

zn = A(t) (sin(B)yn + cos(B)xn) + Zhc(t), (9)

where t is the current fraction of time, t ∈ [0, 1] and Zhc(t) is the hydraulic cylinder displacement as a
function of this time fraction.

Table 1: List of MTS material parameters regarded as either fixed or optimisation variables for use in
the inverse analysis.

Variables

Parameter: σ̂a σ̂εso
k/goεb3

k/goεsb3 θo µo Do

Equation: (1) (8) (5) (8) (7) (2) (2)

Constants and Initial Values

Parameter: σ̂ε To ε̇oε ε̇εso qε pε α
Equation: (4) (2) (5) (8) (5) (5) (7)
Value: 0 200 106 106 1 2/3 2
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Figure 3: Curves selected to represent two possible forms of A(t). These curves represent the definition
of A(t) in Equation (11), used for the displacement boundary conditions in the virtual experiments.

xn and yn are the x and y coordinates of node n with A(t) and B two boundary properties illustrated
in Figures 2(b) and (c). The displacement field variation A(t) can also change as a function of the time
fraction while it was decided that the angle (and so the neutral axis of the bending moment) would
remain constant. Similarly, the z-displacement field at a bottom face node is determined by

zn = −A(t) (sin(B)yn + cos(B)xn) . (10)

By modelling the top and bottom displacement fields in this way an equal and opposite equivalent
bending moment can be approximated at a specific fraction of the total time.

2.1 Virtual Experiment Data

Two sets of virtual experimental data are obtained using the same MTS material parameters with
a slightly different boundary condition on the room temperature virtual test. In both 25◦C virtual
experiments, the angle B is set to 4.5 radians while the virtual hydraulic cylinder displacement is chosen
as Zhc = 1t, t ∈ [0, 1]. The different experimental boundary conditions are obtained by different forms
of A(t). In the two virtual experiments, the form of A(t) in Equations (9) and (10) is chosen as

A(t) =
0.03× tanh(3t)

tanh(3)
and A(t) =

0.03× sinh(3t)

sinh(3)
. (11)

The curves that represent A(t) as a function of the time fraction are visible in Figure 3(a). A 500◦C
virtual experiment is also set up. This high temperature virtual experiment was modelled as a perfect
uniaxial compression test subject to a constant hydraulic cylinder displacement rate. The hydraulic
cylinder displacement Zhc = 1t, t ∈ [0, 1] is again used with a different artificial material section stiffness.
After the problems are solved using Abaqus, the following virtual data is extracted from each of the
25◦C results:

• The logarithmic strain history of the central test section elements closest to the 0, 2/3π and 4/3π
radian locations along the test section circumference. This virtual data is chosen to represent the
three strain gauges’ history in the original experiments.

• The total vertical reaction force on the top artificial material section. This is chosen to represent
the experimental load cell data.
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The normalised strain and force histories that result from the two forms of A(t) can be seen in Fig-
ure 3(b) through (e). These histories are now used as virtual experimental data to test the idea of
simultaneously estimating material parameters and boundary conditions by inverse analysis. A single
set of high temperature FEA results is used to represent the high temperature experimental data. The
total reaction force is again used to represent the load cell data while the average of the central test
section element set logarithmic strain histories are used to represent the single extensometer data of the
original experiment.

3 Inverse Analysis

To test the invertibility of this type of problem, the MTS material parameters are now determined by
fitting force and strain curves to the 25◦C and 500◦C virtual experiment data. This inverse analysis
aims to recover both the elastic as well as plastic behaviour of the material along with the artificial
material stiffness at the different temperatures and boundary conditions, making it a fairly complex
inverse parameter identification problem despite the seemingly simple geometry and setup.

Assuming no prior information is available on the shape of the displacement boundary condition that
resulted from a chosen form of A(t) in Equation (11), the invertibility of the problem is inspected using
a piecewise linear approximation to A(t). First, a single linear time variation is used to approximate
the form of A(t). Then a piecewise linear approximation using three and six intervals is inspected. The
straight line approximation requires one unknown, while the three intervals and six intervals piecewise
linear approximations require three and six unknowns respectively.

The optimisation is performed using the unconstrained optimisation algorithm fmin, available via
the scipy.optimize [7] module in Python [8]. fmin is an implementation of the Nelder-Mead simplex
algorithm. Although the scipy.optimize [7] module does give access to arguably better numerical
optimisation algorithms, this is a very robust algorithm that only requires function value evaluations
without additional gradient information from the user. Because of its robust nature, this algorithm was
used in this initial work to first assess the invertibility of the problem.

3.1 Function Evaluation

Given a set of material and boundary condition parameters, a 25◦C finite element job is constructed
and solved using Abaqus [6]. The logarithmic strains at the same locations along the circumference of
the central test section is extracted the same way as originally done to obtain virtual experiment data.
These three strain histories are compared to the virtual experiment data. The total reaction force at the
top surface of the inverse solution over time and that of the virtual experiment is compared. A finite
element analysis for the 500◦C problem is then constructed and also solved. The average logarithmic
strains and total force histories are again extracted from the results as were done to initially obtain the
virtual experimental data and compared to its corresponding virtual experiment data set. Each of the
four strain histories and two force histories are compared by first normalising it so that the absolute
maximum function value is unity. The function value returned is the sum of the mean squared error of
the six normalised curve comparisons.

3.2 Results

The form of A(t) is first approximated by a single linear time varying section. In this first approximation,
the A(t) approximation therefore only requires a single unknown. This unknown along with the angle
B, artificial material stiffness at 25◦C and 500◦C as well as the seven MTS material parameters are
estimated simultaneously. The form of A(t) is then approximated by three piecewise linear time varying
sections that requires an additional two unknowns.

The single line and three piecewise approximation runs were given the same initial guess for all of
the corresponding parameters. The two additional parameters in the three interval piecewise linear
approximation were also chosen in such a way that the initial approximation was still a straight line. In
contrast, the six interval piecewise linear approximation run was continued from the three interval result,
taking the parameter values at the termination of the three piece result and adding three additional
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(a) (b)

Figure 4: The two forms of A(t), used in the virtual experiment displacement boundary condition
compared to the optimum approximations found by using either a single line, three or six piecewise
linear approximation. (a) The sinh and (b) tanh virtual experiment results.

points on the curve that approximates A(t). Inverse analysis using this single linear approximation,
three interval piecewise linear and continued six interval piecewise linear approximation to the form of
A(t) is performed on both the sinh and tanh boundary condition virtual experiments.

The results of the final approximation to the form of A(t) in the boundary displacement description
using a single, three and six interval piecewise linear approximation are presented in Figure 4. The
normalised parameter results at the end of each optimisation run are presented in Table 2. Figure 5
shows the curves that result from the analysis using the initial parameters while Figures 6 through 8
show the inverse analysis results.

Table 2: Normalised parameter identification results and details of the inverse analyses performed on
the sinh and tanh virtual experiments.

Sinh BC Virtual Experiment Tanh BC Virtual Experiment
Piecewise Linear Approximation Piecewise Linear Approximation

1 Linear 3 Linear 6 Linear 1 Linear 3 Linear 6 Linear

Variables: 11 13 16 11 13 16
Iteration: 2,200 2’601 + 2’444 1’395 2’602 + 1’356
F Value

Initial: 3.504×10−2 3.504×10−2 1.776×10−4 8.321×10−2 8.321×10−2 2.017×10−4

Final: 3.936×10−3 1.776×10−4 1.346×10−5 9.121×10−3 2.017×10−4 5.107×10−6

Parameter
E298K

∗ 1.03226 0.99988 1.00019 0.95957 0.99953 0.99997
E773K

∗ 1.00581 1.00026 1.00200 0.93575 0.99155 0.99993
µo

∗ 0.78729 0.99029 0.99992 1.98992 1.06192 0.99770
Do

∗ 0.45060 0.97611 1.01220 1.54866 0.72243 0.99628
σ̂a

∗ 0.02085 0.97637 0.98440 1.18953 0.29522 1.01126
σ̂εso

∗ 1.15135 0.99636 0.99641 1.27623 1.15835 0.99869
θo

∗ 2.85187 1.04099 1.02566 0.29879 1.22473 0.99488
k/goεb3

∗ 0.25332 1.10369 1.04966 0.30701 0.83581 0.95063
k/goεsb3

∗ 3.22614 0.96475 1.10172 0.17437 0.52390 0.99750
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(a) (b) (c) (d)

Figure 5: Initial fit on the sinh and tanh virtual experimental data. (a) The strain history and (b) force
history fit on the sinh virtual experiment. (c) The strain history and (d) force history fit on the tanh
virtual experiment.

(a) (b) (c) (d)

Figure 6: Resulting optimum fit determined by inverse analysis on the sinh and tanh virtual experimental
data using a linear approximation of A(t). (a) The strain history and (b) force history fit on the sinh
virtual experiment. (c) The strain history and (d) force history fit on the tanh virtual experiment.

(a) (b) (c) (d)

Figure 7: Resulting optimum fit determined by inverse analysis on the sinh and tanh virtual experimental
data using a three piecewise linear approximation of A(t). (a) The strain history and (b) force history
fit on the sinh virtual experiment. (c) The strain history and (d) force history fit on the tanh virtual
experiment.
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(a) (b) (c) (d)

Figure 8: Resulting optimum fit determined by inverse analysis on the sinh and tanh virtual experimental
data using a six piecewise linear approximation of A(t). (a) The strain history and (b) force history
fit on the sinh virtual experiment. (c) The strain history and (d) force history fit on the tanh virtual
experiment.

(a) (b)

(c) (d)

Figure 9: The MTS material response at 25◦C, 150◦C, 250◦C, 350◦C and 500◦C for a constant strain rate
of 0.0001 s−1. (a) The various materials approximated using the sinh form of A(t) virtual experiment
with detail of the initial yield stress in (c). (b) The various materials approximated using the tanh
form of A(t) virtual experiment with detail of the initial yield stress in (d). The approximated material
responses are plotted over the response of the actual material with known property values in black.
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In Table 2 and Figure 6, it is visible that using too simple an approximation on the boundary condition
could result in an inadequate fit and material parameters that are far from the desired accuracy. Here
it seems that the material parameters are exploited to compensate for the inadequate capture of the
boundary condition. This is also visible in the fit between the green dashed lines and the true material
response in Figures 9(a) through (d).

Not surprisingly, the higher the resolution used to approximate the form of A(t) in the boundary
description, the better the ability to capture the true form and the material parameters. In Table 2
and Figure 9 it is also visible that an overall improvement on the accuracy of the material parameter
identification is achieved when the inverse analysis has the ability to better capture the true boundary
condition. Good correspondence is visible between the true material response (black lines) and that
determined at the end of the six interval piecewise linear approximation (red dashed lines) in Figure 9.

4 Conclusions

In this initial work it would seem that the inverse problem does not present major issues in simul-
taneously determining the material properties and test conditions. Although the actual form of the
displacement boundary condition that would best replicate the experimental data is unknown, it has
been demonstrated that a piecewise linear approximation can produce sufficient accuracy.

Ideally, a very fine boundary condition parameterisation should be utilised during the identification
of material parameters on real experimental data. This however introduces additional unknowns and
could make the optimisation a very expensive and time consuming procedure. Although this initial study
into the invertibility of the problem seems promising, additional investigation into better optimisation
algorithms and alternative inverse problem formulations could reduce the time required and allow for
the capture of material properties with increased accuracy.
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