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Abstract  

A design requirement of a heliostat is the ability to withstand storm loads in the stow position and operational 
wind loads in any position.  To design a heliostat, therefore, one must be able to predict the wind loading on 
the heliostat for all elevation angles of the heliostat and all wind directions relative to the heliostat coordinate 
system.  Fortunately, experimental wind tunnel force and moment coefficient data in the x, y and z directions 
exist in tabular format for an isolated heliostat, and are in the public domain, but still require interpolation 
between different points in a large dataset.  This paper shows that the data points fit definable patterns, 
allowing the use of Fourier analysis to fit a small number of correlations to describe the entire dataset to high 
accuracy. Correlations for the lift and drag forces are presented.  A companion paper presents correlations for 
the side forces and correlations for moments about the three principal axes, and discusses the behavior of the 
correlations. 
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1. Introduction 

One of the design requirements of a heliostat is the ability to withstand three types of wind loads [1]: 

• Storm winds: in discrete, infrequent storm loads of up to 40m/s freestream wind speed, heliostat in stowed 
position must survive (no static failure or low cycle fatigue failure),  

• Moderate winds: at wind speeds up to 22m/s freestream, a heliostat in any position must survive (no static 
failure or low cycle fatigue failure), and the actuation mechanisms must be able to move the heliostat to 
the stow position in preparation for possible storm winds, and 

• Operational winds: at more frequent oscillating wind speeds up to 15m/s freestream, the actuation 
mechanisms must be capable to allow a heliostat in any position to track the sun accurately, and the 
resultant loads should not lead to high cycle fatigue failure.  

In the above, freestream values are measured at 10m above ground.  To design a heliostat, therefore, one 
must be able to predict the mean and oscillating wind loads on the heliostat for all elevation angles of the 
heliostat and all wind directions relative to the heliostat coordinate system.   

This is usually done using experimental measurements on scale models in atmospheric wind tunnels, and 
with numerical simulations (steady-state and transient) using computational fluid dynamics (CFD) providing 
additional insight.  An example of such a study is given by Huss et al [2].  It is important to obtain the correct 
boundary conditions for both techniques in such analyses: velocity and turbulence profiles must match the 
true, full-scale conditions, including the power spectra in the case of the wind tunnel tests. Such an 
experimental dataset is expensive to generate, (and when performed is understandably proprietary) presenting 
a barrier to entry for researchers.  Fortunately, one experimental wind tunnel dataset for an isolated square 
heliostat exists and is in the public domain [3].  Isolated heliostat loading data is sufficient for structural 
design purposes, rather than data for one in a field.  The interaction of winds with a heliostat field is shown 
schematically in Figure 1, where turbulent boundary layer winds are shown approaching a field on the left 
and within the field on the right. As a consequence of wind impingement on upwind heliostats in a heliostat 
field, a decrease of mean wind speed over the height of the heliostats is caused within the field, leading to 
heliostats interior to the field experiencing lower mean wind loads and often decreased fluctuations in wind 
load about the mean, relative to heliostats at the edge of the field [3].   

This dataset comprises some 2000 points of interest, making interpolation difficult.  A coherent set of 
correlation curves fitted to the data would simplify this challenge, and identify outliers in the data.   This 
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paper describes the method followed to fit correlations to this large dataset, and presents the correlations for 
the principal forces (lift and drag).  A companion paper [4] will present correlations for the side forces, 
correlations for moments about the three principal axes, and discuss the behavior of the correlations. 

 

Figure 1: Velocity reductions within a field of heliostats [3] 

2. Experimental dataset of Peterka et al [3]  

2.1. Test description 

Wind tunnel tests were performed on a square isolated heliostat model placed in a dedicated atmospheric 
boundary layer wind tunnel [3], which creates a velocity and turbulence profile upstream of the model similar 
to full-scale representative conditions (see Figure 2 left and centre).   This turbulent boundary layer has been 
shown to model the atmosphere boundary layer for model scales smaller than about 1:100.  The heliostat 
model is at 1/60th scale (see Figure 3), however, and for this scale the wind-tunnel does not adequately 
simulate the lower frequency gustiness due to the limitation of the tunnel cross section size (see Figure 2 
right), and at a 1:60 scale the larger turbulence scales are not completely represented.  This should not affect 
mean wind load measurements but can result in underestimation of peak fluctuating wind load on the 
heliostat from the lack of the low-frequency spectral content [3].  The wind-tunnel Reynolds number was 
approximately 30 000 – 70 000 at the testing wind speeds used for this study, thus achieving Reynolds 
number independence of the aerodynamic coefficient.  

  

Figure 2: Vertical distributions of velocity (left) and turbulence (centre), and power spectrum of 
turbulence (right) generated in the wind tunnel [3] 

The model was fitted with a 6-component balance, placed on a turntable within the wind tunnel and the 
azimuth and elevation angles were varied relative to the oncoming wind (see Figure 3). Each test run lasted 
32 seconds, representing 10 to 30 minutes when scaled to full-size, the average length of a thunderstorm.   
The sign convention is that used by Peterka et al [3] illustrated in Figure 3 (right): the heliostat azimuth angle 
is measured anticlockwise from east and in all cases is 270˚ (y-axis runs due east, x-axis runs due south).  
The wind direction (θ) is measured clockwise from north (0˚) to south (180˚).  While the heliostat elevation 
angle (EL) is measured from the vertical in the Peterka et al [3] sign convention, in this paper this convention 
is replaced with angle of attack (α), measured from horizontal (0° represents horizontal, 90° vertical).   
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Figure 3: 1/60th scale heliostat (left), model on 6 component balance (mid), axis convention (right) [3] 

During each test, forces and moments in the three axes were continuously measured and recorded.  Thereafter 
they were non-dimensionalised to coefficient form: 
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where CF and CM are the non-dimensionalised force and moment coefficients, Fx,y,z is the component of 
force [N] in x, y and z direction respectively, Mx,y,z is the moment [N.m] about the x, y and z axes 
respectively, � is the density of air [kg.m-3], Uref is upstream freestream velocity [m.s-1], Aref is the heliostat 
surface reference area [m2] and Lref is the heliostat reference length [m].  The maximum, minimum, mean, 
root mean squared (RMS), gust factor    𝐺𝑓𝑎𝑐𝑡 = !"#$

!"#$  and peak factor    𝑃𝑓𝑎𝑐𝑡 = !"#$!!"#$
!"#   values of the 

CF and CM values were then tabulated. Here peak refers to the greater of the absolute value of the maximum 
and minimum values. 

2.2. Data quality and resolution control1 

Unfortunately, the data was published as a fixed fraction to only two decimal places.  In cases where the 
heliostat is near horizontal, the mean and RMS coefficient values contain only one significant digit which is 
often 1, providing unacceptably low resolution.  Table 1 demonstrates this, showing the original published 
CFx values for α = 0˚.  Fortunately, in all cases the Pfact and Gfact ratios are given with three significant 
digits.  This fact was used to generate higher resolution values for the mean and RMS coefficients, as 
follows: 

𝑃𝑓𝑎𝑐𝑡 =   
𝑝𝑒𝑎𝑘 −𝑚𝑒𝑎𝑛  

𝑅𝑀𝑆
=
𝑝𝑒𝑎𝑘 1 −   !"#$!"#$

𝑅𝑀𝑆
=
𝑝𝑒𝑎𝑘 1 − !

!"#$%  

𝑅𝑀𝑆
 

∴ 𝑅𝑀𝑆 =   
!"#$ !! !

!"#$%  

!"#$%
, and 𝑚𝑒𝑎𝑛 =    !"#$

!"#$%
 

Using the Pfact and Gfact relationships described above, the mean and RMS values can be determined to 
more significant digits, increasing resolution.  To do this a higher resolution peak value is required, as the 
examples in Table 1 show peak values resolved to one or at best two significant figures, with a minimum 
magnitude of 0.05 (at least has a five times the RMS value).  For θ values from 0˚ to 90˚, the peak value is 
the maximum, while for 112.5˚ to 180˚ the peak value is the minimum.  The approach followed was to find 
the highest peak value (to be conservative) with three digits after the decimal point that simultaneously 1) 
rounds to the same two-decimal point value published by Peterka et al [3], and 2) generates RMS and mean 

                                                
1 The PDF version of Peterka et al [3] available at the websites listed in the references is an electronic scan of 
the original typed hard copy, and is of poor quality in places, making interpretation of the text difficult.  The 
data was thus plotted to ensure integrity (e.g. identifying if a minus sign exists in the data but cannot be 
discerned from the text quality, discerning between 1 and 4 and between 0 and 8 for doubtful characters). 
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values that in turn round to the same two-decimal point values published [3].   

Variable   Wind direction � (°) 

 0 22.5 45 67.5 90 112.5 135 157.5 180 

Mean 0.06 0.07 0.05 0.03 0.01 -0.02 -0.04 -0.05 -0.05 

Max 0.12 0.13 0.10 0.07 0.05 0.01 0.01 0.00 0.00 

Min 0.02 0.02 0.00 -0.01 -0.01 -0.05 -0.09 -0.10 -0.11 

RMS 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

Gfact 1.92 1.86 2.06 2.41 3.68 3.04 2.20 2.01 2.48 

Pfact 3.87 3.78 3.97 3.43 4.95 3.63 3.84 3.33 4.45 

Table 1: Original low resolution CFx data for � = 0˚ [3] 

This is illustrated in Table 2.  Pfact and Gfact ratios are not given as they are unchanged.  The bold, 
underlined figures are the values chosen from either the maximum or minimum as peak values, and each 
have at least three digits after the decimal point, giving at least two significant figures.  Using the Pfact and 
Gfact relationships, the mean and RMS values have been regenerated to at least three significant figures each 
(wind directions 0˚ and 180˚ each have RMS values to four significant figures to show that they round to the 
original published value of 0.01).  This method was applied to all the published data for completeness.  

Variable   Wind direction � (°) 

 0 22.5 45 67.5 90 112.5 135 157.5 180 

Mean 0.0630 0.0720 0.0505 0.0307 0.0147 -0.0178 -0.0427 -0.0517 -0.0451 

Max 0.121 0.134 0.104 0.074 0.054 0.01 0.01 0.00 0.00 

Min 0.02 0.02 0.00 -0.01 -0.01 -0.054 -0.094 -0.104 -0.1118 

RMS 0.01498 0.0164 0.0135 0.0126 0.0079 0.00998 0.0134 0.0157 0.01499 

Table 2: CFx data with improved resolution of RMS and mean values  

2.3. Pattern recognition 

For each heliostat setting angle (α) position and approach wind angle (θ), 24 values are of interest: 6 
coefficients (CFx, CFy, CFz, CMx, CMy and CMz) for which 4 values each are necessary: maximum, 
minimum, mean and RMS.  6 heliostat setting angles (α = 0˚, 3˚, 6˚, 10˚, 45˚, 90˚) have been tested at 9 wind 
directions (θ  = 0˚, 22.5˚, 45˚, 67.5˚, 90˚, 112.5˚, 135˚, 157.5˚ and 180˚), while a further 4 heliostat setting 
angles (α = 15˚, 30˚, 60˚ and 75˚)  have been tested at only 5 wind directions (θ  = 0˚, 45˚, 90˚, 135˚, and 
180˚).  This gives 24  × 6×9 + 4×5 =   1776 points of interest, which is a formidable data management 
and interpolation challenge.  With a dataset of this size, a coherent set of correlation curves fitted to the data 
would simplify this challenge, and identify outliers in the data.  Fitting such correlations to the data requires 
the recognition and exploitation of patterns within the dataset.      

The 1st pattern recognized was that the values of the ratio 𝑃𝑓𝑎𝑐𝑡 =    !"#$!!"#$  
!"#

 fluctuate around 4 for all the 

CF and CM values.  If the RMS value is regarded as a standard deviation (σ), it therefore follows that the 
data distribution can be considered to be similar to a normal distribution, with the peak (maximum for 
positive, minimum for negative) about four standard deviations from the mean2.  It can be seen in Table 1 

                                                
2 For a normal distribution the fraction of the data values lying within 1, 2, 3 and 4 standard deviations 
symmetrically distributed on either side of the mean are 68%, 95%, 99.7% and 99.994% respectively.  
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that the maximum and minimum values are not always exactly equidistant from the mean value.  If the 
distribution of the data is assumed to be normal, however, with the distance from the mean value to the 
maximum and minimum values made equal to that to the peak value, the resulting correlation would be 
conservative.  So, instead of correlating the mean, maximum and minimum values, it is only necessary to 
correlate the mean and RMS value distributions (since 𝑚𝑎𝑥!"## =   𝑚𝑒𝑎𝑛!"## + 𝑃𝑓𝑎𝑐𝑡×𝑅𝑀𝑆!"## and 
𝑚𝑖𝑛!"## =   𝑚𝑒𝑎𝑛!"## − 𝑃𝑓𝑎𝑐𝑡×𝑅𝑀𝑆!"##), and to assume that 𝑃𝑓𝑎𝑐𝑡 = 4.  This halves the data load.   

The 2nd pattern recognized was that at any given heliostat setting angle, the variation in the mean and RMS 
values of CF and CM can be described by a combination of trigonometric functions as a function of θ, using 
Fourier analysis: 

𝑓 𝜃 = 𝑐 + 𝑎! sin 𝑖𝜃 + 𝑏! cos 𝑖𝜃
!

!!!

 

This is physical, as the loading is related at least to first order to the projected heliostat area seen by the wind, 
which is described by sine and cosine relationships depending on the force considered.  Fitting correlation 
curves in this manner allows data subsets consisting of 9 wind directions to be compared to those consisting 
of 5 wind directions. 

3. Correlation curve fitting 

3.1. CFx mean 

As can be seen in Figure 4, the CFx mean curves strongly resemble the cosine function (full positive force in x 
direction for wind direction of 0°, full negative force in negative x direction for wind direction of 180°, and 
near zero force in x direction with wind direction of 90°).  A better fit to the data is however obtained using 
the square root of the cosine of the wind angle θ, or: 

𝐶𝐹!  !"#$ 𝛼, 𝜃 = 𝐶! 𝛼 × cos 𝜃 + 𝐶! 𝛼  

To allow meaningful results for wind directions of 90° < θ < 270°, this is replaced by the more general 
expressions 

𝐶𝐹!  !"#$ 𝛼, 𝜃 = 𝐶! 𝛼 × !"#!

!"#!
+ 𝐶! 𝛼  

C1 and C2 are correlated by the expressions:  

0° ≤ α ≤ 15°:                        𝐶! 𝛼 = 0.05594 + !!!
!"!! × 0.15079 − 0.05594  

15° < α ≤ 90°:               𝐶! 𝛼 = 0.24237 − 0.12703× cos 2α + 0.13109× sin 2α  

−0.58076× cos α + 1.14064× sin α 

and 

𝐶! 𝛼 = −0.005051 + 0.0001090×𝛼 

3.2. CFx RMS 

The CFx RMS curves (not shown) are largely symmetrical about α = 90°, resemble cos 𝜃  in shape, and scale 
approximately linearly with elevation angle α (as do the CFx mean curves).  If the RMS values are divided by 
the C1 data values mentioned above, the results nearly collapse onto a single curve of the form:   

𝐶𝐹!  !"# 𝛼, 𝜃
𝐶! 𝛼

= 𝐶! 𝛼 × cos 𝜃 + 𝐶! 𝛼  

The C3 and C4 distributions are correlated by:  

𝐶! 𝛼 = −0.00044494×𝛼 + 0.116297   

𝐶! 𝛼 = −0.000606747×𝛼 + 0.153464   



 

SASEC 2012 6 

The CFx RMS values can then be calculated:  

𝐶𝐹!  !"# 𝛼, 𝜃 = 𝐶! 𝛼 × 𝐶! 𝛼 × cos 𝜃 + 𝐶! 𝛼  

Using the previously calculated values of CFx mean and assuming 𝑃𝑓𝑎𝑐𝑡 = 4, values of CFx max and CFx min as 
a θ and α can be calculated from 

𝐶𝐹!  !"# 𝛼, 𝜃 = 𝐶𝐹!  !"#$ 𝛼, 𝜃 + 4×𝐶𝐹!  !"# 𝛼, 𝜃  

𝐶𝐹!  !"# 𝛼, 𝜃 = 𝐶𝐹!  !"#$ 𝛼, 𝜃 − 4×𝐶𝐹!  !"# 𝛼, 𝜃  

3.3. CFz mean 

While not discernable for α = 0° and α = 90°, the CFz mean curves also have a cosine shape as can be seen in 
Figure 4 as well as in the curves at other values of α not shown.  In this case, the shape of the data 
distribution is however better correlated by the cube root of the cosine of the wind angle θ, or: 

𝐶𝐹!  !"#$ 𝛼, 𝜃 = 𝐶! 𝛼 × !"#!

!"#!! + 𝐶! 𝛼  

The C5 correlation consists of three sections, two linear and one trigonometric:  

0° ≤ α ≤ 6°:                        𝐶! 𝛼 = −0.01338 + !!!
!!! × 0.23582 + 0.01338  

6° ≤ α ≤ 30°:                        𝐶! 𝛼 = 0.23582 + !!!
!"!! × 0.827332 − 0.23582  

30° < α ≤ 90°:                        𝐶! 𝛼 = 0.43416  × cos𝛼 + 0.53089× sin 2𝛼 − 0.014772 

C6 is given by a simple linear correlation: 

𝐶! 𝛼 = 0.0037246 − 0.00056640×𝛼 

3.4. CFz RMS 

The CFz RMS curves (not shown) resemble cos 𝜃  in shape (like the CFx RMS curves) but are not very 
symmetrical about α = 90°, and do not display a large dependency on heliostat setting angle α.  The pattern of 
the graphs is well represented by: 

𝐶𝐹!  !"# 𝛼, 𝜃 = 𝐶! 𝛼 × sin 2𝜃 + 𝐶! 𝛼 × cos 𝜃 + 𝐶! 𝛼 × cos 𝜃 + 𝐶!" 𝛼  

C7 to C10 are correlated by linear interpolations between values at discrete α points given in Table 3.  

Angle(°)  C7 C8 C9 C10 

0 0.017188 -0.0078651 0.00090260 0.052855 

10 0.010067 - - - 

15 - - -0.00245896 - 

30 - 0.085795 - - 

45 0.024131 - - - 

60 - - - 0.051271 

75 - - -0.013720 - 

90 0.001521 0.0063273 0.0067000 0.013562 

Table 3: Interpolation points for C7 to C10   

As with the CFx case, values of CFz max and CFz min as a function of θ and α can be calculated from 

𝐶𝐹!  !"# 𝛼, 𝜃 = 𝐶𝐹!  !"#$ 𝛼, 𝜃 + 4×𝐶𝐹!  !"# 𝛼, 𝜃  

𝐶𝐹!  !"# 𝛼, 𝜃 = 𝐶𝐹!  !"#$ 𝛼, 𝜃 − 4×𝐶𝐹!  !"# 𝛼, 𝜃  
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Figure 4: Comparison of data (markers) and correlations (lines) for CFx min, mean and max (bottom 
3 in each chart) and CFz min, mean and max (top 3 in each chart) plotted versus �, for 8 values of  � 
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4. Discussion 

Examining all the predicted curves (not just those displayed in Figure 4), the CFx mean correlation is a good fit, 
and is nearly always conservative except for α = 0° and α = 6° at where the experimental values peak at 
θ = 22.5° instead of at θ =0°.  Here they exceed the curve fit values by 22% and 14% respectively, and  the 
experimental values at θ = 0° by 12.5% and 5.8% respectively.  The CFx max and CFx min correlations provide a 
good fit, and are nearly always conservative except (as in the CFx mean correlation) at α = 0° and α = 6°, where 
the values peak at for θ = 22.5° instead of at θ = 0°.  The apparent exceptions for CFx min at θ = 180° at 
α = 10° and α = 90° are explained by the experimental data having  𝑃𝑓𝑎𝑐𝑡 values of 5.33 and 5.37 
respectively.  𝑃𝑓𝑎𝑐𝑡  values of 4 in these instances would have yielded experimental CFx min values of -0.223 
and -2.232 (instead of -0.26 and -2.56) respectively, much closer to the respective correlation values of          
-0.2366 and -2.1208. 

Disregarding α = 0° and α = 90° where the peak-to-trough experimental range is less than 0.1, the CFz mean 
correlation provides a good fit, and is nearly always conservative except at α = 6° where the experimental 
value peaks at θ = 22.5° instead of at θ = 0°, exceeding the correlation by 12.6% and the experimental value 
at θ = 0° by 14.1%.  Except at α = 0° and α = 90°, the CFz max and CFz min correlations provide a good fit and 
are nearly always conservative.  The exceptions for CFz min at θ = 350° (experimental values of CFz min of -
0.58 and -0.72 at α = 6° and α = 10° respectively) are partly explained by the experimental data having  𝑃𝑓𝑎𝑐𝑡 
values of 4.39 and 4.54 respectively.  𝑃𝑓𝑎𝑐𝑡  values of 4 in these instances would have yielded experimental 
CFx min values of -0.549 and -0.672 respectively, about midway between the current values and the respective 
correlation values of -0.506 and -0.630.   

Finally, as discussed in section 2.1, the fact that the lower frequency gustiness is not completely represented 
at 1:60 scale should not affect mean wind load measurements but can result in underestimation of peak 
fluctuating wind load on the heliostat from the lack of the low-frequency spectral content [3].  This can be 
compensated for by increasing 𝑃𝑓𝑎𝑐𝑡  values in the correlations above 4 when analyzing oscillating loads. 

5. Conclusion 

Correlations have been presented for lift (CFz) and drag (CFx) wind forces on an isolated square heliostat 
with good fit, producing accurate or at least conservative predictions.  These correlations should be useful in 
heliostat preliminary design studies where the environment matches the modelling assumptions: flat terrain 
with developed turbulent oncoming wind profile. 
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