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ABSTRACT

We describe several experiments that were conducted to as-
sess the viabilitly of data pooling as a means to improve
speech-recognition performance for under-resourced lan-
guages. Two groups of closely related languages from the
Southern Bantu language family were studied, and our tests
involved phoneme recognition on telephone speech using
standard tied-triphone Hidden Markov Models. Approxi-
mately 6 to 11 hours of speech from around 170 speakers
was available for training in each language. We find that
useful improvements in recognition accuracy can be achieved
when pooling data from languages that are highly similar,
with two hours of data from a closely related language being
approximately equivalent to one hour of data from the target
language in the best case. However, the benefit decreases
rapidly as languages become slightly more distant, and is also
expected to decrease when larger corpora are available. Qur
results suggest that similarities in triphone frequencies are
the most accurate predictor of the performance of language
pooling in the conditions studied here,

Index Terms— speech recognition, under-resourced lan-
guages, data pooling

1. INTRODUCTION

When developing automatic speech recognition (ASR) sys-
tems for under-resourced languages, the amount of training
data available is an important limiting factor. Although a wide
variely of approaches to this issue have been studied (see Sec-
tion 2 below), it is safe to say that data scarcily remains the
most significant obstacle to the development of high-quality
ASR systems.

Many of the existing approaches to dealing with data
scarcity utilize similarities between some or all of the phonemes
in different languages in order to improve the accuracy of
ASR, Typically, it is assumed that sufficient data from a well-
resourced language is available, and that data is employed in
various configurations to improve the performance of ASR
in an under-resourced language, In the current contribution,
we investigate a somewhat different approach, namely data
sharing among groups of related languages that are all lack-
ing in resources. In particular, we wish to investigate how
similar languages need to be for straightforward pooling of
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ASR training data to be beneficial,

If this approach proves to be useful, it can be used widely,
since the vast majority of the actively spoken languages oc-
cur in clusters of more or less closely related families. How-
ever, there is good reason to suspect that only very closely
related languages will benefit from pooling in this way — and
even then, only if the amount of training data in the target lan-
guage is severely limited. The main evidence for these con-
cerns comes from experience with dialects of well-resourced
languages: it is well known, for example, that ASR systems
trained on American English perform poorly when presented
with British English, and that combining training data from
these two dialects generally leads to a deterioration in perfor-
mance.

We therefore experiment with two groups of languages
that are strongly related, as discussed in Section 3. In order
to assess the effect of data pooling without any confounding
influences, we only pool phones with identical IPA symbols in
different languages — details are provided in Section 4, which
also describes the recognizers employed . In Section 5 we
analyse the pooled data according to a number of distance
measures and report results for a phoneme-recognition task,
showing that the relatedness of languages is indeed crucial to
the success of this approach. Our conclusions are summarized
in Section 6, which also suggests further work.

2. RELATED WORK

Once ASR systems were being developed for resource-scarce
languages, research related to the possibility of supplement-
ing target language data with that of additional languages
soon followed. The rationale is simple: since the statistical
methods being employed during acoustic modelling require
more data than is available for the target language in question,
borrow additional matching data from “donor languages”
where possible.

In this section we review the main approaches to data
combination that have been investigated in the literature. We
describe strategies for data combination, different approaches
to model mapping, and prior studies dealing specifically with
the languages relevant to this paper.



2.1. Data combination strategies

Several different data combination strategies have been inves-
tigated, with results strongly influenced by the amount of tar-
get language data available, the acoustic diversity of the avail-
able databases, as well as the acoustic and phonotactic simi-
larity between the target and donor language(s). Approaches
include:

o Cross-language transfer: using an existing recognizer
without any adaptation to the target language. Pre-
dictably, this strategy typically provides poor results,
and is only considered if the languages in question
are closely related [1], or if no target language data
is available. In the latter case, multilingual acoustic
models (built from a number of different langnages and
simultaneously able to recognize any of these) have
been shown to yield better results than monolingual
donor models [2, 3].

Cross-language adaptation: adapting an existing mono-
or multilingual recognizer using limited training data
and techniques such as Maximum Likelihood Linear
Regression (MLLR) or Maximum A Posteriori (MAP)
adaptation [4, 5, 6]. These techniques can produce
better results than cross-language transfer, and if tar-
get language data is very limited, can also outperform
bootstrapping (see below).

Data pooling: combining data from different sources
by pooling the data directly. Such multilingual models
were first developed in the context of language identi-
fication [7] but are also used in speech recognition, es-
pecially as initial models from which to adapt or boot-
strap [3] or, to a lesser extent, when bilingual speakers
are being recognized [8].

Booftstrapping: initially demonstrated in [9], acous-
tic models are initialized using models from a donor
language (or languages) and then rebuilt using tar-
get language data only. In [10], bootstrapping from
multilingual models was shown to outperform adapta-
tion when both approaches were evaluated using ap-
proximately 15 minutes of (Portuguese) target speech.
While useful gains were obtained using bootstrapping,
accuracy only approached that of a monolingual target
language system (developed using 16.5h of target lan-
guage data) once improved alignments of 90 minutes of
target speech were used. (These improved alignments
were assumed to be available, but typically are not.)

The methods described above can also be combined. For ex-
ample, data pooling can be used to create multilingual models
as seed models for bootstrapping [10], or a donor language
can be adapted to a target language prior to data pooling [11].
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Whichever method is used, cross-language data sharing
has only been shown to compensate for limited target lan-
guage data, and improvements soon dwindle as more target
language data becomes available.

2.2. Approaches to model mapping

Before applying any of the data combination approaches de-
scribed above, some mapping is usually required between the
acoustic models of the donor languages and those of the target
language. These mappings can be based on linguistic knowl-
edge, data analysis or a combination of the two approaches.

Linguistic knowledge is typically encoded in the phoneme
inventory of each of the languages, and the phoneme sets
mapped directly based on IPA or SAMPA equivalences [8, 3],
or other prior phonetic knowledge. Data-driven mappings
are based on some distance (or similarity) measure, vari-
ous of which have been utilized [12, 13, 14]. Good results
are obtained using “hierarchical clustering”, employing lin-
guistically motivated categories within which data-driven
(within-category) clustering is performed [13, 15]. Note that
while most of these experiments were applied to context-
independent models, similar techniques are applicable to
context-dependent models, as well as to sub-phonemic mod-
els.

Hierarchical clustering at the sub-phoneme level can be
integrated with the standard decision tree building process
typically used to cluster and combine context-dependent tri-
phones during Hidden Markov Model-based (HMM-based)
model building: data samples are tagged with their source
language and this additional information made available dur-
ing data-driven clustering, resulting in improved results [10].

2.3. Data sharing of Southern Bantu languages

None of the above studies dealt specifically with data from
any of the Southern Bantu languages. In the only cross-
lingual adaptation study that includes these languages (that
we are aware of), monolingual systems in isiXhosa and
isiZulu were compared with a multilingual system developed
using IPA-based data pooling of the two languages, with
language-specific questions added during tying of triphones
[16]. The multilingual system outperformed the monolingual
systems, but gains were small. (Optimal phoneme accuracies
for both approaches ranged between for 60.5% and 61.3%.)

3. CORPUS AND LANGUAGES

Our experiments are based on the Lwazi ASR corpus which
was developed as part of a project that aims to demonstrate the
use of speech technology in information service delivery in
South Africa [17]. The corpus contains data from each of the
eleven official languages of South Africa - approximately 200
speakers per language (2,200 speakers in total), contributed



read and elicited speech, recorded over a telephone channel.
Each speaker produced approximately 30 utterances: 16 of
these were randomly selected from a phonetically balanced
corpus and the remainder consist of short words and phrases.

For the purposes of the current research, we concen-
trate on two subsets of this corpus each containing a group
of closely related languages. The three Sotho-Tswana lan-
guages (Sepedi, Setswana and Sesotho) form the first group,
and three of the four Nguni languages (isiZulu, isiXhosa and
isiNdebele) the second. (The fourth Nguni language in the
Lwazi corpus, Siswati, was not included in the current study
for reasons explained below.) These languages all belong
to the Southern Bantu family of languages. Although they
are used as first language by relatively large populations of
speakers (all are considered as first language by several mil-
lion speakers, with the exception of isiNdebele, which has
only 700 000 first-language speakers), very few linguistic
resources are available for these languages.
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Fig. 1. Dendrogram calculated from confusion matrices for a
multi-lingual text-based SVM classifier.

These languages all belong to the Southern Bantu fam-
ily of languages [18]. We have previously studied their rela-
tionships using both orthographic and acoustic measures [19].
A typical dendrogram of the measured distances between the
languages is shown in Fig. | (based on orthographic or text-
based data); it can be seen that the two groups of languages se-
lected here are indeed very closely related by these measures,
and are therefore worthy candidates for the type of pooling
considered here, Note also that Siswati is not as closely re-
lated to the other Nguni languages by these measures — it
was therefore not included as a target language in the current
study.
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Language # total min | # training min | # testing min
isiNdebele (Nbl) 609 517 92
isiZulu (Zul) 529 447 82
isiXhosa (Xho) 536 454 82
Sepedi (Nso) 548 465 83
Sesotho (Sot) 425 359 66
Setswana (Tsn) 443 379 64
Siswati (Ssw) 663 - -

Table 1. Size of training and testing sets (in minutes) per
language.

4. METHOD

4.1. ASR system overview

The ASR system developed to evaluate the effect of data pool-
ing follows a standard Hidden Markov Model (HMM) design.
Acoustic models consist of cross-word tied-state triphones
modelled using a 3-state continuous density HMM. Each
HMM state distribution is modelled by a 7-mixture multivari-
ate Gaussian with diagonal covariance. The 39-dimensional
feature vector consists of 12 static Mel-Frequency Cepstral
Coeflicients (MFCCs) with the 0'th cepstra, 13 delta and
13 delta-delta coefficients appended [20]. The final prepro-
cessing step applies Cepstral Mean Normalization (CMN)
which calculates a per utterance bias and removes it [21].
The different HMM state distributions were estimated by
running multiple iterations of the Baum-Welch re-estimation
algorithm. Once the triphone acoustic models were trained,
a 40-class semi-tied transform [22] was estimated to further
improve acoustic model robustness.

Our data pooling experiments are performed using the
Lwazi ASR Corpus [17] and the Lwazi pronunciation dic-
tionaries [23], as briefly described in Section 3. Table 1 in-
dicates the amount of speech data in minutes for the differ-
ent language-specific training and testing sets. Each language
testing set was created by choosing 30 speakers at random,
which were then excluded from the training data. In each
case, we employed both the phonetically balanced sentences
and the short phrases in our training and testing data.

4.2. Data combination approach

Our initial step in data pooling is to partition the languages
into two groups: The Nguni group consists of isiZulu, isiN-
debele and isiXhosa, while the Sotho-Tswana group includes
Sepedi, Sesotho and Setswana. To increase our training data
we systematically add speech data from languages in the same
group to the target language.

Cross-language mapping is performed at the phoneme
level based on the IPA-mapping described in the Lwazi
phoneme set version 1.2., a phoneme set that is still un-
dergoing further refinement [23].



Table 2. The number of distinct phonemes for each Sotho-
Tswana language cluster.

Table 2 shows the increase in the number of distinct
phones when languages from the Sotho-Tswana group are
added together (and also the count if isiZulu is added to these
languages). Similarly, Table 3 shows the increasing count
of distinct phones for the Nguni group. Column 1 in Tables
2 and 3, indicate the data pooling combinations which were
used in the various ASR experiments.

5. COMBINATION RESULTS

In order to assess the performance of our combined ASR sys-
tems, phone recognition on the “base” languages is performed
for all combined systems. We also measure several distances
in order to quantify how far the languages are apart from one
another.

5.1. Inter-phone comparisons

We investigate the “closeness™ of languages by measuring
several distances: the Bhattacharyya distances between over-
lapping multivariate normal distributions of monophone and
triphone models, the Euclidean distance between overlapping
phone durations and the cosine of the angle between phone-
count vectors.

5.1.1. Comparison of acoustic similarities

The Bhattacharyya distance for multivariate Gaussian distri-
butions,

Ds = gl p2) 7 (s~ o)
+1n |—z:‘_ (])
2 V81X,

Language combinations # distinct Language combinations # distinct
phonemes phonemes
Sepedi 43 isiNdebele 48
Sepedi + Setswana 46 isiNdebele + isiZulu 54
Sepedi + Setswana + Sesotho 49 isiNdebele + isiZulu + isiXhosa 61
Sepedi + Setswana + Sesotho + isiZulu 65 isiNdebele + isiZulu + isiXhosa + Siswati 64
Sesotho 41 1siZulu 47
Sesotho + Setswana 42 isiZulu + isiNdebele 54
Sesotho + Setswana + Sepedi 49 isiZulu + isiNdebele + isiXhosa . 61
Sesotho + Setswana + Sepedi + isiZulu 65 isiZulu + isiNdebele + isiXhosa + Siswati 64
Setswana 34 %siXhosa . 33
Setswana + Sesotho 42 ¥51Xhosa N 3812"1]“ . 57
. isiXhosa + isiZulu + isiNdebele 61
Setawpna - esatho & SepetlL, 47 isiXhosa + isiZulu + isiNdebele + Siswati | 64
Setswana + Sesotho + Sepedi + isiZulu 65
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Table 3. The number of distinct phonemes for each Nguni
language cluster.

is used to calculate distances between corresponding states
of corresponding phones in pairs of languages. In (1), i de-
notes the mean vector of a particular multivariate distribution,
¥; the corresponding covariance matrix and

_21+22
T2

b (2)

The Bhattacharyya distance is calculated for all mono-
phones and triphones shared among languages. In order
to obtain a single distance for both monophones and tri-
phones, weighted sums are calculated, with each phone being
weighted by the sum of its prior probabilities in the intersec-
tion of the languages being compared. The weighted sums,
referred to as the acoustic distances, are displayed in tables 4
and 5.

3.1.2. Comparison of (tri)phone frequencies

Another way to assess the closeness of languages is to mea-
sure the similarities in the frequencies at which common
monophones and triphones occur in those languages. We
quantify these similarities in terms of the angle between
the vectors containing the frequencies of all monophones /
triphones in each of the languages:

Xy

Rl 3
I 1] ©)

cos(Z (x,¥)) =

where x and y are vectors containing the phone / triphone
frequencies in two different languages.

The higher this value is, the more overlap exists between
both phones and phone counts in these languages. Tables 4
and 5 summarize these measurements for the two language
groups studied here.



3.1.3. Comparison of phone durations

A third way to measure how close two languages are, is to
consider the similarity between the durations of phones com-
mon to both languages. Phone durations are obtained by
forced alignment, using tied-state triphone models together
with the semi-tied transforms. The mean durations of com-
mon phones within each language are then compared, cal-
culated as the sum of the squared differences between these
mean durations, normalized by the sum of the mean durations
of the phonemes in the pair of languages under consideration.
(Normalization is performed to prevent differences between
longer phone classes such as vowels to dominate the analy-
sis.) These normalized distances are also presented in tables
4 and 5.

| Distance Nso-Sot | Nso-Tsn | Sot-Tsn |
Acoustic distance 1.024 1.157 1.167
Similarity of frequencies 1.162¢-02 | 1.148e-02 | 1.581e-02
Distance between durations 0.110 0.097 0.090

Table 4. Distance measures between the South African
Sotho-Tswana languages, as described in Section 5.1

[ Distance Nbl-Xho | Nbl-Zul | Xho-Zul |
Acoustic distance 1.316 1.232 1.144
Similarity of frequencies 1.396e-02 | 1.649¢-02 | 1.301e-02
Distance between durations 0.100 0,097 0.095

Table 5. Distance measures between the Nguni languages
employed in this study, as described in Section 5.1

5.2. Recognition resulfs

Figure 2 summarizes the phone-recognition accuracies that
were obtained by pooling different sets of data. (In all cases,
a flat language model was employed - that is, each phone
was allowed to transition to any other phone. As a point
of reference, our baseline recognizers were found to have
word error rates ranging between 2% and 12% on a ten-word
speaker-independent recognition task.) It can be seen that all
languages seemed to benefit from the addition of data from
closely related languages, except Sepedi. isiZulu in particu-
lar performed much better with the addition of isiNdebele and
isiXhosa, with an improvement of approximately 2.6% abso-
lute. To assess the magnitude of this improvement, one needs
to keep in mind that asymptotic phone-recognition accuracy
{(with unlimited training data) using only bigram constraints
is substantially less than 100%. In earlier work [17] we used
parametric fits of accuracy against the amount of training data
to estimate asymptotic phone-recognition accuracies for these
languages. Based on those calculations, we estimate that the
additional accuracy achieved by adding isiNdebele data to the
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isiZulu training data (our most beneficial pooling) is similar to
the benefit that would be achieved by adding approximately
another 250 minutes of isiZulu training data. Similarly, the
the addition of the Sesotho data to the Setswana recognizer is
found to be equivalent to the addition of approximately 110
minutes of Setswana data.

We also see that adding languages from other sub-families
(such as isiZulu to the Sotho-Tswana languages) degrades
performance significantly, and that the addition of Siswati
data to the other Nguni languages is also detrimental in all
cases.

Comparing these results with the distance measures
shown in tables 4 and 5 suggests that similarity in triphone
frequencies is the best predictor of how well data pooling will
work. Sepedi, for example, is further away from Sesotho and
Setswana than any of the other languages by this measure,
and this correlates with the phone recognition results in figure
2, where Sepedi does not add any value to either Sesotho or
Setswana. Sesotho and Setswana both improve when adding
data from one to the other, as do the Nguni languages, with
the angle between the isiZulu and isiNdeblele phone-count
vectors being particularly small. The comparison of phone
durations is somewhat aligned with the observed recognition
accuracies (compare, for example, the relationship between
Sepedi and Sesotho), but the measure of acoustic differences
that we have employed does not seem to predict the behaviour
of data pooling at all. This measure does not correlate with
either the assessments of the other two measures (which are
fairly comparable in ordering the six languages studied here)
or the recognition results observed.

6. CONCLUSION

In this paper we investigated the effectiveness of pooling
speech data to improve ASR system performance of resource-
scarce languages. We have shown that for both the Nguni and
Sotho-Tswana language groups, a non-negligible improve-
ment in ASR correctness can be achieved by combining ap-
propriate speech data sourced from closely related languages.
In the best case, approximately 520 minutes of isiNdebele
training data is found to improve accuracy to a similar ex-
tent as would be expected from approximately 250 minutes
of isiZulu data. The next best improvement, to Setswana
from approximately 420 minutes of Sesotho data, was seen
to be equivalent to approximately 110 additional minutes of
Setswana data. These provide rough guidelines for the benefit
that can be achieved from pooling speech data from closely
related languages families — namely, that two to four hours
of cross-language data can give similar benefit to one hour of
target-language data.

The factors that influence data combination, as described
in Section 2, should of course be kept in mind. It would there-
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Fig, 2. ASR phone-recognition accuracies for Sepedi, Setswana, Sesotho, isiNdebele, isiXhosa and isiZulu. In each “cluster”,
the first bar indicates the baseline phone correctness for the particular language being recognized. Each subsequent bar is
labelled with the language from which additional training data was added, in addition to all training data used for the previous
bar. In this way, the 37 bar from the 2™¢ (yellow) cluster, indicates the phone correctness obtained when recognizing Setswana,
having used training data from Setswana, Sesotho and Sepedi.

fore be very interesting to repeat the comparisons performed
here with different amounts of target and donor data, and also
to investigate other language families with greater or lesser
language similarities. It will also be interesting to see whether
more elaborate data combination strategies can produce larger
benefits from the combination of data from closely related
languages.

Our results suggest that similarity in the frequencies of the
various triphones is the best predictor of data-pooling perfor-
mance amongst those measures studied here. This suggestion
should be evaluated on data from other language families, and
it may be fruitful to search for other measures that are even
better predictors.
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