Journal of Physics and Chemistry of Solids 72 (2011) 714-718

Synthesis, characterization, and growth mechanism of α -Cr₂O₃ monodispersed particles

S. Khamlich ^{a,b,c,n}, E. Manikandan ^d, B.D. Ngom ^a, J. Sithole ^a, O. Nemraoui ^a, I. Zorkani ^e, R. McCrindle ^b, N. Cingo ^{c,d}, M. Maaza ^{a,b,c}

^a Nano-Sciences Laboratories, Materials Research Department, iThemba LABS, National Research Foundation, South Africa

^b Department of Chemistry, Tshwane University of Technology, Private Bag X 680, Pretoria 0001, South Africa ^c The African Laser Centre, CSIR campus, P.O. Box 395, Pretoria, South Africa

^d DST/CSIR Innovation Centre, National Centre for Nanostructured Materials (NCNSM), Council for Scientific and Industrial Research (CSIR), National Laser Centre (NLC), South Africa

^e Solid State Physics Laboratory, Faculty of Sciences, Dhar El Mahraz, Fez, Morocco

ABSTRACT

Monodispersed spherical particles of chromium (III) oxide, α -Cr₂O₃, were successfully synthesized from a diluted solution of KCr(SO₄)₂ · 12H₂O using the Aqueous Chemical Growth (ACG) technique. The spherical α -Cr₂O₃ particles obtained were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Raman spectroscopy for structural, surface morphological, chemical, and physical properties, as a function of deposition time. The XRD and Raman spectroscopy showed that aging had no apparent effect on the structure of the obtained uniform fine (in the range of micron- nano-level)-spherical particles of α -Cr₂O₃. The use of SEM demonstrated that aging had a clear influence on the size and the particles size distribution. Accordingly, the time dependence of the average diameter of α -Cr₂O₃ spherical particles follows the d3 law as required for diffusion-limited Ostwald ripening.