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Abstract  
 
The regional mapping of grass nutrients is of interest in the sustainable planning and 

management of livestock and wildlife grazing. The objective of this study was to estimate and 

map foliar and canopy Nitrogen (N) at a regional scale using a recent high resolution spaceborne 

multispectral sensor (i.e. RapidEye) in the Kruger National Park (KNP) and its surrounding 

areas, South Africa. The RapidEye sensor contains five spectral bands in the visible-to-near 

infrared (VNIR), including a red-edge band centered at 710 nm. The importance of the red-edge 

band for estimating foliar chlorophyll and N concentrations has been demonstrated in many 

previous studies, mostly using field spectroscopy. The utility of the red-edge band of the 

RapidEye sensor for estimating grass N was investigated in this study. A two-step approach was 

adopted involving (i) vegetation indices and (ii) the integration of vegetation indices with 

environmental or ancillary variables using a stepwise multiple linear regression (SMLR) and a 

non-linear spatial least squares regression (PLSR). To ensure that the estimation of grass N was 

not compromised by biomass variability, the field work was undertaken during peak 

productivity. The model involving the simple ratio (SR) index (R805/R710) defined as SR54, 

altitude and the interaction between SR54 and altitude (SR54*altitude) yielded the highest 

accuracy for canopy N estimation, while the non-linear PLSR yielded the highest accuracy for 

*Manuscript
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foliar N estimation through the integration of remote sensing (SR54) and environmental 

variables. The spatial pattern of foliar N concentrations corresponded with the soil fertility 

gradient induced by the geological parent material. The study demonstrated the possibility to 

map grass nutrients at a regional scale provided there is a spaceborne sensor encompassing the 

red edge waveband with a high spatial resolution. Regional maps of the grass nutrients could be 

used for planning and management of the savanna ecosystems by farmers, resource managers 

and land use planners. 

 

Keywords: foliar nitrogen, savanna ecosystem, integrated modeling, red-edge band, RapidEye, 

vegetation indices 

 

1. Introduction  
 

Savanna ecosystems constitute about 32.8% of the land in South Africa (Mucina and Rutherford, 

2006). These ecosystems play a crucial role in the rural economy of the country, and worldwide 

as well (James et al., 2003; Shackleton et al., 2002). Among other things, they provide grazing 

resources important for livestock production, one of the main sources of income in South African 

rural areas (Shackleton et al., 2002). The main challenge for savannas is their sensitivity to land 

degradation due to overgrazing and overstocking (Abel and Blaikie, 1989; Du Toit and 

Cumming, 1999; Everson and Hatch, 1999). This is at least in part the result of the lack of 

information about grass conditions hampering proper management (Everson and Hatch, 1999). 

There is a need for sustainable utilization of the grazing land for viable livestock production, 

while minimizing land degradation. Spatial and regional information about grass nutrients is 
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useful to guide farmers towards sustainable management of their grazing land, thus alleviating 

poverty. 

 

Regional mapping of grass nitrogen (N) provides essential information for sustainable planning 

and management of livestock and wildlife grazing by livestock farmers, park wardens, or game 

and resource managers. Grass N concentration is an indicator of grass quality as it is positively 

correlated to protein content (Clifton et al., 1994; Wang et al., 2004). Protein forms one of the 

major nutrient requirements for herbivores (Prins and Beekman, 1989; Prins and van 

Langevelde, 2008). Grass quality is an important parameter affecting the distribution and grazing 

behaviour of livestock and wildlife (Ben-Shahar and Coe, 1992; Heitkönig and Owen-Smith, 

1998; McNaughton, 1990). For example, large herbivores concentrate in highly nutritious areas 

in southern Africa (Grant and Scholes, 2006; Owen-Smith and Danckwerts, 1997; Treydte et al., 

2007) and herbivore diversity increases with increasing soil fertility levels (Olff et al., 2002). 

Soil fertility levels generally correlate with grass N concentrations (Ben-Shahar and Coe, 1992; 

Olff et al., 2002). Therefore, grass N concentrations could be used as a proxy for soil fertility 

levels.  

 
Remote sensing techniques have been developed over the past decades to extract information 

about biophysical and biochemical parameters of vegetation such as leaf area index, chlorophyll, 

P, fibre, lignin, and N (Asner et al., 1998; Beeri et al., 2007; Darvishzadeh et al., 2008; LaCapra 

et al., 1996; Main et al., 2011; Majeke et al., 2008; Ramoelo et al., 2011b; Schlerf et al., 2010). 

The conventional approach relates a specific vegetation parameter to vegetation indices derived 

from remote sensing data using a variety of statistical regression techniques (Darvishzadeh et al., 

2008; Haboudane et al., 2004; Hansen and Schjoerring, 2003; le Maire et al., 2008; Starks et al., 
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2008). For estimating foliar biochemical (e.g. N) concentrations, traditional broadband indices 

such as normalized difference vegetation index (NDVI) (Rouse et al., 1974), soil line concept 

(SLC), simple ratio (SR) (Baret and Guyot, 1991), and soil-adjusted vegetation index (SAVI) 

(Huete, 1988) are not conducive. These broadband vegetation indices saturate at high canopy 

cover (Mutanga and Skidmore, 2004b; Tucker, 1977) and are insensitive to subtle changes in the 

foliar N concentration. 

 
The more recent success in estimating foliar N and chlorophyll concentrations has been possible 

due to the development of hyperspectral remote sensing. Studies using hyperspectral remote 

sensing have highlighted the utility of red-edge bands for estimating foliar N and chlorophyll 

concentrations (Cho and Skidmore, 2006; Darvishzadeh et al., 2008; Huang et al., 2004). The 

red-edge is the region of abrupt change in leaf reflectance between 680 and 780 nm, mainly 

influenced by the concerted effect of spectral absorption in the red wavelengths and scattering in 

the near infrared region (Clevers et al., 2002; Gates et al., 1965; Horler et al., 1983). Cho and 

Skidmore (2006) developed a technique to compute the red-edge position (REP), which is highly 

sensitive to foliar chlorophyll. REP is known to be insensitive to background effects (Elvidge 

and Chen, 1995) and is highly correlated to foliar N (Cho and Skidmore, 2006), as chlorophyll is 

positively correlated to N (Haboudane et al., 2004; Hansen and Schjoerring, 2003; Yoder and 

Pettigrew-Crosby, 1995). Vegetation indices computed from red-edge bands, also known as 

narrow-band indices, have provided improved estimates of foliar N compared to conventional 

broad-band indices derived from red (680 nm) and near infrared (800 nm) (Hansen and 

Schjoerring, 2003; Mutanga and Skidmore, 2007). 
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Other successful hyperspectral techniques in foliar N estimation involve the use of N and protein 

absorption features in the visible (VIS), near infrared (NIR) and shortwave infrared (SWIR) 

(Huang et al., 2004; Knox et al., 2010; Schlerf et al., 2010; Skidmore et al., 2010). Several 

studies argued that the use of selected absorption features surpasses the use of the full spectrum 

for foliar biochemical and biophysical estimation (Cho et al., 2007; Darvishzadeh et al., 2008), 

because it reduces the chance of using redundant data. The drawback to using this approach for 

regional estimation of foliar biochemical concentrations is that there are limited satellite sensors 

which sample light using the full spectral region with narrow bands adequately resolving these 

absorption features. Satellite sensors with strategically placed spectral bands in the red-edge 

region are likely to provide successful estimates of biochemical concentrations, and more 

specifically N. However, as these sensors are scarce, foliar N concentration is seldom mapped on 

a regional scale. For example, conventional multispectral satellite sensors such as SPOT, 

Landsat, and ASTER lack specific spectral bands in the red-edge region and their spatial 

resolutions are relatively coarse. The MERIS sensor has a standard band setting allowing the 

computation and approximation of the red-edge position (Clevers et al., 2002), but the spatial 

resolution is too coarse, especially for savannas, which are a complex and heterogeneous mosaic 

of grass and trees. The emergence of multispectral sensors such as WorldView-2 (USA), 

SumbandilaSAT (South Africa) and RapidEye (Germany) with red-edge bands at high spatial 

resolution (i.e. 6.5 m) could provide an opportunity for rangeland resource quality assessment at 

a regional level. There is a need for the development of specific vegetation indices that could be 

used successfully with these sensors. In this study several broad-band and hyperspectral 

vegetation indices were modified to incorporate the red-edge band of RapidEye to estimate grass 

N concentration at a regional scale.  
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A challenge when using remote sensing to estimate foliar biochemical concentrations is 

associated with the difficulty disentangling the signals for biomass and foliar biochemical 

concentrations, especially N (i.e. the interaction effects between N and biomass) (Skidmore et 

al., 2010). These effects can be minimized during peak productivity when the grass spectra have 

the highest absorption in the red region and scattering in the near infrared region (Plummer, 

1988a, b; Skidmore et al., 2010). During this period, the scattering and absorption processes 

continue to increase due to biomass production, as captured by indices such as normalized 

difference vegetation index (NDVI), and the relationship between biomass and NDVI 

asymptotically saturates (Mutanga and Skidmore, 2004b; Tucker, 1977). At a certain critical 

biomass point (e.g. 0.3 g/cm2) reached at peak productivity, the vegetation indices are unable to 

estimate further increase in biomass (Mutanga and Skidmore, 2004b). That is when foliar N can 

be estimated with minimal effect from the N-biomass interaction problem.  

 
In addition, a few studies have highlighted the need to integrate environmental or ancillary and 

remote sensing variables to estimate foliar biochemical concentrations at a regional scale (Cho et 

al., 2009; Cho et al., 2010; Knox et al., 2011; Ramoelo et al., 2011a; Ramoelo et al., under 

review), which could be a crucial step towards improving regional estimation and mapping. A 

combination of factors such as edaphic (geology and soils), topographic (slope, aspect, and 

altitude), and climatic (precipitation and temperature) factors are known to influence the 

distribution of foliar biochemical concentrations in a very complex way (Ben-Shahar and Coe, 

1992; Ferwerda et al., 2006; Mutanga et al., 2004; Skidmore et al., 2011). Ramoelo et al. (2011a) 

showed that geology, slope, temperature, and land use types were the main contributing 

environmental variables when modeling foliar N in combination with in situ hyperspectral 
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remote sensing variables. However, where environmental data sets are readily available at a 

regional scale, their resolution is relatively coarse rendering them unsuitable as sole input in the 

estimation of foliar biochemical concentrations. The use of remote sensing could address this 

issue of resolution and scale, for instance regional maps could be derived at a resolution of 5 to 

10 m based on data from the newly developed spaceborne sensors. The assumption is that a 

modeling approach which integrates remote sensing and environmental variables potentially 

yields a higher foliar N estimation accuracy than approaches using either remote sensing or 

environmental variables (Cho et al., 2009; Cho et al., 2010; Knox et al., 2011; Ramoelo et al., 

2011a; Ramoelo et al., under review). The objectives of this study were twofold; (1) to 

investigate the utility of the red-edge band of the RapidEye sensor for estimating grass N 

concentrations using various vegetation indices derived from the RapidEye data, and to 

determine which vegetation index correlates highly with grass foliar as well as canopy N and (2) 

to integrate this vegetation index with the environmental variables to estimate and map grass 

foliar and canopy N at a regional scale. 

 
2. Study area  

 
The study area is located in the north-eastern part of South Africa (Figure 1) and covers a total 

area of approximately 5000 km². The area is referred to as the Lowveld landscape, which is a 

low lying area extending from the foot slopes of the Drakensberg Great Escarpment to the west 

to the Mozambique coastal plain to the east (Venter et al., 2003). Protected areas such as the 

privately owned Sabi Sands Game Reserve (SGR) and the state -owned Kruger National Park 

(KNP), as well as the communal lands in Bushbuckridge form the main land tenures. The main 

vegetation types are “Tshokwane-Hlane basalt lowveld”, “granite lowveld”, “gabbro grassy 

bushveld”, and “Delagoa lowveld” (Mucina and Rutherford, 2006). The Tshokwane-Hlane basalt 
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lowveld is characterized by open tree savannas with trees such as Sclerocarya birrea, Acacia 

nigrescens, Acacia gerrardii, Peltophorum africanum, Dichrostachys cinerea, and common 

grass species such as Bothriochloa radicans, Digitaria eriantha, Cenchrus ciliaris, and Urochloa 

mossambicensis. This vegetation type occurs in the highly fertile black, brown or red clayey soils 

derived from the basalt substrate. The granite lowveld comprises dense thickets dominated by 

trees such as several Combretum species, Dichrostachys cinerea, Grewia bicolor, and 

Terminalia sericea with dominant grass species being Pogonarthria squarrosa, Tracholeona 

monachne, and Eragrostis rigidior. The granite-derived soils are sandy in the uplands and clayey 

in the bottomlands, and are low in fertility compared to the basalt-derived soils. Gabbro grassy 

bushveld constitutes an open savanna with dense grass cover. Dominant tree species are Acacia 

nigrescens, Sclerocarya birrea, Bolusanthus speciosus, and Ziziphus mucronata, while common 

grass species are Chloris virgata, Setaria species, Themenda triandra, Bothriochloa radicans, 

Panicum maximum, Urochloa mossambicensis, and Eragrostis superba. Soils in this vegetation 

type are fertile dark vertic with 20 to 50% clay derived from the gabbro geological type (Mucina 

and Rutherford, 2006). The Delagoa lowveld vegetation type is characterized by dense thickets 

with common tree species such as Acacia welwitschii, Dichrostachys cinerea, Euclea divinorum, 

and Grewia bicolor and grass species such as Chloris virgata, Aristida congesta, Panicum 

colaratum, and Sporobolus species. This vegetation type occurs in shale and lesser sandstone 

layers interspersed by sheets and dykes of Jurassic dolerite (Mucina and Rutherford, 2006). The 

soils are rich in sodium, but the fertility is lower than in the basaltic-derived soils. There is an 

evident precipitation gradient from the western part (800 mm/year) to the eastern part (580 

mm/year) of the study area (Venter et al., 2003). The annual mean temperature is about 22oC. 

Geology as mentioned above includes granite and gneiss with local intrusions of gabbro in the 
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west and basalt as well as shale in the eastern part towards Mozambique (Venter et al., 2003). 

The contrasting geological substrates (and associated soil types) together with the precipitation 

influence, clearly define the patterns and gradients in soil moisture and nutrients. The topography 

is mostly undulating in the granitic sites and flat in the basalt areas, with an average height of 

450 m. Rangelands in the protected areas are grazed by wild herbivores such as impala 

(Aepyceros melampus), zebra (Equus burchelli), wildebeest (Connochaetes taurinus), and 

buffalo (Syncerus caffer), while the communal rangelands support the grazing of cattle (Bos 

taurus), goats (Capra hircus), and sheep (Ovis aries), thus determining various grazing or land 

use intensities. 

 

3. Data Collection  
 

3.1. Field data collection  
 
The field data were collected using a road sampling technique since deep penetration into the 

savanna landscape was limited by management and logistical restrictions. Field work was 

undertaken in April 2010, the same month the satellite imagery was collected. The areas along 

the main roads covering the study area were purposively selected for the field sampling based on 

their underlying geological strata, both in the protected and in the communal areas. Buffers of 

300 m were created on both sides of these roads using ArcGIS software (ESRI, USA). Within the 

buffer polygons random sample points were generated using the ArcGIS add-on called Hawth 

tools. All points directly on the road or on the bare areas next to the road were rejected because 

of the lack of grass. The plots were randomly located in areas with homogeneous grass to avoid 

the effect of trees on the grass signal. Each sample point (N=51) was treated as a plot of 20 m x 

20 m, to account for a geometric accuracy of up to one pixel (i.e. 5 m) on the RapidEye image. In 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 
 

each plot, 2 subplots of 50 cm x 50 cm were used to collect information about the dominant 

species, the percentage cover of photosynthetic and non-photosynthetic vegetation as well as 

bare soil. The grass in each subplot was clipped and weighed to determine the wet biomass. The 

grass samples were then dried at 80ºC for 24 hours and weighed again to establish the dry 

biomass. Grass biomass was expressed in weight per unit area (i.e. g/0.25 m2). The biomass data 

were acquired to determine any interaction effects between biomass and foliar N. The field work 

was undertaken during peak productivity to minimize these interaction effects (Plummer, 1988a, 

b; Skidmore et al., 2010), as discussed in the Introduction. The grass samples were dried to 

retrieve foliar N concentrations.  

 

3.2. Chemical analysis  

 
The dried grass samples were taken to South Africa’s Agricultural Research Council Institute for 

Tropical and Subtropical Crops (ARC-ITSC) in Nelspruit for chemical analysis. Firstly, the acid 

digestion technique was used, where sulphuric acid aided the foliar N retrieval (Giron, 1973; 

Grasshoff et al., 1983; Mutanga et al., 2004). Secondly, the colorimetric method by auto analyser 

was used to measure the foliar N (Technicon Industrial Method 329-74 W; Technicon Industrial 

Systems, Farrytown, New York). An emerald-green colour was formed by the reaction between 

ammonia, sodium salicylate, sodium nitroprusside, and sodium hypochlorite. The ammonia-

salicylate complex was read at 640 nm. These two extraction methods were already successfully 

used for grass foliar N by Mutanga et al. (2004), Ramoelo et al. (2011b) and Ramoelo et al. 

(under review). 
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3.3. Image acquisition and atmospheric corrections  
 
The mission to collect RapidEye images was tasked in April 2010. The RapidEye sensor has a 

multispectral push broom imager with a spatial resolution of 6.25 m and captures data in the 

spectral bands: blue(440-550 nm), green (520-590 nm), red (630-685 nm), red edge (690-730 

nm), and near infrared (760-850 nm) (RapidEye, 2010). The RapidEye Ortho product (Level 3A) 

was provided with radiometric, sensor, and geometric correction applied using the digital terrain 

elevation data (DTED) level 1 Shuttle Radar Terrain Mission (SRTM). The orthorectification 

accuracy of 1 or less pixel was achieved (RapidEye, 2010). The RapidEye Ortho product was 

delivered resampled to a 5m x 5m spatial resolution. To retrieve surface reflectance  atmospheric 

correction was executed using the atmospheric and topographic correction software (ATCOR 2) 

implemented in the IDL Virtual Machine (Richter, 2011). ATCOR 2 models reflectance for flat 

surfaces, which was considered sufficient since the study area was not characterized by very 

rugged terrain. The advantage of ATCOR 2 is that it was developed specifically for satellite 

remote sensing data and includes a large database of atmospheric correction functions (look-up-

tables computed with the Modtran® 5 radiative transfer code) covering a wide range of weather 

conditions, sun angles, and ground elevations (Richter, 2011). The Modtran® standard aerosols 

for “rural” were selected to compute the aerosol type, and “visibility” was computed according 

to Richter (2011). RapidEye metadata were used to obtain additional important information for 

reflectance retrieval such as satellite and solar zenith angle, satellite and solar azimuth angle, as 

well as relative azimuth angle. The workflow for implementing ATCOR for atmospheric 

correction in any terrain is well outlined in Richter (2011).  
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3.4. Environmental or ancillary variables 
 
Several studies showed that climate, topography, and geologic substrate influence the 

distribution of primary environmental regimes such as moisture and nutrients in soils or plants; 

for details see the review by Skidmore et al. (2011), as well as Pickett et al. (2003), Venter et al. 

(2003) and Mutanga et al. (2004). Several environmental variables influence the distribution of 

grass N at different scales; these include precipitation, temperature, land use, geology, soils, 

distance to rivers, altitude, slope, and aspect (Table 1). Mean annual precipitation (MAP) and 

temperature (MAT) were acquired from the World Climate database (WorldClim) 

(www.WorldClim.com). This climatic database has been widely used for biodiversity and 

ecological applications (Hijmans et al., 2001) and climatic stations are spread across South 

Africa (Adams and Church, 2007; Hijmans et al., 2005; Saad et al., 2007). The freely available 

SRTM 4.1 Digital Elevation Model (DEM) with its relatively high spatial resolution of 90 m 

(Javis et al., 2008) was used. To make it more reliable, Javis et al. (2008) further improved the 

DEM by filling in the holes identified. Slope and aspect were derived from the DEM using 

ArcGIS 10x. The river layer was sourced from the South African National Botanical Institute 

(SANBI)’s Beta version of vegetation data sets (Mucina and Rutherford, 2006). The ‘distance to 

river’ variable was computed using the Spatial Analyst Tool embedded in ArcGIS 10x, where 

the river layer and the sample plot locations (GPS points) formed the inputs. A soil layer was 

acquired from the soil and terrain database of Southern Africa (SOTERSAF) (Dijkshoorn, 2003) 

(Table 1). This soil map has been used for the Land Degradation Assessment in Drylands project 

(LADA), for which South Africa is one of the partners (Dijkshoorn et al., 2008). The land use 

types were derived from the boundary layers of KNP, Sabi Sands Game Reserve and the 
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communal areas, acquired from KNP’s Geographic Information System (GIS) and remote 

sensing laboratory. 

(Table 1) 
 

4.  Data Analysis  
 
The reflectance data corresponding to each field plot were extracted from the image in order to 

perform the statistical analysis. The vegetation indices listed in Table 2 were computed from the 

extracted reflectance data. The new or modified vegetation indices were mainly developed to 

benefit from the inclusion of the red-edge band in the RapidEye spectral configuration. In Table 

2, simple ratios (SRs) are written as SR53, 54, and 43, just as the normalized difference 

vegetation indices (NDVIs) are written as NDVI54 and so on, denoting the band combinations 

used. In some cases, such as plant pigment ratio (PPR), transformed chlorophyll absorption index 

(TCARI), and modified chlorophyll absorption index (MCARI), the indices were given new 

RapidEye compatible bands less than 60 nm from the original indices, to ensure that the 

sensitivity of the specific region of the spectrum was maintained. All the indices selected were 

sensitive to leaf and canopy chlorophyll (Table 2). For statistical analysis, the foliar N 

concentration was multiplied by the percentage cover of photosynthetic vegetation (PV) to derive 

a unit-less canopy integrated nitrogen content, denoted as N*PV (He and Mui, 2010; Wessman, 

1992).  

(Table 2) 
 

4.1. Univariate and Multivariate analysis  
 
The univariate analysis involved bootstrapping the linear regression between biochemical (foliar 

and canopy N) and vegetation indices. Subsequently, the results from that analysis were used to 

select the vegetation index, based on a high coefficient of determination (R2) and a low root 
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mean square error (RMSE) (Bunke and Droge, 1984; Efron and Tibshirani, 1997; Fox, 2002; 

Fox and Weisberg, 2010). The multivariate analysis was undertaken using an integrated 

modeling approach. The vegetation index (with a high estimation accuracy resulting from 

bootstrapping statistics combined with environmental variables) was used to predict N 

concentrations. The first multivariate analysis was performed using a combination of principal 

component analysis (PCA) and stepwise multiple linear regression (SMLR) (Çamdevýren et al., 

2005), denoted as SMLR+PCA. The aim of the PCA was to decompose the independent 

variables into uncorrelated components. The advantage of the PCA was that it reduced 

multicollinearity and overfitting (Çamdevýren et al., 2005; Jain et al., 2007). In this approach, 

the initial step was to run the PCA on the independent variables, i.e. the vegetation index and 

environmental variables. The second step was to run a forward stepwise regression to see which 

principal components (PC) significantly contributed to the N prediction model. The stepwise 

model was selected based on the lowest Akaike Information Criterion (AIC) (An and Gu, 1989; 

Sakamoto et al., 1986). The second multivariate analysis was performed using SMLR based on 

SR54 and environmental parameters (SMLR+Raw), where the model for predicting foliar N with 

high accuracy was selected using AIC, similar to the PCA+SMLR method. In this case the 

original data, i.e. highest performing vegetation index and environmental variables, were used 

for predicting N. Thirdly, the interaction effects between the selected variables for predicting 

foliar and canopy N at a SMLR+Raw stage were also tested using SMLR, and denoted 

SMLR+Raw+Int. Where the interaction effect between the significant variables selected 

according to lowest AIC improved the estimation accuracy for foliar and canopy N, this was 

reported, otherwise it was not reported. The final multivariate analysis was based on the non-

linear partial least square regression (PLSR), and is known as PLSR with radial basis function 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15 
 

(RBF-PLSR). This non-linear PLSR was found to achieve a higher foliar N estimation accuracy 

than the conventional PLSR (Ramoelo et al., under review). This was mainly attributed to the 

fact that the non-linear PLSR has the combined capabilities of the conventional PLSR and an 

artificial neural network, maximizing covariance between data sets and non-linear model fitting 

(Walczak and Massart, 1996). The initial stage of applying this technique was to standardize the 

data sets to within a range of 0 to 1 (Knox et al., 2011; Ramoelo et al., under review). Sigma 

values were specified in order to compute the activation matrix using the radial basis function. 

The activation matrix was then used in combination with PLSR to predict foliar N 

concentrations, with the number of uncorrelated latent variables or factors specified.  

 

4.2. Validation  
 
Validation was performed using a bootstrapping technique because of the small sample sizes 

involved (Bunke and Droge, 1984; Efron and Tibshirani, 1997). Bootstrapping is an unbiased 

way to validate models as it has an iteration component. It samples the data a number of times, 

which makes it a more robust way of validating models, as well as extremely efficient when only 

few samples are collected. In this study we used 1000 iterations to ensure that the bias was 

highly reduced. The highly accurate bootstrapped model was inverted and applied to the 

RapidEye image to map the predicted foliar and canopy N concentrations of the grass canopies. 

The validation of the non-linear PLSR was based on a Monte-Carlo cross validation, since 

bootstrapping was not yet incorporated in the TOMCAT software (Walczak and Massart, 1996).  

 
4.3. Descriptive and exploratory analysis  

 
One-way analysis of variance (ANOVA) was computed to test if there was any significant 

difference between foliar N and, firstly, geology and, secondly, soils. The Spearman’s rank 
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correlation was used to quantify the relationship between remote sensing and environmental 

variables, since it can be applied to both categorical and continuous data (Lehman, 1998). The 

descriptive statistics, i.e. the mean, minimum and maximum, as well as standard deviation values 

of N and N*PV were computed using the R programming language. 

 
5.  Results  

 
5.1. Determining the vegetation index with a high N estimation accuracy  

 
The SR54 computed with the red-edge band yielded the highest accuracy for predicting both 

foliar and canopy N; surpassing the results of the conventional simple ratio (i.e. SR53) (Table 3, 

Figures 2 and 3). At foliar level, the bootstrapped model resulted in R2=0.23 and 

RMSE=0.15029%, while at canopy level, the bootstrapped model resulted in R2=0.45 and 

RMSE=13.50580 (unit-less). Of the twenty four indices used to estimate foliar and canopy N, the 

inclusion of the newly embedded red-edge band in the RapidEye data improved the results 

especially for the top five indices, i.e. SR54, NDVI54, SAVI, OSAVI, and SIPI1 for canopy N, 

and SR54, NDVI54, OSAVI, SAVI, and MTCI for foliar N concentrations (Table 3, Figures 2 

and 3). Generally, there are five indices that could be directly modified to make use of the red-

edge band rather than relying on the conventional versions using red and NIR bands, namely SR, 

NDVI, SAVI, OSAVI, and SIPI. The least performing indices were TVI, TCARI, and MCARI 

with RMSEs of between 17.3641 and 18.1006 for canopy N and between 0.1704 and 0.1713% 

for foliar N. The variance in canopy N was explained more clearly by the vegetation indices than 

the variance in foliar N was, with the R2 increasing from 0.23 for foliar to 0.45 for canopy N. A 

similar pattern was evident in the estimation accuracy measured according to RMSE (Table 3).  

(Table 3) 
(Figure 2) 
(Figure 3) 
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5.2. Integrated modeling for grass N prediction  
 
Integrating vegetation indices and environmental variables for estimating canopy N using SMLR 

(SMLR+Raw+int) yielded a significantly higher estimation accuracy (bootstrapped: R2=0.64, 

RMSE=11%; 17% of the mean), than the model using SR54, altitude, and SR54*altitude (Table 

4). The non-linear PLSR (RBF-PLSR) was the second highest performer concerning the 

accuracy of estimating canopy N (bootstrapped: R2=0.61, RMSE=11%), after SMLR, with 

interaction effects from SR54 and altitude (Table 4). As shown in Table 5, altitude is 

significantly correlated with other environmental variables such as geology, precipitation, 

temperature, slope, aspect, and land use. It is evident that altitude in this study is a proxy for 

various other environmental variables. The last technique tested was principal component 

analysis and regression (SMLR+PCA), which resulted in a lower canopy N estimation accuracy 

(bootstrapped: R2=0.56, RMSE=12.33; 19% of the mean) than the above two techniques, with 

principal components (PC) 1, 3, and 9 selected (Table 4).  

(Table 4) 
(Table 5) 
 
For the estimation of foliar N, the non-linear PLSR produced a significantly higher estimation 

accuracy (bootstrapped: R2=0.48, RMSE=0.12%; 14% of the mean) than other techniques such 

as SMLR (Table 4). The SMLR+PCA yielded the second highest estimation accuracy 

(bootstrapped: R2=0.45, RMSE=0.13%; 15% of the mean) and the least performing technique 

was the SMLR+Raw (bootstrapped: R2=0.44, RMSE=0.14%; 17% of the mean) (Table 4). The 

interaction effects analysis of the selected variables in SMLR+Raw did not improve the results. 

Figure 4 shows the spatial distribution of foliar and canopy N at a regional scale. There is a clear 

N gradient between the western and the eastern part of the study area (Figure 4). The general 

pattern of foliar and canopy N follows the geological types, i.e. basalt and gabbro areas are 
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characterized by more highly nutritious grass than the shale and granitic derived grasses (Figure 

4).  

(Figure 4) 

 

5.2.Descriptive and exploratory statistics 
 
The foliar N concentration across the study had a mean of 0.84%, as shown in Table 6. After 

converting the foliar N concentrations to the canopy integrated N using PV (i.e. N*PV), the 

recorded mean was 74.71 (Table 6). Foliar N concentrations varied significantly according to 

geology (F=3.1865, p=0.0322) and soil type (F=3.7871, p=0.0096), as was confirmed by the 

ANOVA.  

 

(Table 6) 
 

6. Discussion  
 

 
The study investigated the utility of the red-edge band from the RapidEye sensor using 

vegetation indices, in order to determine which index correlated highly with foliar and canopy N. 

This index was then integrated with environmental variables to predict foliar and canopy N at a 

regional scale. SR54 was not only selected as the vegetation index with the highest predictive 

capability compared to other indices, it was also selected as a significant variable in the stepwise 

model successfully predicting both foliar and canopy N (Table 4). The performance of SR54 

could be attributed to the use of red-edge waveband which contributed to the estimation of foliar 

N concentrations. Similar trends were observed for NDVI and SAVI, where the inclusion of the 

red-edge band improved the estimation results. The importance of the red-edge band is due to the 

fact that it is highly correlated to chlorophyll (Cho and Skidmore, 2006; Clevers et al., 2002) and 
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insensitive to background effects (Zarco-Tejada et al., 2004). It is known that there is a positive 

correlation between chlorophyll and foliar N (Vos and Bom, 1993; Yoder and Pettigrew-Crosby, 

1995). This study is consistent with the in situ hyperspectral remote sensing studies reported by 

Mutanga and Skidmore (2007), Gong et al. (2002), and Cho and Skidmore (2006). Additionally, 

the performance of SR has not only been demonstrated with the retrieval of foliar biochemicals 

but also for biophysical parameters such as leaf area index (Jiang et al., 2005; Darvishzadeh et 

al., 2008) and biomass (Mutanga and Skidmore, 2004b).  

 

The integrated modeling approach has produced higher grass N accuracy results compared to 

univariate approaches using only vegetation indices. The advantage of using an integrated modeling 

approach for N estimation is that both remote sensing and environmental variables are considered. 

The use of environmental variables is generally constrained by the lack of detail in studies on a 

regional scale, rendering proper estimation of foliar N impossible. Remotely sensed imagery helps to 

provide the spatial detail important for characterizing foliar N in grass canopies. The combination of 

non-linear PLSR with environmental variables estimated foliar N with relatively high accuracy. The 

non-linear PLSR combined advantages of the conventional PLSR and an artificial neural network, 

i.e. maximizing the covariance between data sets and non-linear model fitting (Walczak and Massart, 

1996). Additionally, the non-linear PLSR can be used with non-normal data. 

 

Estimation of canopy N using SMLR integrating remote sensing (SR54) and environmental variables 

resulted in the highest estimation accuracy. SMLR selected SR54 and altitude, which predicted N 

with the lowest AIC value. Table 5 shows altitude to be significantly correlated with other 

environmental variables such as geology, mean annual precipitation, mean annual temperature, slope, 

aspect, and land use types. Soil and geology are also cited as factors which influence the distribution 
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and concentrations of nutrients in grass (Mucina and Rutherford, 2006; Venter et al., 2003). Soils 

developed in basalts are generally high in nutrients, while the granitic soils are associated with low 

nutrient concentrations (Scholes et al., 2003; Venter et al., 2003).  Grasses such as Bothriochloa 

radicans, Urochloa mossambicensis, and Digitaria eriantha are found dominating the basaltic-

derived soils because of these high nutrient concentrations. These species also produce bigger leaves 

than the species usually found in the granitic-derived soils such as Eragostris rigidior and 

Sporobolus species. The bigger leaves potentially increase photosynthetic activity, and hence 

productivity. Table 5 shows a negative correlation between foliar N and precipitation. The western 

part of the study area is characterized by high precipitation and lower soil fertility-granite-derived 

soils, while the eastern part experiences low precipitation on high soil fertility-basaltic-derived soils. 

Precipitation plays a crucial role in dissolving organic matter for the uptake of minerals by plants 

(Pickett et al., 2003). Land use type, giving an indication of the practices or activities taking place in 

the study area, is important as it is related to mean annual precipitation. Land use types are 

characterized by a pronounced rainfall gradient, with the communal areas receiving more rainfall 

than the protected areas (SGR and KNP). In addition, land use activities generally affect the 

grass’s response to differences in precipitation (Zhou et al., 2002). Altitude, aspect and slope 

influence the distribution of nutrient concentrations in grass through their effect on soil 

temperature and water run-off (Roberts, 1987). Steeper slopes normally have higher run-off 

leading to thin soil layers supporting less nutritious grass (Mutanga et al., 2004). While valleys 

or bottomlands, characterized by deep soils, are the recipients of run-off from the steeper slopes, 

allowing support of high quality grasses (Scholes et al., 2003).  

 

Foliar N estimation results were low compared to the results for canopy N, for all methods. This 

is an indication that foliar N is not readily estimated by image spectra, which are largely 
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dependent on canopy cover and properties (e.g. leaf area index). Canopy N, which can be 

accurately retrieved by image spectra, includes information about foliar N and structure or 

canopy productivity. The poorer results for foliar N, in comparison to the canopy N estimation, 

are consistent with other vegetation biochemical studies, including the ones focusing on foliar 

and canopy chlorophyll (Asner, 1998; Asner and Martin, 2008; Asner et al., 1998; Darvishzadeh 

et al., 2008; Yoder and Pettigrew-Crosby, 1995). These studies further demonstrated that there is 

poor propagation of light or signal from leaf to canopy.  

 

In this study, the interaction effect between foliar N and biomass was minimized by conducting 

fieldwork and acquiring the RapidEye image during peak productivity in wet season (Figure 5). 

During this period, the relationship between biomass and vegetation indices is asymptotic, as 

portrayed in Figure 5. The amount of light that can be absorbed in the red region of the spectrum 

plateaus during peak productivity (Mutanga and Skidmore, 2004b; Thenkabail et al., 2000; 

Tucker, 1977). Additionally, the NIR reflectance continues to increase, because addition of new 

leaves influences the multiple scattering (Kumar et al., 2001). This result in slight changes in the 

vegetation index (e.g. NDVI), while causing a poor relationship with biomass. The concentration 

of foliar N, in particular, reaches a maximum during active growth in the wet season (Tolsma et 

al., 1987). Therefore, it is assumed that foliar N dominates the reflectance in times of maximum 

productivity, and that during this period foliar N can be successfully estimated (Skidmore et al., 

2010). 

 

(Figure 5) 
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In this study 60% of the variance of canopy N is attained using multispectral remote sensing data (i.e. 

RapidEye), which is comparable to some of the hyperspectral studies. The performance of the 

RapidEye data in estimating foliar and canopy N is associated with the presence of the red-edge 

band. The hyperspectral studies demonstrated the use of the red-edge position to estimate chlorophyll 

and N (Cho and Skidmore, 2006; Darvishzadeh et al., 2008). Foliar and canopy N were estimated 

because of the positive correlation between chlorophyll and N (Yoder and Pettigrew-Crosby, 1995). 

Previous studies using hyperspectral data (in situ or airborne) achieved high foliar N retrieval 

accuracies. Using airborne systems, foliar N estimation was reported to achieve accuracies of 48 to 

80% (Huang et al., 2004; Knox et al., 2011; Mutanga and Skidmore, 2004a; Skidmore et al., 2010). 

An explained variance of 48% was obtained during the dry season, while 80% or more was obtained 

during the wet season. This shows the importance of seasonality or plant phenology in the estimation 

of foliar biochemical levels.  

 

The results of this study demonstrated that foliar and canopy N can be mapped at a regional scale 

using spaceborne multispectral remote sensing data during times of peak productivity. The red-edge 

band of RapidEye was found to be important in achieving this goal (compared to traditional 

multispectral sensors such as SPOT and Landsat). Foliar N is an indicator of crude protein (Clifton et 

al., 1994; Wang et al., 2004), which forms a main nutrient requirement (Prins and van Langevelde, 

2008), and could be used for understanding the distribution, densities and population dynamics of 

herbivores in protected and communal areas (Ben-Shahar and Coe, 1992; Heitkönig and Owen-

Smith, 1998; McNaughton, 1988, 1990; Mutanga et al., 2003). Photosynthetic vegetation cover is 

one of the canopy parameters determining key ecosystem functions, e.g. rate of carbon and nutrient 

intake (Guerschman et al., 2009).  In addition, grass canopy N have a structural component as it was 

derived in combination with photosynthetic vegetation cover. The grass structure is generally defined 

by biochemistry, architecture, morphology and species composition (Burke, 1997; Drescher et al., 
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2006a; Drescher et al., 2006b). The grass structure affects grazing behavior of the herbivores 

(Drescher et al., 2006b).  Drescher et al., (2006b) postulated that grass structure affects cattle grazing 

behavior in the South African savanna. Therefore, canopy N may outperform foliar N when aiming 

to understand the distribution of herbivores, since it can be estimated and mapped at a higher 

accuracy. The study further demonstrated the use of integrated modeling for grass N estimation. 

Regional nutrient maps could provide useful information to farmers, resource managers and park 

stewardships for sound planning and management of savanna ecosystems. 
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Figures’ captions 

 

Figure 1: Map of the Study area  

 

Figure 2: Scatterplots of canopy N (N*PV) and various vegetation indices (X-axis=vegetation 
index and Y-axis=N*PV). SR=Simple Ratio, NDVI=Normalized Difference Vegetation Index, 
SAVI=Soil Adjusted Vegetation Index, L=Soil Correction Factor, OSAVI=Optimized SAVI, 
MSAVI=Modified SAVI, TVI=Triangular Vegetation Index, RDVI=Renormalized Difference 
Vegetation Index, MCARI=Modified Chlorophyll Absorption Ratio Index, MTCI=MERIS 
Terrestrial Chlorophyll Index, PPR=Plant Pigment Ratio, NRI=Nitrogen Reflectance Index, 
SIPI=Structure Insensitive Pigment Index, GI=Greenness Index, EVI=Enhanced Vegetation 
Index, TCARI=Transformed Chlorophyll Absorption Ratio.  

 

Figure 3: Scatterplots of foliar N (%) and various vegetation indices (X-axis=vegetation index 
and Y-axis=N). SR=Simple Ratio, NDVI=Normalized Difference Vegetation Index, SAVI=Soil 
Adjusted Vegetation Index, L=Soil Correction Factor, OSAVI=Optimized SAVI, 
MSAVI=Modified SAVI, TVI=Triangular Vegetation Index, RDVI=Renormalized Difference 
Vegetation Index, MCARI=Modified Chlorophyll Absorption Ratio Index, MTCI=MERIS 
Terrestrial Chlorophyll Index, PPR=Plant Pigment Ratio, NRI=Nitrogen Reflectance Index, 
SIPI=Structure Insensitive Pigment Index, GI=Greenness Index, EVI=Enhanced Vegetation 
Index, TCARI=Transformed Chlorophyll Absorption Ratio.  

 

Figure 4: Map showing the spatial distribution of the foliar N (Top) and canopy Nitrogen 
(N*PV) (bottom) in relation to geology classes such as basalt, gabbro, granite and shale 
(PV=photosynthetic vegetation cover).  

 

Figure 5: Figure shows the saturation relationship between a vegetation index and with the 
interaction between N and biomass (Top Left), dry biomass (Top Right), interaction between 
foliar N and wet biomass (Bottom Left), and wet biomass (Bottom Right). 

Figure Captions



Tables 1 
 2 
Table 1: Environmental variables used in this study 3 
Environmental Data Type Source Resolution 

Geology Categorical Council for Geoscience 1:1000000 

Soil  Categorical SOTERSAF database 1:1000000 

Precipitation Continuous http://www.worldclim.com/ 1 km 

Temperature Continuous http://www.worldclim.com/ 1 km 

Land use types Categorical KNP Vector layer 

Altitude (DEM) Continuous SRTM 90 m 

Slope  Continuous Derived from DEM 90 m 

Aspect Continuous Derived from DEM 90 m 

Distance from rivers Continuous SANBI GIS data 1:1000000 
DEM= digital elevation model, CSIR=Council for Scientific and Industrial Research, SANBI=South African 4 
National Botanical Institute, SOTER=Soil and Terrain of Southern Africa database, SRTM=Shuttle Radar 5 
Topography Mission (http://srtm.csi.cgiar.org), KNP=Kruger National Park GIS datasets 6 
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Table 3: Ranking by bootstrapped root mean square error for various vegetation indices in 
predicting (a) Canopy Nitrogen and (b) foliar Nitrogen 

Ranks Indices 
(a) RMSE   

Indices 
(b) 

RMSE 
(%) 

1 SR54 13.5058 SR54 0.15029 
2 NDVI54 13.6593 NDVI54 0.15084 
3 SAVI 13.6623 OSAVI 0.15090 
4 OSAVI 13.6668 SAVI 0.15099 
5 SIPI1 14.4088 MTCI 0.15307 
6 MTCI 14.7138 SIPI1 0.15321 
7 SAVI1 15.0803 GI 0.15793 
8 NDVI53 15.0875 NRI 0.15815 
9 OSAVI2 15.1051 NDVI53 0.15821 
10 MSAVI 15.1245 OSAVI2 0.15837 
11 NRI 15.1576 SAVI1 0.15838 
12 SR53 15.2035 MSAVI 0.15852 
13 GI 15.2318 SR53 0.15856 
14 RDVI2 15.3076 RDVI2 0.16025 
15 SIPI 16.1433 EVI 0.16131 
16 NDVI43 16.2270 SIPI 0.16340 
17 EVI 16.2315 NDVI43 0.16340 
18 NDVI52 16.3093 NDVI52 0.16354 
19 SR43 16.3612 SR43 0.16393 
20 RDVI 16.3641 RDVI 0.16510 
21 PPR 16.4510 PPR 0.16595 
22 TVI 17.6611 TVI 0.17040 
23 TCARI 18.0888 MCARI 0.17120 
24 MCARI 18.1006   TCARI 0.17137 

SR=Simple Ratio, NDVI=Normalized Difference Vegetation Index, SAVI=Soil Adjusted Vegetation Index, L=Soil 
Correction Factor, OSAVI=Optimized SAVI, MSAVI=Modified SAVI, TVI=Triangular Vegetation Index, 
RDVI=Renormalized Difference Vegetation Index, MCARI=Modified Chlorophyll Absorption Ratio Index, 
MTCI=MERIS Terrestrial Chlorophyll Index, PPR=Plant Pigment Ratio, NRI=Nitrogen Reflectance Index, 
SIPI=Structure Insensitive Pigment Index, GI=Greenness Index, EVI=Enhanced Vegetation Index, 
TCARI=Transformed Chlorophyll Absorption Ratio. 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 4: The performance of various multivariate techniques used validated by bootstrapping 

  R² RMSE  
RMSE(% 
of Mean) p-value Selected variables 

Canopy N  
SMLR+PCA 0.56 12.33 16.50 <0.05 PC1, PC3, PC9 
SMLR+Raw 0.59 11.60 15.52 <0.05 SR54, Altitude 
RBF-PLSR 0.61 11.00 14.72 <0.05 4 factors, and 0.7 Sigma value 
SMLR+Raw+Int. 0.64 11.00 14.72 <0.05 SR54, Altitude, SR54*Altitude 
Foliar N   RMSE (%)       
SMLR+PCA 0.45 0.14 16.66 <0.05 PC1-4, PC9, PC10 
SMLR+Raw 0.44 0.13 15.47 <0.05 SR54, Altitude, Aspect, Dist 
RBF-PLSR 0.48 0.12 14.28 <0.05 5 Factors, and 1 Sigma value 

SMLR=Stepwise linear regression, PCA=principal component analysis, RBF-PLSR=partial least square regression 
with radial basis function, SR54=simple ratio, Dist=distance to rivers, Raw=SR54 and environmental variables used 
as they are. Int.=indicates a model with the interaction effects of the variables significantly selected in SMLR+Raw. 
p value at the 95% confidence level (p<0.05). 
 
 
Table 5: Spearman p correlation matrix between N and various environmental or ancillary 
variables 
  N*PV SR54 Geo Soil Prec Tem Asp Alt Slo Lan Dist 
N*PV 1 0.62 -0.20 -0.09 -0.37 0.42 0.20 0.56 -0.23 -0.50 -0.01 
SR54 1 -0.11 0.12 -0.06 0.12 0.06 -0.23 -0.15 -0.19 -0.09 
Geo 1 -0.35 0.57 -0.14 -0.36 0.31 -0.05 0.40 -0.60 
Soil 1 -0.32 -0.10 -0.09 0.05 0.07 -0.11 0.34 
Prec 1 -0.45 -0.32 0.63 0.27 0.76 0.40 
Tem 1 0.01 -0.77 -0.47 -0.54 -0.15 
Asp 1 -0.32 0.22 -0.31 0.27 
Alt 1 0.44 0.78 -0.18 
Slo 1 0.37 0.07 
Lan 1 -0.26 
Dist                     1 

 
N*PV=Nitrogen*Photosynthetic vegetation cover, SR54=simple ratio, Geo=Geology, Prec=precipitation, 
Temp=temperature, Asp=Aspect, Alt=Altitude, Slo=Slope, Lan=Land use, Dist=distance to rivers. The bold values 
indicates that the correlation is significant at 95% confidence level (p<0.05). 
 
 
 
 
 
 
 
 
 



 
Table 6: Descriptive statistics of the data used 

Variables (%) Minimum Maximum Mean Standard 
deviation Coefficient of variation 

Nitrogen 0.53 1.44 0.84 0.17 0.20 
PV 40.00 100.00 74.71 11.42 0.15 
N* PV 35.00 119.00 63.45 17.95 0.28 

PV=photosynthetic vegetation cover, N*PV=Nitrogen*PV (Canopy N) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


