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Abstract—The effect of allowing shared elements in interleaved
thinned arrays is investigated. The sidelobe level (SLL) as a
function of the number of shared elements mirrors the SLL of
thinned arrays as a function of filling factor because the number
of shared elements determines the filling factor of the subarrays.
When the number of shared elements is small, the result is two
subarrays on opposite sides of the aperture with only their ends
being interleaved.

I. INTRODUCTION

The sharing of antenna apertures is becoming increasingly
important as a result of the combination of limited available
antenna real estate and the requirement for large numbers of
sensor and communication systems on modern platforms [1].
Interleaved thinned arrays achieve aperture sharing by allow-
ing multiple thinned arrays (subarrays) to share an aperture
with each subarray having a different function.

Interleaved thinned arrays have recently attracted interest
in the literature (e.g. [1]-[4]) due to their ability to realise
aperture sharing while maintaining good antenna properties.
Some examples include the use of differently-sized antenna
elements [2] operating over different frequency ranges, de-
creasing leakage between the transmitter and receiver of
a continuous-wave (CW) radar [3] and achieving multiple
polarisations with single-polarised antenna elements [4].

The main published methods for the synthesis of interleaved
thinned arrays are genetic algorithms (GAs) [1], [4] and cyclic
difference sets [2], [3], [5]. In these cases, each subarray is
the inverse of the other (each element is allocated to only
one of the subarrays). This approach has a number of benefits
including simplified construction of the resulting array because
each element only has one function and a simplification of the
synthesis process through a reduction of the available degrees
of freedom. However, there are reasons to believe that allowing
elements to be shared will lead to improved performance.

The best SLL performance for thinned arrays without inter-
leaving is achieved when the active elements of the array are
concentrated near the centre of the array [6]-[8]. The density-
taper algorithm is based on the fact that the ensemble average
of a large number of patterns where the active elements are
selected according to an underlying real distribution is the
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pattern achieved by the distribution [6]. Given that distribu-
tions which achieve good sidelobe performance have larger
excitations near the centre of the array [9] and thus higher
probabilities of selecting those elements, this provides a theo-
retical motivation for favouring the central elements in thinned
arrays. Algorithmically-synthesised thinned arrays support this
theoretical observation (e.g. [7], [8]). The interleaved thinned-
array synthesis techniques highlighted above cannot achieve
high element densities near the centre of the aperture for all
the subarrays because each element can only belong to one
subarray.

The best SLL values for thinned arrays without interleaving
are achieved when the proportion of the elements which is
active (the filling factor) is on the order of 85% for small- to
medium-sized arrays [10], though values in the range of 75%
to 80% appear to give the best results for larger arrays [7],
[10]. Again, the interleaved thinned-array synthesis techniques
mentioned above cannot achieve these desirable filling-factor
values because the filling factor will always be very close to
50% as a result of the requirement that each element be part
of only one subarray.

This paper explores the effect of allowing elements of
interleaved thinned arrays to be shared by more than one
subarray. Based on the discussion above, it is expected that this
will lead to improved SLL because higher element densities
are possible near the centre of the shared aperture and higher
filling factors can be achieved for each subarray.

The increased system complexity entailed by allowing sub-
arrays to share elements will depend strongly on the applica-
tion of the antenna. For example, shared elements will be more
difficult to implement in CW radar systems than in pulsed
radar systems. In either case, the SLL improvement that can
be achieved will have to be weighed against the additional
complexity entailed by sharing elements. This paper seeks to
aid such evaluations by considering the relationship between
the SLL and the number of shared elements.

II. ALGORITHM USED TO GENERATE RESULTS

The GA [11] utilised to generate the results presented in
Section III is described below and summarised in Fig. 1.
GAs mimic evolution and natural selection in order to obtain
improved solutions and have been successfully applied to a
wide variety of problems. These problems include thinned-
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Fig. 1. A flowchart of the GA used to generate the results presented in
Section III. The different outlines of the repair and penalty blocks are to
emphasise the fact that they are not always used.

and interleaved-array synthesis [1], [7], suggesting that a GA
is the appropriate choice for this implementation.

The population size was chosen to be large because larger
populations were found to give better solutions. However, the
population size was limited by the time available to run the
algorithm with on the order of 90 s being required per run on
a quad-core Intel Core i7 CPU running at 2.20 GHz.

The number of genes in each chromosome was twice the
number of elements in the aperture, with the first and second
halves of each individual representing the two subarrays.
This representation allows all possible combinations of two
interleaved subarrays to be represented.

The algorithm was initialised by assigning each gene a value
of 0 or 1 with equal probability.

The SLL achieved by each solution was used as the fitness.
The array pattern was computed from the inverse fast Fourier
transform (IFFT) with 2,048 points, which is approximately
20 points per pattern root in line with other published results
(e.g. [8]). The pattern of the best result was computed with
32,768 points to ensure highly accurate results. The SLL was
then determined from the level of the highest peak relative the
main beam.

The GA was run for a fixed number of generations to
eliminate the need for a complex termination test in line with
common practice [11]. The number of generations was chosen
to be large enough to ensure that improvements in the best
solution were extremely rare when additional generations were
added.

Elitism was implemented to ensure monotonic convergence.
Elitism is the process of copying the best solution from the
previous generation to the new generation to ensure that the
best solution is never lost in the process of creating a new
generation and discarding the old one [11].

Exponential-ranking selection was utilised, selecting the
individuals used to create the next generation according to

Parent 1: 0 1 0 1.0 1 1 1
Parent 2: O 0 111 0 0 1
Selection: |1 2 1 2 2 2 1 1

1 1 0 1 1

Offspring: |0 0 O

Fig. 2.  An example of uniform crossover.

the following relationship [12]

Pn—i—l Pn

= 1
Pn Pnfl ()

where P, is the probability of selecting individual n and the
solutions are ranked so that larger n means better SLL. This
selection scheme was chosen because fine control of the bias
towards better solutions is achieved with a single parameter.

Uniform crossover was used generate new candidate solu-
tions by combining existing solutions. As shown in Fig. 2,
the genes in a new chromosome are created by randomly
selecting between the genes of the two parents [11]. The
main benefit of uniform crossover is that the ordering of
the genes in a chromosome has a much smaller effect than
for normal crossover. Crossover is only used to generate a
specified proportion of the new population, and the remainder
of the new population is generated by simply copying an
existing solution.

Crossover was followed by mutation, during which a small
number of randomly-selected genes in the population were
inverted [11]. Mutation is required to reduce the likelihood
that the GA will become trapped in a locally-optimal solution.

The process was then repeated starting with fitness evalua-
tion as shown in Fig. 1. Each cycle through the loop is known
as a generation because a new population is created.

The results in Section III was generated using a population
of 5,000 individuals run for 150 generations with crossover
and mutation probabilities of 0.9 and 0.01 respectively. The
selection parameter (x) was 0.0005. The GA was run twenty
times and the results with the best SLL values were used. This
was done in an attempt to reduce the effects of the algorithm
and thereby emphasise the inherent properties of interleaved
thinned arrays with shared elements.

While the GA described above is extremely useful and
gives excellent results for a number of problems, it does not
allow control of the number of shared antenna elements. Three
possibilities to achieve such control are:

« a penalty function,

e a repair algorithm, and

o developing a custom GA where all solutions inherently

satisfy the constraints.
While the last option is preferable [13], it is unclear how the
GA could be modified to achieve a specified number of shared
elements.

Penalty functions are widely used in constrained optimi-
sation [14], and work by artificially degrading a fitness of
a solution (penalising the solution) if it does not satisfy a
constraint. In this case, the constraint is the required number
of shared elements, so penalty was computed using

P=20|O—OS|GE )



| Not shared | Shared | Not shared

Subarray 1: |1 0 O O|1 1 11 0 O 1
Subarray2: |/O 1 1 0|1 1 110 1 0 O
Fig. 3. An example of the output of the implemented repair algorithm for

an eleven-element aperture with three shared elements.
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Fig. 4. SLL as a function of the number of shared elements for 100-element
interleaved linear arrays with two subarrays. The filling factors are plotted in
Fig. 5 and selected excitations are provided in Table II.

where P is the penalty in decibels, O and O; are the achieved
and specified overlap respectively and G and G, are the
current and maximum number of generations respectively.

Repair algorithms modify unsuitable solutions in such a way
that they satisfy the constraints. For example, a parameter
value that is greater than the allowable maximum would be
changed to be equal to the specified maximum. As outlined in
Section I, it is reasonable to assume that the central elements
of an array are most likely to be shared between interleaved
thinned subarrays. The implemented repair algorithm ensured
that the specified number of elements was shared by activating
that number of elements at the centre of the array and ensuring
that no other elements were shared as shown in Fig. 3.
The main benefit of this approach is that the number of
elements which the GA must optimise is reduced because the
central elements are always active and are thus not subject to
optimisation.

III. RESULTS OBTAINED AND DISCUSSION

Fig. 4 shows the best SLL obtained as a function of
the number of shared elements. The points associated with
a uniformly-excited array, a single thinned array and an
interleaved array with inverse subarrays as in [1]-[4] are
shown. Two thinned-array cases are shown: the case where
the subarrays are identical, and the case where one of the
subarrays is flipped.

The fact that the best results for interleaved thinned arrays
are within 0.01 dB of the best results for a single thinned array
despite the fact that the thinned array only has 100 unknowns
while the interleaved case has 200 variables. This suggests
that the GA described in Section II performs well when the
number of shared elements is high.

However, the results with no overlap are significantly worse
than the results where one subarray is the inverse of the
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Fig. 5. The filling factor as a function of the number of shared elements for
the penalty-function GA results in Fig. 4

other. Additionally, there is a large variation in the results
for a small number of shared elements which reduces as the
number of times the GA is run increases. Taken together,
these points suggest that the GA implemented here does not
provide consistently good results when the number of shared
elements is small. This point will be explored further below
in connection with subarray excitations.

Fig. 4 shows that the results achieved by the penalty-
function approach are usually better than those achieved by
the repair-algorithm approach. The main exception is when
the number of shared elements is between roughly 40 and
60 where the results are similar. Only allowing the central
elements to be shared does thus not lead to good results for
large and small numbers of shared elements. This suggests that
the effect of shared edge elements is significant and cannot be
ignored. Given that the penalty-function results are at least as
good as the repair-algorithm results, only the penalty-function
results will be considered below.

The first important observation about the underlying proper-
ties of interleaved thinned arrays is that the best SLL initially
tends to improve as the number of shared elements increases.
A turning point is then reached after which the SLL rapidly
deteriorates as the number of shared elements increases. These
trends are expected based on similar trends observed for
thinned arrays [7], [10] where an optimal filling factor is
observed.

The discussion now naturally moves to the relationship
between the number of shared elements and the filling factor
as a way to reconcile known results for thinned arrays with
the results obtained here. Fig. 5 plots the desired relationship.

The filling factor for the two subarrays is always similar.
This is reasonable given that similar SLL performance is
required from both subarrays because the SLL of the worse
subarray is the desired performance metric.

The filling factor initially increases approximately linearly
showing that allowing more shared elements leads to an
increased filling factor for the subarrays. This observation is
quite reasonable in light of the fact that the number of available
elements is limited.

Between 60 and 75 shared elements, the filling factor
remains nearly constant in the range of 75% to 80%. The



thinned-array result with the smallest overlap is within this
region (64 shared elements, 76% filling factor). Furthermore,
filling factors of 75% to 80% have been shown to give good
results for single thinned arrays [7], [10]. The excellent SLL
results from 60 to 75 shared elements in Fig. 4 can thus
explained by the known properties of thinned arrays.

Finally, the filling factors and the number of shared ele-
ments are equal for 79 or more shared elements. This rather
noticeable change corresponds to a rapid deterioration of the
SLL in Fig. 4.

The excitations for a number of shared element values are
presented in Table I. The excitations of the inverse case and
the single thinned array case with one of the excitations flipped
are also shown in Table I for comparison purposes.

Table I shows that the overwhelming majority of the shared
elements are near the centre of the array apertures. This
mirrors the case for thinned arrays where the majority of the
active elements are near the centre of the aperture [6]-[8].
Howeyver, the shared elements are not limited to the centre of
the aperture, and as stated previously in connection with the
performance of the repair algorithm, shared elements near the
edges of the aperture have a significant effect.

The excitations of the two subarrays are identical when the
number of shared elements is large (80 or more). This region
corresponds to a rapid deterioration of the SLL in Fig. 4 and
the rightmost portion of Fig. 5 where the number of shared
elements is equal to the subarray filling factors. The small
number of inactive elements combined with the large number
of shared elements make this situation unavoidable because
only a very small number of good solutions exists.

Examining the cases for smaller numbers of shared el-
ements reveals some interesting trends. Firstly, the inverse
case achieves significantly better results than the more general
shared-element case considered here. This is particularly sur-
prising given that an inverse interleaved array is a special case
of the interleaved thinned array considered here. Secondly, as
shown in Fig. 4, the SLL values vary dramatically for minimal
changes in the number of shared elements.

The fact that the inverse case gives better results than the
shared-element case is at least partially attributable to the fact
that the inverse case only has 100 binary variables while the
shared-element case has 200 variables. This means that the
shared-element case has 2!%° times more possible solutions,
greatly complicating the problem.

However, the most interesting observation for interleaved
arrays with small numbers of shared elements is that the active
elements of each subarray tend to be concentrated on one side
of the available aperture. This is particularly noticeable for
the inverse case and for 8 shared elements (the solution with
the best SLL for less than 12 shared elements). This suggests
that the ideal layout for interleaved thinned arrays with few
shared elements comprises subarrays on opposite sides of the
aperture which only share the elements at the extreme ends
of their apertures. The partially-interleaved arrays considered
in [1] are similar to this approach, but the current approach is
far more general because shared elements are allowed and the
interleaved region is determined algorithmically.

The hypothesis that the arrays should be concentrated on
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Fig. 6. The SLL as a function of the number of shared elements for the

penalty-function implementation both with and without initialisation. Selected
excitations are provided in Table II.

opposite sides of the aperture was investigated by re-running
the penalty-function GA with a single individual initialised
to the non-interleaved case shown in Table II. The results
obtained are shown in Fig. 6 and some excitations are provided
in Table II.

Despite the fact that only one individual of 5,000 in the
initial population was modified, a remarkable improvement in
the SLL values for small numbers of shared elements is seen
in Fig. 6. The hypothesis is thus to be validated by the large
SLL improvement despite the minor change to the GA.

A further reason for the large improvement over the inverse
case is the fact that not all the elements are active. This
improves the SLL by allowing the element density to be
tapered towards the edges of each subarray as seen in Table II.

The initialisation does not have a significant effect for larger
numbers of shared elements. A significant SLL improvement is
only achieved for less than thirteen shared elements, showing
that the effect of the initialisation is negligible for more than
thirteen shared elements. The excitations in Table I show that
this is reasonable because the subarrays for larger numbers of
shared elements tend to share the centre of the aperture rather
than being concentrated on opposite sides of the array.

IV. CONCLUSION

The effect of allowing elements to be shared between
subarrays of interleaved thinned arrays is investigated. A GA
with either a penalty function or a repair algorithm was used to
synthesise results for thinned arrays with the number of shared
elements being varied from 0 to 90% of the total number of
elements.

The main conclusion of this work is that the known prop-
erties of thinned arrays are closely mirrored by interleaved
thinned arrays with shared elements. Most importantly, the
filling factor is closely related to the number of shared ele-
ments, so the existence of an optimal filling factor is mirrored
by the existence of an optimal number of shared elements.

Another important conclusion is that the subarrays tend to
have the majority of their active elements on opposite sides of
the aperture when the number of shared elements is small. This
means that interleaving only occurs for the outermost elements



TABLE 1
SELECTED ARRAY EXCITATIONS GIVING THE RESULTS IN FIG. 4 FOR THE PENALTY-FUNCTION GA.

100011000110011011101011 1111111111111 111111111111111111111111111111111111111010111100000001011001010
1101000000100100011110011111111111111111111111111111111111111111111111111111111010101110100101001101
1011001010010111010101111111111111111111111111111111111111111111111111111111100111100010010000001011
110101100000100110010101 1011111111111 1111111101212 110222 22101011 11111111111111111011100111100000110

Thinned: 64

Description  Subarray Excitation
Inverse 1 [111111111111111111111111111111111111111011010101100101010010000000000000000000000000000000000000000
2 0000000000000000000000000000000000000000100101010011010101101111111111111111111111111111111111111111
Shared: 0 1 OIOOTTTTTITITTIITTITIITITITI111110111111101101011110000011101001110000000010000100000000000000000000000000
2 0000000000000000000000000001000000000010100000110000010010001111111101111011111111111111110111111101
Shared: 8 1 000010000000000000000000001000000000010000110010011110T1OTTTTTITIIITIIITITI1T11111111111110111111111010
2 1111001111111101111111111111111111111011110111111010110010101000000001000000000000000000000000000000
Shared: 10 1 OIT1TIII11101111111111011111101111110111111110100110010110010001000010100100001000100000001000000010
2 0000000000000000000000001000010000001000001011111001111011101111111101111011111111111110110111011001
Shared: 20 1 0000000100000010000000010100000000101011101110011110TTTIOTTIITITIITTIITITITI1111111011111110111110110110
2 110111101 11111 11111111101111111111111111011111110111000111100010110010000000010100000000000000000000
Shared: 30 1 1110001001011111T11OIITIIIIIITI12 11111 11111111111111111111111001010001000100110000000000000000000000
2 0000000000000000000000000100100001101001010101 1111 111111111111 11111111111111111111111111110100110011
Shared: 40 1 0000000000000000000010001010001101 1001 1T TTTITTTITITITIITIITTIT11IIII1111111111111111101110000101101000000
2 100000100111001011110T 111111111112 111111111111111111111111111111111111000000001010001001000000000000
Shared: 50 1 00000000100110110010001100111101111111111111I1IILIIIIIIIIIIIIIITTITITITI11111111010101111000011100000000
2 11000100001001001001101 11111111111 111111111111111111111111111111111111111010101110000111000000000000
1 0111001110001001000110110T T 11111 ITIIIIIIIIIIII12 1111112211111 11111111111110111011111010000011010
Shared: 60 5
1
2
Shared: 70 !
2 110000100000101010011001 1011111111 1111111111100 22 2200010112 2212111111111111111111111101010110100000111
Thinned: 76 1 1101000000100100011110011111111111111111111111111111111111111111111111111111111010101110100101001101
2 1101000000100100011110011111111111111111111111111111111111111111111111111111111010101110100101001101
Shared: 80 1 1111100000000110101010TT1OTT T2 11111 11111111111 IIIIIIIII1111110111101011100110110
2 11111000000001101010101110111111 1111111111 111112122111111112211111111111111111111110111101011100110110
1 I111111111001001 11101111 IIIITI 11T I I1 I I 1 I I 111 I III11111111111111111010110100111111111
Shared: 90 5

1111111111001001 11101111 1111102110111 0 2101111111111 111111111 11111111111111111111010110100111111111

TABLE II
SELECTED ARRAY EXCITATIONS GIVING THE RESULTS IN FIG. 6 FOR THE PENALTY-FUNCTION GA WITH NON-INTERLEAVED INITIALISATION.
Description ~ Subarray Excitation
Non- 1 1111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000
interleaved 2 0000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111
Inverse 1 [111111111111111111111111111111111111111011010101100101010010000000000000000000000000000000000000000
2 0000000000000000000000000000000000000000100101010011010101101111111111111111111111111111111111111111
Shared: 0 1 111000010101 TTTTITIITITIITITITITITITIT1111111111011001100000000000000000000000000000000000000000000000000
2 0000000000000000000000000000000000000000000000000011100010100111111111111111111111111111111110110010
Shared: 5 1 OIT100ITOITIIIITITIIIITTT1111111111111111111111010100100010110000000000000000000000000000000000000000
2 000000000000000000000000000000000000000001010000101 1001 TTTTTTTITITITTITI11111111111111111110011010110
Shared: 10 1 111110011101 T II11111I1TI11111111111101101101000010000100010000000000000000000000000000000
2 000000000000000000000000000000000010010001001101011001 1 11T TTTITIIIIIIITIIITTI111111111111101111010111

of each subarray, suggesting that the value of interleaving [5] D. G. Leeper, “Isophoric arrays — massively thinned phased arrays
and/or sharing elements is small unless a large number of with well-controlled sidelobes,” IEEE Trans. Antennas Propag., vol. 47,
. no. 12, pp. 1825-1835, December 1999.

elements is shared. . . [6] M. I. Skolnik, J. W. Sherman, III, and F. C. Ogg, Jr, “Statistically de-
The results Presented here are Sllb,]@ct to the f0110Wlng signed density-tapered arrays,” IEEE Trans. Antennas Propag., vol. 12,

limitations which will be addressed in future work: no. 4, pp. 408-417, July 1964.

[7]1 R. L. Haupt, “Thinned arrays using genetic algorithms,” IEEE Trans.

. . Antennas Propag., vol. 42, no. 7, pp. 993-999, July 1994.

« only a linear array was considered, [8] W. P. M. N. Keizer, “Linear array thinning using iterative FFT tech-

only SLL was evaluated, and niques,” IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2757-2760,

only two subarrays were considered. August 2008. _ ) o

[9] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier transform,” Proc. IEEE, vol. 66, no. 1, pp. 51-83,

o only a 100-element aperture was considered,
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