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Speckle evolution with multiple steps of least-squares phase removal
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We study numerically the evolution of speckle fields due to the annihilation of optical vortices after the
least-squares phase has been removed. A process with multiple steps of least-squares phase removal is carried
out to minimize both vortex density and scintillation index. Statistical results show that almost all the optical
vortices can be removed from a speckle field, which finally decays into a quasiplane wave after such an iterative
process.
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I. INTRODUCTION

In stochastic optical fields, especially optical speckle fields
[1], there are many dark points with vanishing intensity and
undefined phase, around which the phase changes by 2π along
a closed loop and forms a local helical wave front. These points
are so-called phase singularities or optical vortices [2–4]. Due
to these optical vortices, a speckle field is often regarded as an
optical vortex field. The statistical properties of a speckle field
in the transverse two-dimensional plane have been well studied
[5–9]. Although these vortices are associated with points of
zero intensity, they are very stable topological structures that
cannot be removed or destroyed by any perturbation in the
local background fields. Considering the speckle field in a
three-dimensional volume [10–13], we see that these point-like
optical vortices form many infinitely long lines or closed loops,
which can be tangled with each other [14]. In fact, a recent
numerical study found that about 27% of the vortex lines in
speckle fields with a Gaussian spectrum form closed loops
[15]. Due to the conservation of topological charges, optical
vortices can only be created and annihilated in pairs at points
where the vortex lines curve backward or forward along the
direction of propagation.

Such fully developed speckle fields are similar to the final
field that is obtained after an optical beam propagates over
a long distance through a severely turbulent atmosphere. The
overall scale factor of the field structure, the coherence area Ac,
is static. In spite of the complicated topology of these vortex
lines in a fully developed speckle field, the rate of vortex cre-
ation along the direction of propagation is statistically equal to
the rate of vortex annihilation. In this sense, the vortex density,
which is defined as the total number of vortices per unit cross-
section area and given by half the inverse of the coherence area
of the speckle field, Dv = 0.5Ac [6,8], remains unchanged
throughout the whole volume of the speckle field. More-
over, the scintillation index, defined as SI = 〈I 2〉/〈I 〉2 − 1,
where 〈·〉 means the ensemble average, is always equal to
1 throughout the whole volume of the speckle field. On
these grounds, a fully developed speckle field is in a state of
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equilibrium, although the field changes randomly in the local
areas, i.e., the vortex lines have a large-scale self-similarity
characteristic of a Brownian random walk [15], during its
free-space propagation.

In our recent work [16], we studied the evolution of optical
vortices and the scintillation index in a speckle field when
its equilibrium state is destroyed by removing the continuous
part of the phase. We found that the vortex density and the
scintillation index of the phase-perturbed field change during
its free-space propagation. Such a phase-perturbed speckle
field eventually restores equilibrium with a lower vortex
density after propagating far enough. Based on this work,
we now study the evolution of a speckle field using multiple
steps of continuous phase removal. Three quantities are used
to monitor the evolution of a nonequilibrium speckle field.
The first quantity is the vortex density Dv as described above.
The second quantity is the scintillation index. A very small
scintillation index indicates small fluctuations in the intensity
with no vortices in the field, while a large scintillation index
indicates numerous vortices in the field. The third quantity
is the probability density function (PDF) of intensity PI (I ),
which is a negative exponential function [1/〈I 〉 exp(−I/〈I 〉)]
when the field is a fully developed speckle field [1,17] (i.e., in
a state of equilibrium).

In this paper, we report, first, the observation of the dip in the
vortex density, as well as in the scintillation index, as a function
of propagation distance. This reveals a hitherto unknown
behavior of stochastic light. We then present some procedures
that we use in an attempt to understand this phenomenon and
to remove optical vortices from the field. What we present
is but one possible way to probe this complex behavior.
A procedure for removing vortices from fields is critical
in order to implement adaptive optics in free-space optical
communication, where the vortices are induced on propagation
through atmospheric turbulence. In principle, the method we
describe below could achieve complete removal using cascade
adaptive optics systems, although at present the technological
implementation is both difficult and expensive. However, a
greater understanding of the vortex elimination procedures
using conventional wave-front sensing and adaptive optics
may lead in the future to a practical free-space optical
communication system with a very low bit error rate.
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The remainder of the paper is organized as follows. In
Sec. II, we describe and review the evolution of vortex density
and scintillation index after the continuous part of the phase
has been removed from a speckle field. In Sec. III, we describe
the method of multiple steps of least-squares phase removal.
The least-squares phase removal is repeated for several times
at some desired propagation distances where the vortex density
of the field reaches its minimum value. In Sec. IV, numerical
simulations are carried out and statistical results, such as vortex
density and PDFs of intensity, are provided and discussed.
Section V gives some discussions and conclusions.

II. REMOVING THE LEAST-SQUARES PHASE FROM
A SPECKLE FIELD

A fully developed speckle field is obtained in the far
field after scattering coherent light through a highly distorted
medium or reflecting coherent light from a surface with its
roughness on the scale of or greater than a wavelength. The
typical intensity and phase of such a speckle field are shown
in Figs. 1(a) and 1(b), respectively. Such a speckle field ψ(x)
can therefore be written as

ψ(x) = |ψ(x)|eiθ(x) =
∫∫ ∞

−∞
α(a)e−i2πa·x d2a, (1)

where x is the two-dimensional position vector on a plane per-
pendicular to the direction of propagation, which is assumed
to be the z axis, a is the two-dimensional spatial frequency
vector, and α(a) represents the random angular spectrum for
the speckle field. In this paper a Gaussian spectral envelope
is used to restrict the random angular spectrum to the area
around the origin, α(a) = χ̃(a) exp(−|a|2/w2), where χ̃ (a) is
a normally distributed complex-valued random function and

(b)(a)

(c) (d)

FIG. 1. (Color online) (a) Intensity, (b) total phase, (c) least-
squares phase, and (d) singular phase of a speckle field.

w is a scale for the radius of the random angular spectrum. The
spatial coherence length Lc, which is here defined as the square
root of the spatial coherence area Ac, is inversely proportional
to w [8].

The phase of a speckle field can be separated into two parts,
as shown in Figs. 1(c) and 1(d): a continuous phase θc(x) and
a singular phase θs(x),

θ (x) = θc(x) + θs(x), (2)

where θs(x) is a sum of phase singularities, which can be
expressed as

θs(x) = arg

{
N∏

n=1

eiνnφ(x−xn)

}
, (3)

where arg{·} denotes the phase, φ(x − xn) represents a
phase singularity located at xn, with the definition φ(x) =
arctan(y,x), and νn represents the topological charge (±1) of
the phase singularity. High-order vortices cannot exist in a
fully developed speckle field because they are not stable and
will decompose into elementary vortices with unit topological
charge [18]. With such a separation, one can have

∇ × ∇θ (x) = ∇ × ∇θs(x) = ±2πδ(x − xn),
(4)∇ × ∇θc(x) = 0,

where ∇× denotes the curl, ∇ denotes the gradient, and δ(·)
is a two-dimensional Dirac delta function.

According to Eqs. (2) to (4), the continuous phase θc(x) is
curl free and therefore does not contain any phase singularities.
The separation between the continuous part and the singular
part of the phase is, however, not unique. In principle one
can calculate the continuous phase numerically by subtracting
the singular phase from the initial phase by first locating
all the phase singularities and then composing the singular
phase function as in Eq. (3). However, since there are typically
hundreds or even thousands of vortices in a speckle field, it is
difficult to locate these phase singularities precisely in such an
experimental setup [19,20]. Furthermore, the initial phase of
the incident speckle beam is also unknown.

Usually, the wave front of an incident beam can be measured
by a wave-front sensor. From the output of the wave-front
sensor, which represents phase differences or phase slopes, one
can estimate the incident wave front by using a least-squares
algorithm [21,22]. In these wave-front estimation methods the
singular phase was viewed as part of the measurement error
or noise, which was neglected, until it was later pointed out
by Fried [23]. It then follows that another way to separate the
continuous phase θc(x) is to compute the least-squares phase
by using a Fourier transform [24–26], as shown in Fig. 1(c).
This gives an optimal estimate of the continuous part of the
total phase θ (x),

θLS(x) = −F−1

{
F

{∇2
T θ (x)

}
|a|2

}
, (5)

where F and F−1 represent the fast Fourier transform and
its inverse, respectively, and ∇2

T represents the transverse
Laplacian operation.

By multiplying a speckle field with the complex conjugate
of its least-squares phase, one can remove the continuous
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part of the phase. This is similar to measuring the distorted
wave front with a wave-front sensor, reconstructing the wave
front by some least-squares reconstruction methods, and then
removing the reconstructed wave front (continuous part of
the phase) by a deformable mirror, as in an adaptive optics
system. As a result the speckle field now only contains the
singular part of the phase, as shown in Fig. 1(d), with its
intensity unaffected. This can explain the reason why the
traditional adaptive optics system cannot correct the strongly
scintillated beams effectively. The vortices are indicated in
Fig. 1(d) by the points where all the phase values (denoted
by the different colors) come together. The resulting field is
called the phase-perturbed speckle field, and the equilibrium
in this field is destroyed.

However, the evolution of the vortex density of such a
phase-perturbed speckle field is not a simple exponential
decay as one may intuitively expect. Along the propagation
direction, this phase-perturbed field experiences two stages of
evolution. The first stage is a decay process. The rate of vortex
annihilation is higher than the rate of vortex creation, which
leads to a decrease in the number of vortices in the field. At the
same time, one also finds that the scintillation index decreases
as shown in Fig. 2(a). The PDF of intensity, which is shown in
Fig. 2(b), changes from an initial negative exponential function
at z = 0 into a semi-Gaussian function near z = zm, where the
vortex density reaches a minimum value.

The second stage is a self-regeneration process. The rate of
vortex annihilation is lower than the rate of vortex creation,
which leads to an increase in the number of optical vortices in
the field. However, the initial rate of decrease in both vortex
density and scintillation index is an order of magnitude higher
than the subsequent rate of increase. The scintillation index
finally increases back to 1 as z → ∞, which means that the
equilibrium state is restored and the field returns to a fully
developed speckle field. The PDF curve for z → ∞ has the
same negative exponential function, as shown in Fig. 2(b),
which also indicates that an equilibrium state is restored and
established in the final field. However, the ability of this
regeneration is limited because the final vortex density as
z → ∞ is about 12% lower than the initial value [16]. The
final field can be viewed as a new fully developed speckle
field with a different equilibrium state.
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FIG. 2. (Color online) (a) Evolution of scintillation index after
one step of least-squares phase removal and (b) PDFs of intensity at
different propagation distances (dashed curve denotes the theoretical
negative exponential distribution for the fully developed speckle
field).

III. MULTIPLE STEPS OF LEAST-SQUARES
PHASE REMOVAL

According to the discussion above, the evolution of the
phase-perturbed speckle field shows a combination of a decay
process and a self-regeneration process. This new speckle field
can be characterized by its coherence area Ac, which can be
calculated by

Ac = − 2π

W ′′
x=0

, (6)

where W ′′ is the magnitude of the transverse spatial second
derivative of the autocorrelation function of the new speckle
field [5].

The Wiener-Khinchin theorem implies that W ′′ can be com-
puted from the Fourier transform of the power spectral density.
In fact, the autocorrelation function of a deterministic beam
in free space is independent of the propagation distance, from
which it immediately follows that the initial phase-perturbed
field and the final speckle field have the same autocorrelation
function. Hence, one can predict the final vortex density Dv

of a phase-perturbed speckle field with the knowledge of the
autocorrelation function at z = 0, which is given by

Dv = −W ′′
x=0

4π
. (7)

The vortex density reaches a minimum value that is lower
than those in the initial and final fields. The propagation
distance where the minimum vortex density is obtained can
be predicted by [16]

zm = 1.1
Ac

λ
= − 2.2π

λW ′′
x=0

, (8)

where λ is the wavelength.
After the phase-perturbed field has propagated over a

distance of zm through free space, it contains fewer vortices
but more phase fluctuations due to the annihilation of vortices.
This suggests that one can further reduce the vortex density in
the field by removing the least-squares phase θLS

z=zm
at z = zm,

as calculated with Eq. (5). Thus a new phase-perturbed field
ψz=zm

is produced, ready to be propagated through free space
for a further reduction in the number of vortices. As expected,
the vortex density of this new field ψz=zm

also experiences a
decrease and subsequent increase in the vortex density during
its propagation. The propagation distance zm1 where the new
minimum vortex density is obtained can also be calculated
with Eq. (8).

Such a process of least-squares phase removal and free-
space propagation can be repeated multiple times, as shown
in Fig. 3. Through such an iterative process virtually all
the optical vortices can be removed from the speckle field.
Note that zmn changes for every successive step because the
autocorrelation function W changes as a result of the reduction
in the number of vortices.

IV. NUMERICAL SIMULATIONS

Numerical simulations are carried out to demonstrate the
evolution of a speckle field with such multiple steps of
least-squares phase removal. In the simulations the initial
speckle field ψz=0 is represented by an array consisting of
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FIG. 3. (Color online) Multiple steps of least-squares phase
removal.

512 × 512 samples. The Fourier transform of the random
angular spectrum in Eq. (1) produces the initial speckle field
with periodic boundary conditions. Similarly, the least-squares
phase, calculated with Eq. (5), also satisfies periodic boundary
conditions. Therefore, the resulting optical fields do not expand
during propagation. The free-space propagation of the input
speckle field is simulated with a numerical beam propagation
method from Fourier optics [27]. At each propagation distance
given by Eq. (8) the vortex density is determined by locating all
the vortices inside the field. At the same time, the scintillation
index and the PDFs of intensity are also calculated from the
intensity of the field. The wavelength in the simulations is
chosen small enough to ensure that the propagation stays
within the paraxial limit. Hundreds of simulations are carried
out to produce statistical curves of the vortex density, the
scintillation index, and the PDFs of intensity.

The evolution of the vortex density is shown in Fig. 4(a)
as a function of the number of phase correction steps. For this
case the radius of the random angular spectrum is set to
w = 32 with the units defined as one sample spacing in the
Fourier domain. The averaged total number of vortices in the
initial speckle fields is about 1600. The vortex density Dv is
normalized by the initial number of vortices in each simulation.
In Fig. 4(a) we see that the vortex density decreases rapidly as
a function of the number of phase correction steps. After 100
such steps almost all of the vortices in the field are removed.
We also note that the rate of decrease in vortex density becomes
slower after about 10 steps of phase correction.

Figure 4(b) shows the same evolution of the vortex density
as a function of the propagation distance. The required
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FIG. 4. (Color online) Vortex density vs (a) steps of least-squares
phase removal and (b) propagation distance. Shaded cyan area and
error bars denote the standard deviations (S.D.).
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FIG. 5. (Color online) Probability density functions of intensity
after different steps (n) of least-squares phase removal.

propagation distance between phase removals increases log-
arithmically with each step. The result is that the vortex
density decreases according to a power law as a function of
propagation distance. In some cases one or two vortex dipoles
still remain in the final field. The separation distances between
these remaining vortices are large compared to the size of
the numerical array of the field. The theoretical annihilation
distance required for such vortex dipoles is relatively large
[28]. Therefore, it is challenging to remove such vortex dipoles.

In Fig. 5 we show the PDFs of intensity after different steps
of correction. One can see that the initial PDF of the speckle
field is given by a negative exponential function. After one step
of correction, the PDF has a semi-Gaussian form, which is the
same shape that is shown in Fig. 2(b) for the dip location at
z = zm. Since we repeat the least-squares phase removals, the
PDF continuously transforms, with its value at I = 0 dropping
down step after step.

The PDFs from one to ten steps of least-squares phase
removal are close to modified Rician statistics with some
differences introduced by numerical simulations. As pointed
out by Goodman, the vortex density drops down exponentially
with the ratio of the specular component to the random
component in a field that has modified Rician statistics [1].
One may view the least-squares phase removals as a process
in which it transfers the random components of the field into
the specular components of the field. The observed evolution of
the vortex density as shown in Fig. 4(a) seems to be consistent
with this interpretation. However, whether the phase removals
would result in modified Rician statistics still needs further
investigation.

Those PDFs between 10 and 50 steps of least-squares
phase removal become very similar, which indicates the slower
drop down in the vortex density after 10 steps of phase
removal. The speckle field turns into a vortex-free field after
about 50 steps of phase removal. Since it is a vortex-free
field, more steps of least-squares phase removal will further
remove the fluctuations in both amplitude and phase and finally
turn the field into a quasiplane-wave field. In Fig. 5 one can
see that a peak is formed at I = 〈I 〉 in the PDF curve when
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FIG. 6. (Color online) Point spread functions after (a) n = 0, (b)
n = 1, (c) n = 4, (d) n = 8, (e) n = 12, and (f) n = 16 steps of
least-squares phase removal.

70 steps of least-squares phase removal have been applied,
which indicates that a quasiplane wave has been achieved.

The point spread function can reveal the degree of blurring
of the point object, which is a measure for the quality of an
imaging system. The evolution of the point spread functions
after repeated steps of least-squares phase removal is consistent
with the evolution of the PDFs. As shown in Fig. 6, the size of
the central peak of the point spread function becomes smaller
and smaller when more steps of phase removal have been
applied. The point spread function of the initial speckle field
(n = 0), as shown in Fig. 6(a), has the biggest size of the central
peak. After about ten steps, the improvement in the central
peak becomes less efficient. One can expect that the point
spread function would approximate an Airy disk when the
field becomes a quasiplane wave with all of the vortices having
been removed through numerous steps of least-squares phase
removal. However, with a traditional adaptive optics system,
one cannot remove those vortices in the strongly distorted
optical field because one step of least-squares phase removal
with the deformable mirror only removes the continuous part
of phase distortions, as illustrated in Fig 6(b).
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FIG. 7. (Color online) (a) Intensity (normalized by the maximum
intensity of the initial field) and (b) phase (without vortices) of the final
field after 53 steps of least-squares phase removal have been applied
on a speckle field initially with 1658 vortices. See Supplemental
Material [29] for the whole evolution procedure.
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FIG. 8. (Color online) Scintillation index vs (a) steps of least-
squares phase removal and (b) propagation distance. Shaded cyan
area and error bars denote the standard deviations (S.D.).

Figure 7 shows the intensity and phase of a final field
after 53 steps of least-squares phase removal, applied to a
speckle field that initially had 1658 vortices. We find that all
the vortices are removed from the speckle field. The intensity
fluctuations of this vortex-free field are still large, as indicated
by the scintillation index of 0.29.

In most cases the scintillation index that is obtained just
after all of the vortices are removed from the speckle field
is rather large because the intensity fluctuations in these
vortex-free fields are coupled into both the amplitude and
the phase during further propagation. Further reduction of
the scintillation index of such a vortex-free field requires
more least-squares phase removal steps. However, due to the
absence of vortices, the required propagation distance zm,
given by Eq. (8), cannot be computed any longer. Here we
keep zm fixed at its last value where there were still some
vortices left. The evolution of the scintillation index with this
modification is shown by the curves in Fig. 8. The simulation
results show that the decision to keep zm fixed is a successful
strategy because the scintillation index is further reduced
during subsequent steps of least-squares phase removal.

We find that the averaged scintillation index decreases
rapidly from 1 to 0.35 over the first ten steps, which
corresponds to the rapid decrease in the vortex density from
1 to 0.1. The flatness or the slight increase in the scintillation
index after the first ten steps until about the 50th step can
be explained as follows. Initially, the scintillation index is
strongly affected by the vortex density due to the zero intensity
at the vortex cores. When the number of vortices decreases the
fluctuations in the field also start to play a role. When there
are no vortices left, the removal of the least-squares phase can
reduce the fluctuations of the field as in an adaptive optics
system. As a result, the scintillation index is further reduced,
as shown by the curve in Fig. 8(a) beyond about 50 steps.

V. DISCUSSION AND CONCLUSIONS

For monochromatic light, the dark areas (optical vortices)
that appear in the speckle fields extend throughout the whole
volume of the field. They are very difficult to manipulate or
remove. In this paper, we strived to elucidate a physical phe-
nomenon associated with the way in which a phase-perturbed
speckle field evolves. Removing the least-squares (continuous)
phase of a speckle field, one finds that the optical vortices in the
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speckle field are reduced through pairwise annihilation at a rate
that exceeds the pairwise creation of vortices. Moreover, the
resulting curve of the vortex density follows a particular shape,
which contains a dip at a characteristic distance scale that
depends on the coherence area and the wavelength. We also
showed that, by repeating the least-squares phase removals at
subsequent dips, one can eventually remove virtually all the
optical vortices from the optical field.

In addition to the dip in the curve of the vortex density,
we also observe a dip in the curve of the scintillation index.
The mechanisms for these dips are not understood at the
moment. With further investigation, we hope to understand
these phenomena to the extent that one can predict the behavior
of the vortex density (and the scintillation index) in any
stochastic optical field.

Note that these vortices are not removed directly, but in-
directly through the removal of the continuous (least-squares)
part of the phase function. With multiple steps of least-squares
phase removal a speckle field with a large number of vortices
can be transformed into a quasiplane wave without vortices.
The fact that it is, in principle, possible to remove optical
vortices from a speckle field in this way implies that there
is a strong connection between the dynamics of the optical
vortices and the continuous part of the phase function, albeit
one that is still poorly understood. A better understanding of
this connection could lead to better control of optical vortices

in stochastic optical fields, which can, in turn, lead to a
breakthrough in an approach to correct strongly scintillated
optical fields. An understanding of the dynamics of optical
vortices in stochastic optical fields can also aid the research
in fields such as optical trapping and optical communication
based on optical vortices (orbital angular momentum).

This procedure can, in principle, remove all the vortices
from a speckle field. If such an adaptive optics system can be
implemented physically, one can expect to achieve a remark-
able improvement in performance over conventional adaptive
optical systems that employ only one least-squares phase re-
moval. Although this method is intuitively appealing, the large
number of phase removals and the large propagation distances
(which previously caused the authors to be unable to reduce the
vortex density down to zero in strongly scintillated beams [30])
may present some challenges in a physical experiment. How-
ever, one can see that the study in this paper for a speckle field
with thousands of vortices might be the worst case that needs
to be corrected with an adaptive optics system. Actually, three
or four steps of least-squares phase removal can remove half
of the vortices from the speckle field, which already represents
a significant improvement in the system performance.
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