Improved photoelectrochemical detection of mercury (II) with a TiO2-modified composite photoelectrode

Jessica Chamier a,b, Andrew M. Crouch c,*

E-mail address: andrew.crouch@wits.ac.za (A.M. Crouch)

ABSTRACT

The spectrophotometric change of a mercury (II) (Hg^{2+}) selective small molecule chemosensor has been successfully converted into a photovoltaic response upon ligating Hg^{2+} . The photon excitation was followed by charge separation facilitated by TiO_2 and polyaniline (PANI), resulting in an electron transfer to an electrical back contact. The photoresponse of the Hg^{2+} selective chromophore was converted to an electron current equivalent to the amount of Hg^{2+} in solution. The favourable properties of a Hg^{2+} sensitive chemosensor was combined with the semiconductor capabilities of TiO_2 to construct a sensor that is capable of generating a current in the presence of Hg^{2+} under illumination. A composite of the fluorescent chemosensor rhodamine 6G hydrozone derivative (RS) and PANI was immobilized on indium tin oxide (ITO) plates coated with TiO_2 and subjected to photovoltammetric measurements. The photovoltammetric responses of the coated layers were investigated to determine the sensitivity and selectivity of the immobilized sensor to Hg^{2+} in the presence of background ions. The photo-response increased linearly with increasing Hg^{2+} concentration from 10 to 200 $\mathrm{\mu g}$ L⁻¹ with a limit of quantification (LOQ) of 4 $\mathrm{\mu g}$ L⁻¹. The pH independence for the photoresponse was limited by the TiO_2 layer and was optimal between pH 6 and 7.

^a Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland X1, Stellenbosch 7602, South Africa

^b Council for Scientific and Industrial Research, Natural Resources and the Environment, P.O. Box 320, Stellenbosch 7599, South Africa

^c Institute of Molecular Sciences, Faculty of Science, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa

^{*}Corresponding author. Tel.: +27 11 717 6011; fax: +27 11 717 6028.