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ABSTRACT
Time series derived from the first two spectral bands of the
MODerate-resolution Imaging Spectroradiometer (MODIS)
land surface reflectance product can be modelled as a pair
of triply (mean, phase and amplitude) modulated cosine func-
tions. This paper proposes a meta-optimization approach for
setting the parameters of the non-linear Extended Kalman Fil-
ter to rapidly and efficiently estimate the features for the pair
of triply modulated cosine functions. The approach is based
on a unsupervised search algorithm over an appropriately de-
fined manifold using spatial and temporal information. Per-
formance of the new method is compared to other applicable
methods and is tested on the Gauteng province which is South
Africa’s province with the fastest growing economy.

Index Terms— Hellinger distance, Kalman Filter, Time
series analysis, Unsupervised learning, Spatial information

1. INTRODUCTION

Reliable surveying of land cover and transformation has al-
ways been a key area of interest to the remote sensing com-
munity. The increase in human population is one of the major
contributions to settlement expansion within a geographical
area [1]. Several studies have investigated the effects that an-
thropogenic activities have on the environment and it is esti-
mated that more than a third of the Earth’s land surface has
been transformed by human activities [2].

The Gauteng province is of interest as it is the fastest
growing province in South Africa, housing more than 10.5
million people in the year 2010. Proper knowledge of land
cover is a critical tool in the effective allocation and manage-
ment of the environmental resources. Digital classification
of land cover consist mainly of spatial and spectral analysis.
Few methods exploit the temporal sampling rate which coarse
resolution satellites provide that captures the dynamics of dif-
ferent land cover types.
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The Extended Kalman Filter (EKF) has previously been
shown as a feature extraction method to model a NDVI time
series for a given pixel as a triply modulated cosine func-
tion to improve land cover separation [3]. The objective of
this paper is to propose an extension to [3], in which each of
the first two spectral bands be modelled separately as a triply
modulated cosine function and thereafter describe an appro-
priately defined manifold using a spatio-temporal window to
search for improved parameters to be used within the EKF.
The method uses an unsupervised search algorithm to search
for improve parameters within manifold. The performance of
this new method is compared to a least squares algorithm and
an unbiased EKF.

The paper is organized as follows. Section 2 discusses
the study area and data set. In section 3 we present the new
method for improved feature extraction and section 4 present
the experimental results by comparing several approaches to
the new proposed method. Section 5 presents the conclusions.

2. STUDY AREA AND DATA DESCRIPTION

The study area is the Gauteng province which is located in
the Highveld of South Africa. The province is the most ur-
banized province in the country and contributes more than a
third of South Africa’s economy. Large areas of natural vege-
tation still exist within the province. The method was applied
to a validated study area that corresponds to a total area of
approximately 285.5 km2. The study area’s land cover is pre-
dominantly natural vegetation and human settlements. The
time series in the validated study area were verified using vi-
sual interpretation of SPOT images to map areas of no change
in land cover type during the study period for the temporal
component of the analysis. The proposed method was then
applied to the entire Gauteng province, covering an area of
19676 km2.



2.1. MODIS time series data

MODIS spectral bands 1 and 2 time series data were ex-
tracted from the 8-day composite MCD43A4 bidirectional
reflectance distribution function (BRDF) adjusted MODIS
land surface reflectance product, with a spatial resolution of
500 m for the time period January 2001 to January 2009 [4].

3. METHODOLOGY

The EKF has been used as a feature extraction method to
model a NDVI time series for a given pixel as a triply mod-
ulated cosine function to improve land cover separation [3].
This paper proposes an extension to [3], that each of the first
two spectral bands be modelled separately as a triply modu-
lated cosine function and is expressed as

yi,k,b = µi,k,b + αi,k,b cos(ωk + φi,k,b) + vi,k,b, (1)

where yi,k,b denotes the observed value of the b-th spectral
band’s time series, b ∈ {1, 2}, of the i-th pixel at time k.
The noise sample of the i-th pixel at time k for each spec-
tral band is presented by vi,k,b. The noise is additive but
with an unknown distribution on both spectral bands. The co-
sine function model was separately fitted on each of the two
spectral bands and is based on several different features; the
frequency ω which is the same over both spectral bands, the
nonzero mean µi,k,b, the amplitude αi,k,b and the phase φi,k,b.
The frequency can be explicitly calculated as ω=2πf where
f is based on the annual vegetation growth cycle and the sam-
pling rate of the MODIS sensor. Given the 8 daily composite
MCD43 MODIS data, f was calculated to be 8/365. The val-
ues of µi,k,b, αi,k,b and the phase φi,k,b are functions of time
and must be estimated for each pixel, i, ∀i ∈ [1, Imax], given
both the spectral band observations yi,k,b for k, ∀k ∈ [1, N ],
and b ∈ {1, 2}. The total number of pixels is denoted by Imax

and the total number of observations is defined by N .
A state vector is estimated by the EKF at each time incre-

ment k for each spectral band and contains all the features,
and is denoted by

xi,k,b = [µi,k,b αi,k,b φi,k,b ]T . (2)

For the present case, it was assumed that the state vector xi,k,b
does not change significantly through time; hence, the process
model is linear. The measurement model, however, contains
the cosine term and, as such, is evaluated via the standard
Jacobian formulation, thereby linearizing the nonlinear mea-
surement model around the current state vector [5]. The state
vector xi,k,b is related to the observation vector yi,k,b via a
non-linear measurement function hb. Both these models are
possibly non-perfect, so the addition of process wi,k,b and
measurement vi,k,b noise is required [5]. This is expressed as

xi,k,b = xi,(k−1),b + wi,k,b, (3)

and
ŷi,k,b = hb(xi,k,b) + vi,k,b. (4)

Both state vectors features may be estimated over time k by
recursive iteration [5] based on the observation data yi,k,b up
to time k. The predicted measurement for the b-th spectral
band is denoted by ŷi,k,b in (4). Function hb is used to com-
pute a measurement given the predicted state, and, vi,k,b is the
observation noise vector. The estimated values for xi,k,b over
time k effectively results in a time series of feature vectors for
each of the Imax pixels for both spectral bands.

The general approach to estimating and initializing the
state parameters, as well as the observation noise and pro-
cess covariance matrix for the EKF, is to determine these pa-
rameters off-line on known training data sets. Let these input
parameters to the EKF be denoted by Sj,b and S denote the
multidimensional space of all possible values of Sj,b. The
EKF will then produce features xi,k,b if it is initialized with
Sj,b. Proper estimation of Sj,b through various techniques
leads to good features from the EKF, while improper estima-
tion of Sj,b will cause system instability and leads to delayed
tracking in the system. A method is proposed that will use
the spatial information of the geographical area to design a
parameter space within the manifold where desirable system
behaviour is present. This is accomplished by observing the
dependencies between the initial state vectors, the process co-
variance matrix and the observation noise.

The analysis of the parameters in Sj,b requires three con-
ditions that operate on a spatio-temporal window that extracts
a short period of data samples from a given time series of
length N . Without loss of generality it is assumed that the
spatio-temporal window starts at the first time sample in the
time series and that a suitable geographical size is selected.
The EKF is conditioned and verified on three separate sets
of parameters with the spatio-temporal window that will en-
sure the following three conditions holds when the separate
parameters sets are presented to the EKF. The conditions are
determined as

σv,b = min
Sj,b∈S

(
Imax∑
i=1

Q∑
k=1

‖ŷi,k,b − yi,k,b‖

)
, (5)

σµ,b = min
Sj,b∈S

(
Imax∑
i=1

Q∑
k=1

∥∥∥∥µ̂i,k,b−( 1

Q

Q∑
k=1

µi,k,b

)∥∥∥∥
)
, (6)

σα,b = min
Sj,b∈S

(
Imax∑
i=1

Q∑
k=1

∥∥∥∥α̂i,k,b−( 1

Q

Q∑
k=1

αi,k,b

)∥∥∥∥
)
. (7)

In (5), the σv,b denotes the estimated deviation of the ac-
tual observations yi,k,b compared to the EKF estimated obser-
vations ŷi,k,b of the b-th spectral band. In (6)–(7), the devi-
ations of the estimated features are compared to the average
EKF estimated features of the b-th spectral band.



Three separate probability density functions can now be
derived spatially from the set of pixels {i} for conditions
stated in (5)–(7) at time k. Let δ(v,k,b) denote the probability
density function derived from (5), δ(µ,k,b) denote the prob-
ability density function derived from (6) and δ(α,k,b) denote
the probability density function derived from (7).

The proposed method evaluates the fit of the candidate
manifold to the three conditions in (5)–(7) using a divergence
metric. In probability theory, several different f-divergence
metrics exist that measure the difference between two prob-
ability density functions. The modified Hellinger distance is
proposed to quantify the similarity in the range [0, 1] within
the manifold [6] and is computed for each condition as

Hv,b(Sj,b) = 1−
√

1−
√
q̂v,b(Sj,b) δ(v,k,b), (8)

Hµ,b(Sj,b) = 1−
√

1−
√
q̂µ,b(Sj,b) δ(µ,k,b), (9)

Hα,b(Sj,b) = 1−
√

1−
√
q̂α,b(Sj,b) δ(α,k,b). (10)

Where in (8), Hv,b(Sj,b) denotes the modified Hellinger dis-
tance of the b-th spectral band for testing similarity between
the candidate EKF and the conditioned EKF given in (5).
q̂v,b(Sj,b) denotes the probability density function of the devi-
ation in the observations of the candidate EKF. Similarly, (9)
and (10) denotes the modified Hellinger distance of the b-th
spectral band for conditions (6) and (7) respectively.

A global metric that encompasses all 3 distance metrics
for each b-th spectral band will be denoted as the minimum
modified Hellinger distance Γb and is defined as

Γb = min
(
Hv,b,Hµ,b,Hα,b

)
. (11)

Using (11) we can iteratively search through the manifold
space to find state parameters that will maximize Γb. The state
parameters that create the candidate manifold is expressed as

Sopt,b = argmax
Sj,b∈S

{Γb}, (12)

where Sopt,b denotes the optimal search vector within the
manifold. A suitable search algorithm was applied to find
a optimal candidate manifold.

4. RESULTS

A spatio-temporal window was used to extract a set of sub-
sequences from the time series data set. The temporal win-
dow length Q was set to 46 and the spatial window included
Imax=1142 pixels into the spatio-temporal window. Three

Table 1. Standard deviation on all parameters obtained
through empirical simulations on the validated data set for
the first two spectral bands.

Conditions Least Squares EKF S0,b EKF Sopt,b
σv,1 74.158 119.304 78.210
σµ,1 184.599 190.973 176.623
σα,1 66.609 117.322 86.532
σv,2 136.225 274.405 124.095
σµ,2 229.608 256.107 211.410
σα,2 167.821 181.748 97.779

different algorithms were then used to fit a pair of cosine func-
tions to both spectral bands separately and used the mean and
amplitude variables produced as features to be clustered.

The first algorithm was a linear least squares method that
was used to fit a pair of cosine functions to provide a perfor-
mance bound that can be expected from the given validated
data set. The second algorithm was an EKF that was used to
fit the cosine functions which was unbiased by setting its co-
variance matrix set to unity. This unbiased EKF is iteratively
reprocessed until the internal state of the EKF stabilizes and
is denoted by S0,b in the experiments. The last algorithm uses
the EKF again but with the proposed method derived in sec-
tion 3 and is denoted by Sopt,b in the experiments.

A clustering method was required to process the features
produced. These features extracted were analyzed with a K-
means clustering technique [7]. The K-means clustering tech-
nique is a partitional clustering technique and is usually used
as a benchmark for other algorithms, and was used on all fea-
ture extraction methods evaluated in this section.

4.1. Validation data set

The standard deviations on all the parameters extracted using
the algorithms are given in Table 1. It was shown that im-
proved class separability is not solely based on a decrease in
the parameter’s standard deviation [3]. The clustering accu-
racy on the validated data set is reported in Table 2. The unbi-
ased EKF improves on the class separability from the perfor-
mance observed using the least squares method. A significant
improvement is observed in the clustering accuracy when the
manifold space is improved using Sopt,b to 88%.

Table 2. Clustering accuracy on validated data set obtained
through empirical simulations.

Conditions Least Squares EKF S0,b EKF Sopt,b
Vegetation 76.443% 81.116% 88.042%
Settlement 91.198% 88.159% 91.374%



Fig. 1. Clustering results of Sopt,b for the entire Gauteng
province of March 2006. The human settlement are coded
in red and natural vegetation are coded in several shades of
green (courtesy of GoogleTMEarth).

4.2. Gauteng province – case study

Next the method was applied to the entire Gauteng province
which covers an area of 19676 km2. A silhouette graph was
used to determine the optimal number of clusters for parti-
tional clustering and resulted in five clusters being the pre-
ferred choice [7]. The clusters were evaluated and grouped
into human settlement and natural vegetation (Figure 1). The
clusters allocated to the human settlements had a total land
coverage of 23.16% throughout the entire Gauteng province.

5. CONCLUSIONS

This paper demonstrated that improved features can be ob-
tained by using the information within a spatio-temporal win-
dow. The proposed unsupervised feature extraction method is
not dependent on acquiring a labelled training data set. It was
shown that with proper selection of the initial state param-
eters, observation noise and process covariance matrix, the
cluster separation is improved with the EKF (section 4).

The EKF that was initialized using Sopt,b, has accurately
clustered the validated data set at 88% overall accuracy (Table
2). When the state parameters Sopt,b were estimated and used
over the entire Gauteng province, a total land cover of 23.16%
(4556.75 km2) of human settlements were detected.

The algorithm described in this paper can be optimised by
adjusting the temporal length of the spatio-temporal window,
to ensure it takes cognisance of short-term inter-annual cli-
mate variability and adapts to longer-term trends in climate.
The features extracted from the EKF that is initialized using
Sopt,b can also be applied in combination with a variety of
other machine learning algorithms.
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