
The use of a Multilayer Perceptron for detecting new

human settlements from a time series of MODIS images

B.P. Salmona,∗, J.C. Oliviera, W. Kleynhansa, K.J. Wesselsb, F. van den
Berghb, K.C. Steenkampb

aDepartment of Electrical, Electronic and Computer Engineering, University of Pretoria,

Lynnwood Road, Hillcrest, Pretoria 0002, South Africa
bRemote Sensing Research Unit, Meraka Institute, Council for Scientific and Industrial

Research, Meiring Naude Road, Brummeria, Pretoria 0002, South Africa

Abstract

This paper presents a novel land cover change detection method that em-
ploys a sliding window over hyper-temporal multi-spectral images acquired
from the 7 bands of the MODerate-resolution Imaging Spectroradiometer
(MODIS) land surface reflectance product. The method uses a Feedfor-
ward Multilayer Perceptron (MLP) for supervised change detection that op-
erates on multi-spectral time series extracted with a sliding window from the
dataset. The method was evaluated on both real and simulated land cover
change examples. The simulated land cover change comprises of concate-
nated time series that are produced by blending actual time series of pixels
from human settlements to those from adjacent areas covered by natural
vegetation. The method employs an iteratively retrained MLP to capture all
local patterns and to compensate for the time-varying climate change in the
geographical area. The iteratively retrained MLP was compared to a classical
batch mode trained MLP. Depending on the length of the temporal sliding
window used, an overall change detection accuracy between 83% and 90%
was achieved. It is shown that a sliding window of 6 months using all 7 bands
of MODIS data is sufficient to detect land cover change reliably. Window
sizes of 18 months and longer provide minor improvements to classification
accuracy and change detection performance at the cost of longer time delays.
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satellite, time series.

1. Introduction

Land cover change detection at regional or global scales, using hyper-
temporal, multi-spectral coarse resolution satellite data, has been a highly
desired goal of the environmental remote sensing community (Townshend and
Justice, 1988; Hansen and DeFries, 2004). Land cover change often indicates
land use change with major socio-economic impacts, while the transforma-
tion of vegetation cover (e.g. deforestation, agricultural expansion, urbaniza-
tion) has significant impacts on hydrology, ecosystems and climate (DeFries
et al., 2002; Foley et al., 2005). Digital change detection encompasses the
quantification of temporal phenomena from multi-date imagery that is most
commonly acquired by satellite-based multi-spectral sensors (Lunetta et al.,
2006).

Due to the complexity and non-parametric nature of land cover classifi-
cation and change detection, machine learning methods are widely regarded
as the most viable option for classification and change detection (DeFries
and Chan, 2000; Lu and Weng, 2007). Supervised ARTMAP neural net-
works have been used for global land cover classification (Gopal et al., 1999),
and forest characterization (Carpenter et al., 1999). Other neural networks
have been used to detect change in pairs of SPOT images (Nemmour and
Chibani, 2005), 5 years of MODIS data (Westra and Wulf, 2007) or a combi-
nation of MODIS, Multiangle Imaging SpectroRadiometer (MISR) data and
high resolution imagery (Braswell et al., 2003).

The above-mentioned examples and many other change detection studies
rely either on image differencing, post-classification comparison methods or
change trajectory analysis (for reviews see Lu et al. (2004)). None of these
methods fully capitalize on the high temporal sample rate of coarse resolu-
tion satellite data. Daily and multi-day composite data provided by coarse
resolution satellite images allow the observation of seasonal land surface re-
flectance patterns which facilitates distinguishing different land cover types
and provides a signal for applying advanced time series analysis (Loveland
et al., 1995).

A temporal sliding window is regularly used in variety of fields to extract
streaming values from an individual time series (Vermaak and Botha, 1998;
Wang et al., 2005). It was shown that by employing correct feature extraction
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techniques on the temporal sliding window (Salmon et al., 2011), the analysis
of the time series is not hindered by the limitations inherent in most studies
(Keogh and Lin, 2005). Land cover change is defined here as the transition
in class label of a pixel’s time series from one class to another class, after
which it remains in the newly assigned class for the remainder of the time
series.

The case for using a Multilayer Perceptron (MLP) for land use classifi-
cation rather than maximum likelihood (ML) methods was made by Paola
& Schowengerdt (Paola and Schowengerdt, 1995), where it was shown that
a MLP appeared to learn the complex non-linear interdependencies of the
multidimensional time series data derived from multiple spectral bands.

The MODIS global land cover product uses a supervised approach to
derive estimates of class conditional probabilities for each class at each pixel
(Friedl et al., 2010). The objective of this paper is to introduce the concept
of supervised MLP operating on a temporal sliding window and evaluate its
performance on detecting both real and simulated land cover change, on a
per pixel basis, using the Normalized Difference Vegetation Index (NDVI),
the first two spectral bands and all seven spectral bands of the time series
extracted from the MODIS land surface reflectance product.

The paper is organized as follows. Section 2 presents the methodology
used, while section 3 presents our experimental setups. Section 4 presents
the results for the change detection on land cover change. Section 5 presents
the conclusions.

2. Methodology

2.1. Study Areas

The Limpopo Province in northern South Africa is largely covered by
natural vegetation, while the expansion of human settlements (often infor-
mal and unplanned) is the most pervasive form of new land cover change in
South Africa. Study areas were selected where settlements and natural vege-
tation occur in close proximity to ensure that the rainfall, soil type and local
climate were similar over both land cover types. The study areas were: 1)
Koelemansrus area with a total area of 195.5 km2 located 17 km south-west
of Mokopane (28.85E, 24.23S), 2) Seshego area with a total area of 123.5
km2 located 10 km north-west of Polokwane (29.40E, 23.81S), and 3) Seku-
ruwe area with a total area of 124.0 km2 located 28 km north of Mokopane
(28.94E, 23.94S).
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2.2. MODIS time series data

The MODIS (MCD43A4, Collection V005) 500-meter, Nadir and Bidi-
rectional Reflectance Distribution Function (BRDF) adjusted spectral re-
flectance bands were used, as it significantly reduces the anisotropic scatter-
ing effects of surfaces under different illumination and observation conditions
(Wanner et al., 1997; Schaaf et al., 2002). The data set provides a sample
on a rolling 8 day interval based on 16 days of MODIS surface reflectance
composite period, for each of the seven spectral bands at 500 meter resolu-
tion. The 500 meter resolution spectral bands were considered to illustrate
the advantages of using additional spectral bands in the analysis, since the
other spectral bands are only available at 500 meter resolution and BRDF
corrected. For each pixel in each study area a time series was extracted
for all 7 bands from the data set (tile H20V11) (year 2000–2008). South
Africa has low cloud obscuration (Roy et al., 2005) and the quality flags
were used to identify the small number of low quality samples and replaced
them with interpolants obtained using a cubic spline fitted through temporal
neighbours.

Place Table 1 here

2.2.1. Training data sets

A supervised MLP was used for change detection (see Section 2.4) and
thus the classifier required training data. A training set must be defined for
each study area to ensure that the classifier captures local patterns. Clusters
of close adjacent pixels were selected for the training area, using manual
visual interpretation of SPOT2 (2000) and SPOT5 (2006) high resolution
images to ensure that none of the time series experienced any land cover
change during the study period. The number of time series selected for each
class, per study area, is given in Table 1. These training sets represent the
two valid classes for the MLP in training mode.

2.2.2. Validation data set

The MLP relies on independent validation data sets (not included in
training phase) to verify the MLP’s generalization (Bishop, 1996). These
data sets were generated using the procedure followed for the training set by
using the same SPOT2 (2000) and SPOT5 (2006) high resolution imagery.
Table 1 represents the number of time series associated with each class in
both study areas.
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2.2.3. Testing data sets: Real and simulated land cover change

Place F igure 1 here

Real land cover change was identified in the Sekuruwe study area. This
land cover change amounted to 29.25 km2 of land cover conversion from nat-
ural vegetation to human settlement. The land cover conversion was verified
by manual visual interpretation of high resolution SPOT2 (2000) and SPOT5
(2006) imagery in the Sekuruwe study area (Fig. 1). The land cover change
detection algorithm presented within this paper was tested on these land
cover change instances and the results are presented in section 4.

Even though human settlement expansion is one of the most pervasive
forms of new land cover change in South Africa, information on this form of
land cover change is poorly documented, and vital details such as the date
of land cover conversion cannot be determined reliably. Thus to study the
behaviour of the algorithm with respect to change detection delay (a vital
statistic), the real change data set was augmented with a simulated land
cover change data set where the date of change is explicitly known and thus
it becomes possible to quantitatively evaluate the change detection method.
The simulation of land cover change in addition to the real change time
series made it possible to control both the type, rate and timing of the land
cover change. These are a function of both anthropogenic activities and
environmental conditions and could be incorporated within a model where
these parameters were known.

The simulated land cover change time series set was created by concate-
nating a set of actual time series from natural vegetation class (settlement
class) to another set of actual time series from settlement class (natural vege-
tation class). As a control, testing sets containing no land cover change were
also created by concatenating a set of time series from a natural vegetation
class (settlement class) to other set of time series also from a natural veg-
etation class (settlement class). Hence there were four testing data subsets
based on concatenating time series of different combination of time series:

• subset 1: natural vegetation time series (class 1) concatenated to set-
tlement time series (class 2);

• subset 2: settlement time series (class 2) concatenated to natural veg-
etation time series (class 1);
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• subset 3: settlement time series (class 2) concatenated to another set-
tlement time series (class 2);

• subset 4: natural vegetation time series (class 1) concatenated to an-
other natural vegetation time series (class 1).

These four subsets were used to produce a confusion matrix to test if the
supervised MLP can detect change reliably on subsets 1 and 2, while not
falsely detecting change for subsets 3 and 4. The number of simulated land
cover change time series available for the analysis process was limited by
the smallest number of pixels available per class in the three study areas,
i.e. there were 248 settlement pixels available in the first study area (Table
1), where a third was used for simulated land cover change (84 settlement
pixels), a third for training of the MLP (82 settlement pixels), and a third
for independent validation (82 settlement pixels).

The concatenation process produces an abrupt change in the time series,
which does not necessarily represent the reality of human-induced change
such as settlement expansion, that may take several months to develop. The
notion of a blending period (linear blend over 12 and 24 months) from one
land cover time series to another was initially considered. The blending
model does not infer all forms of actual land cover change but did illustrate
that the blending period does not affect the ability to correctly detect change
but merely delays the date on which the MLP’s output classify the correct
class (see section 4.3).

Place F igure 2 here

Effective change detection time ∆τ is another parameter that can be eval-
uated on the simulated land cover change and is defined as the time dura-
tion that the classifier is unable to make a correct classification after the
sliding window encounters the first acquisition where change is introduced
(Figure 2).

Place F igure 3 here

2.3. Temporal sliding window and change detection

The MLP’s function is to process time series data and detect land cover
change as a function of time. A complete system diagram is provided in Fig.
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3. This required a temporal sliding window that operates on a subsequence
of the time series for several combinations of spectral bands (Fig. 4).

Place F igure 4 here

A subsequence xmp(t) for a given time series xm(t) of length Pmax, for any
specific spectral band, is given as

xmp(t) =
[

xm(tp) xm(tp+1) . . . xm(tp+Q)
]

, (1)

for all the time increments 1≤ p≤Pmax −Q+1, where Q is the length of the
sliding window and m,m ∈ [1, N ], denotes the spectral band of the MODIS
instrument. The sliding window has a length Q of 6, 12, and, 18 months
which denotes 23, 46, and, 69 MODIS acquisitions respectively at a fixed
rate of 8 day increments within a 16 day composite period. The position of
the sliding window p was incremented sequentially by one sample through
the time series. Since the delay in change detection in the initial training
period was determined by the length of the sliding window Q, the effect of
its length on the accuracy of change detection was studied.

The fixed acquisition rate of the MODIS product and the seasonality of
the vegetation in the study area makes for an annual periodic signal xm(t)
that has a phase offset that is correlated with rainfall seasonality and land
surface phenology (Kleynhans et al., 2010). The Fast Fourier Transform
(FFT) (Oppenheim et al., 1999), computed over the subsequence of length
Q, produces the frequency spectrum. This decomposes the time sequence’s
values into components of different frequencies with phase offsets. Com-
puting the magnitude of all the FFT components removes the phase offset,
which makes it possible to compensate for the effects of rainfall seasonality
(Salmon et al., 2011). This would translate into frequency components in the
frequency spectrum that have fixed positions, because of the annual periodic
properties of the time series xm(t). The features Tmp(f) were extracted from
the sliding window xmp(t) by the methodology discussed above as

Tmp(f) = | F(xmp(t)) |, (2)

where F(·) is the Fourier transform. The seasonal attribute typically asso-
ciated with MODIS time series and the slow temporal variation relative to
the acquisition interval (Lunetta et al., 2004) made certain lower frequencies
dominant. This reduces the number of features used to represent the feature
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space and thus reduces the dimensionality. These dominant components were
extracted from the N spectral bands to represent the feature vector inputs
to the MLP (Fig. 3). These dominant components were extracted as

Xmp =
[

Tmp(f1) Tmp(f2) . . . Tmp(fK)
]

. (3)

Here m,m ∈ [1, N ], denotes the spectral band, and p, p ∈ [1, Pmax − Q + 1],
the time increment of the sliding window.

2.4. Multilayer Perceptron

The MLP comprises an input layer, one hidden layer and an output layer.
All hidden and output nodes used a tangent sigmoid activation function in
each node. The input layer accepts input vectors for classification, while the
output layer represents the likelihood that an input belongs to a specific class
every 8 days.

The MLP output was in the range (-1;1), where 1 represents a 100%
certainty of class membership to class 1 (natural vegetation) given the input
vector, while a -1 represents a 100% certainty of class 2 (settlement). Good
preliminary results were obtained when a temporal moving average filter of
length 3 (24 days) was applied to the output class membership stream of the
supervised MLP. The moving average window smoothed out the transitory
oscillations in class labels caused by higher uncertainty in the classification.
For correct change detection it was required that the MLP correctly classified
both time series according to a threshold Th before and after the change was
introduced. This threshold was used to impose a strict evaluation on the
output class membership stream to ensure that coherent classification was
achieved before land cover change is declared. This means that the MLP’s
tangent sigmoid activation function output can be classified as vegetation
in the range [Th, 1], settlement in the range [−1,−Th], and uncertain in the
range (−Th, Th).

The weights in the training phase of the MLP were determined using
a steepest descent gradient optimization method, with gradients estimated
using backpropagation (Bishop, 1996). The validation set was used for initial
MLP architecture optimization by testing the generalization error to identify
overfitting of the network for each study area. The MLP architecture was
optimized each time for sliding window length Q, number of spectral bands
and training mode (batch mode and iteratively retraining mode).
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In the batch mode (Bishop, 1996) all the incremental, sliding windows
between the year 2000 and the year 2008 were used as initial training inputs
to the MLP. The experiments were conducted for the 8 years without any
retraining. The iteratively retrained MLP is proposed to compensate for the
inter-annual variability between years due to the rainfall variability. The
iteratively retrained MLP was trained to recognize data from the training

set within the sliding window at time p in the time series, and was used
to classify the data from the testing set within the sliding window at time
p. This retraining at each time increment caused a small adaptation of the
weights, and has low complexity due to the small incremental MLP weight
changes over each 8 day increment. These small MLP weight changes only
required 300 epochs at each time increment for network adaptation.

3. Experimental Setup

For evaluation, the sliding window length was set to 6, 12 and 18 months
in all experiments presented in section 4. It was found that the first few com-
ponents dominated the frequency spectrum (Lhermitte et al., 2008) because
of the seasonal attribute typically associated with MODIS time series and the
slow temporal variation relative to the acquisition interval (Lunetta et al.,
2004). This reduced the number of features used to represent the feature
space and thus reduced the dimensionality, making the MLP a feasible op-
tion. The number of components that were extracted in (3), was determined
over all three input vectors. Starting with only one component, additional
components were added to each input vector incrementally until no further
meaningful performance improvement was observed. For this reason the first
five components were extracted and used as information on the land cover
type in all experiments. The number of nodes in each layer is expressed in
table 9.

Three different input vectors utilising different spectral bands were eval-
uated. The input vectors were used as the input to the MLP (Fig. 3) and is
given as

Xp(f) =
[

X1p(f) X2p(f) . . . XNp(f)
]

. (4)

Here N denotes the number of spectral bands, and p, p ∈ [1, Pmax − Q + 1],
the time index of the sliding window. The first input vector was the NDVI
time series (N=1). This is where the NDVI was computed for xmp(t) in (1),
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which uses a combination of the first two spectral bands of the MODIS instru-
ment. The second input vector was to use the first two spectral bands sepa-
rately (N=2). The last input vector used all seven spectral bands separately
(N=7). The three different input vectors were evaluated in all experiments.
The decision threshold Th introduced in section 2.4 was set to 0.1 in all the
experiments. This value was fixed to accommodate all the experiments and
to ensure fairness.

These experiments were conducted in all three study areas introduced in
section 2.1. The number of time series are tabulated in Table 1. These study
areas include land cover validation time series that undergo no change and
simulated land cover change. Real land cover change was available in the
Sekuruwe study area.

The training pixels (section 2.2.1) were used in two different modes to
train the MLP described in section 2.4, namely batch mode and iteratively
retrained mode. Both modes were evaluated in all the experiments.

In the evaluation of each study area, the classification accuracy on the val-
idation pixels (section 2.2.2) is reported in section 4.1. The land cover change
detection accuracies were measured on the simulated land cover change time
series (section 2.2.3) and are reported in section 4.2. The land cover change
detection accuracies were also measured on real land cover change time series
(section 2.2.3) that were present in the Sekuruwe study area and reported
in section 4.4. The effective change detection time ∆τ was calculated on the
augmented simulated land cover change, since the time of land cover change
can be controlled within the time series, and is reported in section 4.5.

The notion of a blending period that was introduced in section 2.2.3
is illustrated in section 4.3. The blending period was only tested on the
simulated land cover change time series since the rate of land cover change
could be controlled.

4. Results and Discussion

Place Table 2 here

P lace Table 3 here
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4.1. Classification accuracy - No land cover change

In the batch mode trained MLP, relatively low settlement classification
accuracy and high coefficient of variation was observed using the NDVI and
two spectral bands’ time series (Table 2). In the case of the iteratively re-
trained mode MLP, similar classification accuracies were observed when all
seven spectral bands were used when compared to the batch mode trained
MLP, unlike the general improvement that was observed with the other in-
puts vectors. Overall, classifiers using all seven spectral bands as input per-
formed better than the other experiments that were conducted. The seven
band input vector improved the average classification accuracies significantly
compared to the other input vectors for the batch mode trained MLP (Ta-
ble 2) and for the iteratively retrained MLP (Table 3). The coefficient of
variation decreased relative to the other input vectors when using the seven
band input vector for the batch mode trained MLP (Table 2) and the iter-
atively retrained MLP (Table 3). An improvement was observed in all the
experiments when longer sliding windows (12, 18 months) were used.

Place Table 4 here

P lace Table 5 here

4.2. Change detection accuracy - Simulated land cover change

The low classification accuracies and high coefficient of variation reported
in section 4.1 were reflected in the low change detection accuracies on the
simulated land cover change. In the batch mode trained MLP, a relative good
change detection accuracy was observed for the Koelemansrus and Seshego
study area when a sliding window length of 12 months and longer was used.
The seven spectral bands produced the highest land cover change detection
accuracies in all the study areas.

In the case of the iteratively retrained mode MLP, improvements were
observed in the majority of the experiments when compared to the batch
mode trained MLP. Similar land cover change detection accuracies were ob-
served for the seven band input vector, but a significant improvement (up to
71%) was observed with the NDVI time series and the two spectral bands
time series.

The conclusion is that the seven spectral bands using the iteratively re-
trained mode MLP performed the best for detecting land cover change on
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the simulated land cover change time series. A general improvement was
observed in all experiments when the sliding window length was increased to
12 months and longer.

Place F igure 5 here

4.3. Effect of blending period - Simulated land cover change

Fig. 5 shows the classification output of the MLP after the time series of
the surface reflectance data of a natural vegetation time series was blended
with that of a settlement time series over a 12 and 24 month period versus
abrupt concatenation. The MLP created transitory oscillations in the out-
put labels during the interval that the land cover type was changing. The
introduction of a blending period did not affect the ability to correctly detect
land cover change, but merely delayed the period before the MLP classifies
into the new class.

Place Table 6 here

4.4. Change detection accuracy - Real land cover change

The Sekuruwe study area was the only study area that presented real
land cover change that could be evaluated. For both the batch mode trained
MLP and the iteratively retrained MLP the real land cover change detection
accuracies were similar to that of the simulated land cover change detection
accuracies presented in section 4.2. Just like in the simulated land cover
change experiments of section 4.2, a longer sliding window length yielded
better performance. The land cover change detection accuracies improved
when the sliding window length Q was increased.

Place Table 7 here

P lace Table 8 here

4.5. Effective change detection time - Simulated land cover change

Preliminary experiments showed that a shorter sliding window had a
shorter effective change detection time ∆τ , which meant the MLP detected
land cover change faster since the data inside the temporal sliding window
was closer in time to the land cover change event. The results on the effective
change detection time ∆τ for the simulated land cover change sets for sliding

12



window sizes of 6, 12 and 18 months using the NDVI, two spectral bands,
and all seven spectral bands operating on both the batch mode trained MLP
and the iteratively retrained mode MLP are provided in Table 7 and Table
8. Each entry in both tables gives the effective change detection time in
days for each of the study areas, calculated over 15 repeated independent
experiments.

In batch mode trained MLP, the disadvantage was that the average clas-
sification accuracy and land cover change detection accuracy was relatively
poor when the sliding window length Q was shorter than 12 months. The
NDVI time series were more prone to incorrect classifications during the
change process than the two and seven spectral band time series approaches,
i.e. the effective change detection time ∆τ could not be calculated in the
Koelemansrus study area with a sliding window of 6 months due to constant
oscillations in the MLP’s output stream. A relative small improvement trend
was observed in the effective change detection time when the sliding window
length was shortened.

In the case of the iteratively retrained mode MLP, improvements were
observed over all the experiments when compared to the batch mode trained
MLP. The lowest relative effective change detection time was observed when
the seven spectral band input vector was used in the MLP.

Place Table 9 here

4.6. Computational complexity

Table 9 shows the computational times for both the batch mode MLP
and iteratively retrained MLP computed in the Sekuruwe study area. A Dell
PowerEdge 1955 blade, Intel Xeon 5355 (Quad-Core) 2.66GHz, 8GB RAM
system was used to compute the computational times for the different com-
binations. The fastest computational time is used as a base comparison for
the other experimental computational times. The other computation times
are expressed as fractional increases of this base. The fastest computational
time was the iteratively retrained MLP operating using a sliding window
length Q of 6 months and the NDVI time series as the input vector Xp(f).
An increase of less than 25% was observed in the computational times when
other combinations of NDVI or the 2 spectral bands were used as input vec-
tor Xp(f). An increase of more than 65% was observed in the computational
time when 7 spectral bands was used as input vector.
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5. Conclusions

This paper demonstrated that a MLP operating on a temporal sliding
window of MODIS time series data was able to detect land cover change
after initial training. Like most other supervised machine learning methods,
the method proposed here was (i) dependent on periodic high resolution
imagery for redefining the training sets over time and (ii) required to be
robust to land cover changes and other errors occurring within these training
sets (DeFries and Chan, 2000).

From all the results presented in section 4 it was clear that better change
detection can be ensured when all seven bands of the MODIS sensor were
used, producing higher classification accuracies and reducing the effective

change detection time ∆τ . The iteratively retrained MLP using all seven
spectral bands performed the best out of all the experiments conducted in
all the study areas. The iteratively retrained mode MLP accurately detected
simulated land cover change at accuracy rates of 89%–94% (Table 5) and
83%–90% (Table 6) for real land cover detection in the Sekuruwe study area,
and has a lower effective change detection time than the batch mode trained
MLP.

The iteratively retrained MLP performed better than the batch mode
MLP (Table 2 versus Table 3) because the iteratively retrained MLP had
the advantage of learning the most recent spectral properties of land cover
types, as time progresses. The iteratively retrained MLP takes cognisance
of what is within the temporal sliding window to compensate for short-term
inter-annual climate variability and adapts to longer-term trends in climate
without confusing any of these with land cover change, which has often been
a problem with other regional land cover change studies (Vanacker et al.,
2005; Olsson et al., 2005).

The temporal sliding window approach can also be applied in combination
with a variety of other classifiers or machine learning methods. The methods
introduced here will next be applied to multiple land cover classes and an
entire MODIS tile.

The main trade off in this study was between the effective change detec-

tion time ∆τ and the length of the temporal sliding window Q. Higher classi-
fication accuracy and land cover change detection rates can be accomplished
when the temporal sliding window length Q is increased from 6 months to
18 months (Table 3 and Table 5), but at the loss of increasing the effective

change detection time ∆τ (Table 7 and Table 8). The loss in classification
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accuracy is less important when related to the reduction in length of the
temporal sliding window length Q (Table 3), when compared to the exces-
sive increase in effective change detection time ∆τ when the temporal sliding
window length Q was extended (Table 5).

Land cover change can be detected by either using the NDVI time series
or the first two spectral bands’ time series of the MODIS data (Friedl et al.,
2010), but in this paper the land cover classification (Table 3) and change
detection (Table 5) was found to be more reliable and faster (Table 8) when
the iteratively retrained MLP was used with all seven spectral bands.

The main operational challenge will be the generation of training data
from the ancillary land cover data which is representative of the environmen-
tal diversity and diverse land uses contained within such an extensive area.
The method proposed is a contribution to the advancement of land cover
change detection using a machine learning approach on satellite time series
data. In the foreseeable future change detection systems based on coarse
resolution satellites could ultimately be used to alert and task high resolu-
tion satellites to acquire images for an area of interest within an autonomous
Earth Observation sensorweb (Chien et al., 2005).
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Figure 1: A land cover change of natural vegetation to human settlement in Sekuruwe.
The Sekuruwe human settlement is located in the Limpopo province, South Africa. The
SPOT2 image (RGB 321) was acquired on 2 May 2000 of the natural vegetation area
(a) and a SPOT5 (RGB 321) image was acquired on 1 May 2007 of a newly developed
human settlement (b). The SPOT2 and SPOT5 image is projected to a MODIS sinusoidal
WGS84 projection and is overlay with a MODIS 500-meter coordinate grid.
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Figure 2: An illustrative example of the effective change detection time ∆τ , which is
defined as the region of uncertainty in the classifier output when land cover change occurs
within the MODIS time series.
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Figure 3: Feature extraction from the MODIS spectral bands that are processed for the
MLP to detect land cover change.
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Figure 4: Temporal sliding window used to define a subsequence of the time series for
classification and change detection.

Table 1: Number of pixels per land cover type, per study area used for training, validation
and testing data sets.

Study Area Training Validation Simulated Change
Time Series Time Series Time Series

Area 1 - Vegetation 225 225 84
Area 1 - Settlement 82 82 84
Area 2 - Vegetation 42 43 42
Area 2 - Settlement 162 162 42
Area 3 - Vegetation 56 57 56
Area 3 - Settlement 77 77 56
Total - Vegetation 323 325 182
Total - Settlement 321 321 182
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Figure 5: MLP classification for simulated land cover change from natural vegetation to
settlement. The top inset is for instantaneous simulated land cover change, the middle
inset is for a land cover change over 12 month blending period and the bottom inset is for
a land cover change over 24 months blending period.
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Table 2: Classification accuracy of the batch mode MLP on the validation set. Each entry gives the average classification
accuracy for each study area, calculated over 15 repeated independent experiments (percentage coefficient of variation shown
in parentheses). The average classification accuracy is given in percentage for each of the classes over different temporal sliding
window lengths (6, 12 and 18 months) and number of spectral bands used (NDVI, 2 spectral bands and all 7 spectral bands).

Area Study Area 1 : Koelemansrus (28.85E, 24.23S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
Vegetation validation 93.2 91.3 89.9 94.4 96.0 95.9 96.9 98.6 99.0

(11.1) (12.9) (15.5) (8.6) (3.9) (3.5) (4.6) (1.5) (1.2)
Settlement validation 27.7 56.7 62.1 70.8 83.0 83.9 78.5 89.7 90.3

(98.2) (46.6) (37.0) (30.6) (13.0) (11.9) (28.7) (9.0) (7.8)
Overall validation 75.7 82.1 82.5 88.1 92.6 92.6 92.0 96.2 96.7

Area Study Area 2 : Seshego (29.40E, 23.81S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
Vegetation validation 44.9 70.8 77.3 61.9 78.0 81.7 90.8 95.0 95.7

(83.1) (42.8) (34.5) (37.8) (15.9) (12.7) (5.6) (2.6) (2.3)
Settlement validation 95.8 94.7 95.0 96.2 98.0 98.3 98.1 98.9 98.8

(5.9) (3.8) (2.6) (4.2) (2.3) (1.8) (2.7) (0.9) (0.7)
Overall validation 85.1 89.7 91.3 89.0 93.8 94.9 96.6 98.1 98.1

Area Study Area 3 : Sekuruwe (28.94E, 23.94S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
Vegetation validation 45.0 55.8 60.7 63.6 67.5 69.9 87.4 91.4 91.5

(70.7) (45.5) (38.4) (30.2) (24.4) (20.9) (9.0) (4.2) (3.7)
Settlement validation 82.7 82.0 80.1 82.0 85.4 88.8 87.8 93.0 94.6

(20.2) (16.5) (15.7) (14.9) (8.8) (6.9) (11.0) (4.3) (3.4)
Overall validation 66.7 71.3 71.8 74.2 77.8 80.8 87.6 92.3 93.3
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Table 3: Classification accuracy of the iteratively retrained MLP on the validation set. Each entry gives the average classifi-
cation accuracy for each study area, calculated over 15 repeated independent experiments (percentage coefficient of variation
shown in parentheses). The average classification accuracy is given in percentage for each of the classes over different temporal
sliding window lengths (6, 12 and 18 months) and number of spectral bands used (NDVI, 2 spectral bands and all 7 spectral
bands).

Area Study Area 1 : Koelemansrus (28.85E, 24.23S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
Vegetation validation 91.4 93.4 94.4 95.9 96.7 97.2 97.7 98.3 98.5

(5.9) (3.4) (2.8) (2.6) (2.1) (1.7) (1.5) (1.0) (0.9)
Settlement validation 70.8 76.9 77.3 83.0 85.9 87.9 91.4 92.8 92.8

(22.0) (9.1) (8.5) (7.6) (5.9) (4.7) (4.1) (3.0) (3.1)
Overall validation 85.9 89.0 89.8 92.4 93.8 94.7 96.0 96.8 97.0

Area Study Area 2 : Seshego (29.40E, 23.81S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
Vegetation validation 70.6 81.2 82.4 74.4 84.2 85.0 91.5 93.2 93.8

(28.1) (11.1) (10.7) (16.3) (9.1) (8.8) (4.7) (3.5) (3.4)
Settlement validation 93.6 94.7 94.9 96.4 97.6 97.7 98.3 98.5 98.6

(4.6) (2.5) (2.3) (2.6) (1.7) (1.6) (1.3) (1.1) (1.0)
Overall validation 88.8 91.8 92.3 91.8 94.8 95.0 96.9 97.4 97.6

Area Study Area 3 : Sekuruwe (28.94E, 23.94S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
Vegetation validation 49.1 66.3 68.0 67.6 75.5 79.9 85.9 88.5 88.8

(61.0) (24.2) (20.2) (22.3) (14.1) (11.0) (7.7) (6.1) (5.8)
Settlement validation 80.7 76.1 77.8 80.8 82.9 84.3 90.2 91.7 91.6

(22.7) (15.9) (13.2) (11.7) (7.3) (7.2) (5.2) (4.0) (4.0)
Overall validation 67.3 71.9 73.6 75.2 79.8 82.4 88.4 90.3 90.4
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Table 4: The land cover change detection accuracy for all the study areas was evaluated using a batch mode trained MLP
on the simulated land cover change set. In this table the input vectors are compared to the different combinations of sliding
window lengths Q.

Area Study Area 1 : Koelemansrus (28.85E, 24.23S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
True positive 4.5 55.3 60.4 72.5 81.9 83.8 79.3 90.1 91.5
True negative 95.6 73.9 75.5 79.8 85.3 87.3 82.3 91.2 92.3
False positive 4.4 26.1 24.5 20.2 14.7 12.7 17.7 8.9 7.7
False negative 95.5 44.7 39.6 27.5 18.1 16.2 20.7 9.9 8.5

Area Study Area 2 : Seshego (29.40E, 23.81S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
True positive 52.4 81.1 83.4 73.3 84.7 85.3 90.3 94.6 94.7
True negative 70.5 81.8 83.7 77.8 84.2 86.0 90.9 95.1 95.7
False positive 29.5 18.2 16.3 22.2 15.8 14.0 9.1 4.9 4.3
False negative 47.6 18.9 16.6 26.7 15.3 14.7 9.7 5.4 5.3

Area Study Area 3 : Sekuruwe (28.94E, 23.94S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
True positive 49.2 51.2 52.2 58.9 67.7 74.5 84.8 88.0 88.0
True negative 65.7 65.5 64.2 69.9 75.1 77.8 85.0 88.5 89.0
False positive 34.3 34.5 35.8 30.1 24.9 22.2 15.0 11.5 11.0
False negative 50.8 48.8 47.8 41.1 32.3 25.5 15.2 12.0 12.0
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Table 5: The land cover change detection accuracy for all the study areas was evaluated using an iteratively retrained mode
MLP on the simulated land cover change set. In this table the input vectors are compared to the different combinations of
sliding window lengths Q.

Area Study Area 1 : Koelemansrus (28.85E, 24.23S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
True positive 75.6 77.5 78.1 86.4 90.5 91.8 94.1 94.3 94.3
True negative 79.4 80.8 80.9 88.3 91.4 91.4 94.2 94.5 94.8
False positive 20.6 19.3 19.1 11.7 8.6 8.6 5.8 5.5 5.2
False negative 24.4 22.5 21.9 13.6 9.5 8.2 5.9 5.7 5.7

Area Study Area 2 : Seshego (29.40E, 23.81S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
True positive 79.4 81.7 84.1 82.5 88.3 89.5 92.5 92.5 92.6
True negative 80.6 82.7 83.3 84.4 87.7 88.5 92.2 92.2 92.7
False positive 19.4 17.3 16.7 15.6 12.3 11.5 7.8 7.8 7.3
False negative 20.6 18.3 15.9 17.5 11.7 10.5 7.5 7.5 7.4

Area Study Area 3 : Sekuruwe (28.94E, 23.94S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
True positive 58.4 64.3 69.0 67.9 76.4 79.6 89.6 89.9 90.2
True negative 67.0 68.5 71.1 72.4 80.0 80.0 89.9 91.3 91.4
False positive 33.0 31.5 28.9 27.6 20.0 20.0 10.1 8.7 8.6
False negative 41.6 35.7 31.0 32.1 23.6 20.4 10.4 10.1 9.8
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Table 6: The land cover change detection accuracy for real land cover change in the Sekuruwe study area. In this table the
different input vectors (NDVI, 2 spectral bands and all 7 spectral bands) are compared to the length of the sliding window Q

(6, 12 and 18 months). Each entry in both tables gives the change detection accuracy for the Sekuruwe study area, calculated
over 15 repeated independent experiments.

Area Study Area 3 : Sekuruwe (28.94E, 23.94S)
Input vector Xp(f) NDVI 2 bands 7 bands
Sliding window length 6 months 12 months 18 months 6 months 12 months 18 months 6 months 12 months 18 months
Batch mode MLP 51.7 54.0 54.1 56.6 61.9 64.0 82.6 84.8 87.2
Detection accuracy
Iterative retrained MLP 57.8 62.9 65.7 62.4 68.8 71.6 83.1 86.6 90.3
Detection accuracy
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Table 7: Effective change detection time ∆τ for simulated land cover change using a batch
mode trained MLP for each of the temporal sliding window lengths and input vectors.
Each entry gives the average number of days for each study area, calculated over 15
repeated independent experiments. The sliding window has a length Q of 6, 12, and, 18
months which denotes 23, 46, and, 69 MODIS acquisitions respectively at a fixed rate of
8-day increments within a 16 day composite period.

Area Study Area 1
Sliding window 6 months 12 months 18 months
NDVI – 127 189
2 Bands 93 128 170
7 Bands 90 102 163

Area Study Area 2
Sliding window 6 months 12 months 18 months
NDVI 286 288 378
2 Bands 85 269 287
7 Bands 79 251 264

Area Study Area 3
Sliding window 6 months 12 months 18 months
NDVI 203 309 409
2 Bands 208 289 353
7 Bands 91 158 256

Table 8: Effective change detection time ∆τ for simulated land cover change using an
iteratively retrained MLP for each of the temporal sliding window lengths and input
vectors. Each entry gives the average number of days for each study area, calculated over
15 repeated independent experiments. The sliding window has a length Q of 6, 12, and,
18 months which denotes 23, 46, and, 69 MODIS acquisitions respectively at a fixed rate
of 8-day increments within a 16 day composite period.

Area Study Area 1
Sliding window 6 months 12 months 18 months
NDVI 136 185 196
2 Bands 76 109 158
7 Bands 70 73 111

Area Study Area 2
Sliding window 6 months 12 months 18 months
NDVI 97 158 232
2 Bands 99 123 221
7 Bands 81 116 214

Area Study Area 3
Sliding window 6 months 12 months 18 months
NDVI 115 208 271
2 Bands 105 195 264
7 Bands 67 179 241
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Table 9: The average computational time for both the batch mode MLP and iteratively
retrained MLP is given for different temporal sliding window lengths (6, 12 and 18 months)
and number of spectral bands used (NDVI, 2 spectral bands and all 7 spectral bands) in
the Sekuruwe study area. Each entry gives the average computational time calculated over
15 repeated independent experiments. The fastest computational time is used as based
comparison with the other entries which are fractional increases of this base.

Input vector Xp(f) NDVI
Sliding window 6 months 12 months 18 months
Number of input nodes 5 5 5
Number of hidden nodes 5 8 13
Computing time - Batch mode MLP 1.06 1.07 1.08
Computing time - Iteratively retrained MLP 1.00 1.03 1.04

Input vector Xp(f) 2 Spectral Bands
Sliding window 6 months 12 months 18 months
Number of input nodes 10 10 10
Number of hidden nodes 8 12 16
Computing time - Batch mode MLP 1.17 1.21 1.22
Computing time - Iteratively retrained MLP 1.09 1.14 1.18

Input vector Xp(f) 7 Spectral Bands
Sliding window 6 months 12 months 18 months
Number of input nodes 35 35 35
Number of hidden nodes 10 14 19
Computing time - Batch mode MLP 1.70 1.80 1.88
Computing time - Iteratively retrained MLP 1.67 1.73 1.79
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