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Abstract
In this thesis, Radio Tomography is the name of a geophysical tech-

nique for imaging the attenuation of high frequency continuous wave

radio waves in the plane between two boreholes in the earth. One of

the central problems of radio tomography imaging is the conversion

from measured field strength to attenuation. To create tomographic

images from cross-hole radio-wave amplitude data, the gain of the

antennas is required.

A Finite-Difference Time-Domain modelling code has been writ-

ten to model radio tomography antennas. Experimental measure-

ments of rock properties are incorporated into the code through the

use of materials with multiple Debye relaxation times. The first novel

contribution reported here is the adaption of the modelling code to

radio tomography antennas by using a novel subcell extension to ef-

ficiently model thin insulating layers around thin wire antennas.

The gain of arbitrary electric dipole antennas can now be calcu-

lated as a function of frequency and rock type and used improve the

quality of RT images. The rock dependent conversion of measured

signal strength to attenuation is the second novel contribution repor-

ted here.

Modelling also shapes the way that new antennas are designed: all

the antennas modelled performed poorly when they were less than

half a wavelength long. Insulated antennas have more predictable

performance, as the wavelength is determined predominantly by the

insulation rather than by the surrounding rock. They are physically

longer than bare antennas so a hybrid antenna is proposed as a com-

promise. The final novel contribution reported in this thesis is the

design of a hybrid insulated/bare RT antenna and receiver system.

The numerical model shows that it is not possible to simply isol-

ate the antenna from the geometry of the rock around it, as assumed

by straight ray path inversion models. The modelling technique de-

veloped here can be used as the forward model of a full wave inver-

sion, to further improve of RT images.
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1
Introduction

The field of study of Geophysics consists of the techniques that allow

us to determine details of the interior of the earth from measurements

of physical properties made outside the volume of interest. It varies

in scale from the planetary seismic measurements that determined the

existence and position of the Moho discontinuity and the core-mantle

boundary (Mohorovičić, 1910), to Ground Penetrating Radar (GPR)

surveys of stress fracturing a few centimetres from the rock face in

deep level mine workings(Grodner, 1998).

Geophysical techniques can be divided into those that are passive

and those that are active. Passive techniques measure a parameter

such as gravity or magnetic field, while those that are active, measure

the response of the earth to an applied signal. Active techniques can

make use of potential sources such as DC current, or wave sources

including sonar and radio waves. Each type of source can be used to

distinguish certain properties of the earth.

Radio Tomography (RT) is an active geophysical technique: a

single frequency radio wave is transmitted from one borehole to an-

other to determine the attenuation between the boreholes. If many

transmitter and receiver positions are used, a tomographic image of

the attenuation of the rock between the two boreholes can be created.

RT is analogous to a scaled up medical Computed Tomography or

CT scan. A CT scan is created by transmitting X-rays at many angles

through the body of a patient to create an image of X-ray attenuation.

1



2 INTRODUCTION

In the same way that X-ray attenuation in the body corresponds to tis-

sue density, radio wave attenuation in rock corresponds to electrical

conductivity. Tissue density images can be used to infer information

about the internal organs of a patient; electrical conductivity images

can be used to infer the geology of the rock in the image plane.

RT is a high-resolution technique, useful for second phase explor-

ation (Wedepohl, 1996). After an orebody has been discovered using

regional scale geophysical techniques or more conventional geolo-

gical techniques, it must be delineated. The delineation is ongoing,

starting with an estimate of the size of the orebody for economic de-

cision making. In practice, for many orebodies this can be done using

a technique with a range of between 50 and 200 m with a resolution

of a few metres. Once mining is underway more accurate mapping is

required to guide operations. RT is intended to assist with strategic

mine planning, providing information three to six months ahead of

mining.

Geophysical tools have some trade-off between range and res-

olution. For most active wave based techniques, increasing the fre-

quency of the waves used increases the resolution while decreasing

the range. The trade-off point for a particular technique can be im-

proved by using equipment with higher power, but there are diminish-

ing returns. Alternatively, a different technique could be applied. In

environments where radio propagation is feasible at ranges of 100 m

– 200 m, the frequency required for penetration usually allows RT to

achieve the desired resolution of a few metres.

The earlier comparison between RT and CT ignored some import-

ant differences between the two techniques:

• CT achieves complete angular coverage in the plane of the image, by

scanning the patient from every angle through an arc of 180◦. RT is

limited to those angles that can be achieved by moving the transmitter

and receiver to the limits of their boreholes.

• The CT source produces X-rays with accurately controlled energy

confined to narrow beams. The X-ray receiver is similarly well under-

stood and the patient doesn’t affect the characteristics of the source or

the receiver. In RT, the source and receiver are electric dipole anten-

nas in rock. Antenna gain and pattern are both required for imaging,
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but change as a function of rock type. An incorrect estimate of either

parameter can lead to artefacts in the image that is produced.

Inversion is the process of turning measured data into an image.

The limitation in angular coverage leads to inherent ambiguity in RT

images, reducing their horizontal resolution. In practice, many im-

ages can fit the measured data, so a single image has to be chosen

by optimizing some characteristic of the image. Inversion is a large

and active field of study in its own right and is not considered in this

thesis.

The Division of Mining Technology of the CSIR in Johannesburg

(Miningtek), has built an RT system for sale (Vogt, 1995). There is

room for improvement in its performance by better understanding the

physics behind its radio antennas. The work reported in this thesis

was initiated to improve its performance by overcoming the second

problem listed above: the conversion of measured signal strength

data to attenuation. To do so, a good model for antenna gain is re-

quired. Such a model will also lead to better imaging procedures and

to design criteria for future antennas.

Chapter 2 describes the RT technique in detail and compares it

to other geophysical techniques that use similar principles. The ba-

sic RT equation is derived and examined in detail to determine how

the system design and the rock properties of the target application

influence RT data quality. The electrical properties of rock in the

frequency band of interest are investigated through the processing

of Miningtek’s electrical properties database. The chapter will be

of interest to people using RT and other electromagnetic geophysical

techniques including GPR and borehole radar.

Chapter 3 introduces Computational Electromagnetics (CEM) as

a technique suitable for modelling RT antennas and systems. The

Finite–Difference Time–Domain (FDTD) method is motivated as the

technique to be applied for RT modelling in this thesis. The chapter

will be of interest to readers not familiar with CEM who wish to gain

an introduction to the techniques available.

Chapter 4 describes the FDTD code written to model RT antennas.

The chapter provides a thorough introduction to the FDTD technique

and a detailed derivation of the novel extension written to model
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insulated dipole antennas buried in rock. The model has body-of-

revolution (BOR) symmetry and can model Debye dispersive media

with more than one relaxation time. The model is verified in detail,

both numerically and by comparison with experiment. The chapter

should satisfy a reader who wishes to understand the detailed design

decisions made in the implementation of the FDTD model that is used

to model various RT antennas in later chapters.

In Chapter 5, the model is applied to simple RT antennas. The

aim of the chapter is to discover how the basic parameters of a di-

pole antenna are influenced by rock. Bare and insulated antennas

are modelled and the advantages and disadvantages of insulation are

discussed. A hybrid antenna is proposed as a compromise for RT

imaging. Readers involved with borehole antennas should find the

results interesting.

Chapter 6 contains a series of case studies of RT antennas in RT

problem environments. The case studies have been selected to high-

light how rock influences RT antennas and also how antennas interact

with their support structure and other antennas. The chapter will be

of greatest interest to people working directly with RT as a geophys-

ical imaging method.

In Chapter 7, the lessons learnt in Chapters 4–6 are drawn to-

gether and proposals are made for extending the work reported in this

thesis. In particular: the numerical model developed here should be

incorporated as the forward model in a full wave inversion scheme.



2
Radio Tomography

2.1 INTRODUCTION

The idea of using radio waves to image targets in the ground isn’t

new: the first patent was issued to Hülsmeyer in 1904 (Noon, 1996).

Since the 1950s, GPR systems based on the reflection of radio waves

by targets in the ground have been described. The technique has

moved from being a scientific curiosity to being a regular subsurface

imaging technique (Turner, 1993). The time-domain representation

of reflected waves in early GPR systems was very convenient, because

it was in the same form as the data captured by seismic systems.

Techniques for interpreting time domain reflection data were well

developed and understood at the time.

RT is similar to GPR in that it uses radio waves to image targets

within the ground, but it differs from GPR in two ways: it is normally

conducted at one frequency in the frequency domain rather than in

the time domain; and it measures the transmission of radio waves,

rather than their reflection.

RT can be thought of as a scaled-up version of the medical CT

scan. In a CT scan, X-rays are used to illuminate a human body.

Dense tissues such as bone absorb X-rays more than less dense tissues

such as skin. In RT, radio waves are used to illuminate the rock in

the plane between two boreholes. Conductive rock absorbs the radio

waves more than resistive rock. In a CT scanner, the X-ray equipment

5
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d) Reconstructed Image
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Figure 2.1: The RT imaging process.

is rotated around the body to illuminate a slice through the body from

every direction. The attenuation data collected can then be inverted

by computer to produce an image of tissue density in the plane of the

slice. In RT the transmitter and receiver are moved to propagate radio

waves from one borehole to the other at various angles. The resulting

data is inverted to produce an image of rock conductivity.

The RT process is illustrated in Figure 2.1. The area of interest is

framed by two boreholes. A radio transmit antenna is lowered in one

borehole, while a receive antenna is lowered in the other borehole.

If the transmit antenna is fixed at one position, the receive antenna

can be moved along the length of its borehole, recording a profile of

signal strength (Figure 2.1a and b). If the transmitter is then moved

to different positions along the length of its borehole, a succession of

profiles can be collected (Figure 2.1c). The received signal strength

is converted to attenuation and inverted to produce an image of the

rock conductivity between the two boreholes. Often the conductivity

corresponds to geology and can give insight into the structure of the
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rock in the plane between the boreholes (Figure 2.1d).

Inverting the data to produce an output image is an interesting

problem, because there are infinitely many images that can fit a given

RT data set. In mathematical terms, the problem is ill-posed and

cannot be solved without some constraint. Conventional inversion

algorithms such as the simultaneous iterative reconstruction tech-

nique, or SIRT , become seriously degraded in the presence of noise

(Wedepohl, 1993; Lager and Lytle, 1977). Miningtek uses the Max-

imum Entropy constraint in the inversion process. The inversion at-

tempts to create the image with the maximum entropy or least struc-

ture in a mathematical sense. The maximum entropy algorithm has

shown itself to be stable in the presence of noise and to create good

reproductions of synthetically modelled data, but improvements are

possible (Van Schoor et al., 1997).

Inverting geophysical data is a large and active area of research

in itself. It is not considered further in this thesis.

The value of RT is its ability to deliver more information from

existing exploration boreholes, or to deliver a similar amount of in-

formation to that currently obtained using fewer boreholes. With

boreholes costing in the region of £25 /metre in 1999 (Stevenson,

pers. comm.) RT is economically attractive.

2.1.1 Radio imaging systems

Transmission techniques for geophysical radio imaging cover a wide

frequency spectrum. Reflection techniques are usually only used at

higher frequencies. GPR is a reflection technique that relies on the

reflection of waves from discontinuities: abrupt changes in electrical

properties. Fracturing is a common target for GPR, as are the in-

terfaces between layers of different materials. By contrast, RT is a

transmission technique. It can produce images of targets where there

is no clearly defined boundary between the target and the host rock.

Disseminated sulphide mineralization is a good RT target, because

the rock becomes gradually more conductive towards the center of

the mineralized area.

Because reflection techniques detect discontinuities, they are sens-
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itive to very thin structures. The response of a transmission technique

is an average of the volume between transmitter and receiver. For

both techniques, range and resolution are a function of frequency.

GPR systems equipped with borehole antennas can be used to

acquire cross-hole tomographic data, but it is normally processed

to produce images of velocity rather than attenuation (Saito et al.,

1990; Vasco et al., 1997). Borehole radar is normally used at higher

frequencies than RT, typically 100 MHz – 1000 MHz. Tomographic

imaging only became possible with the advent of fast, cheap com-

puters in the mid 1980s (Wedepohl, 1993). At that time, borehole

radar equipment existed and could easily be applied to the imaging

problem. Tomography was not routine, possibly because at GPR fre-

quencies resolution is more important than range. Continuous wave

GPR systems can normally achieve better performance, because of

their higher average power (Hamran et al., 1995; Noon, 1996).

At the opposite end of the frequency spectrum are radio tech-

niques operating at very low frequencies. These are often referred to

as the Radio Imaging Method, or RIM, after the name of a commer-

cial system (Stolarczyk, 1992). The low frequency systems have the

advantage of considerable range, but at the cost of relatively poor res-

olution. They have been applied in coal field mapping, (Greenfield

and Wu, 1991), oil-shale retort monitoring (Daly, 1984; Somerstein

et al., 1984) and oil field characterization (Wilt et al., 1995). Fre-

quencies as low as 8 Hz have been used, although the technique then

becomes very similar to conventional borehole electromagnetic geo-

physics (Takasugi et al., 1996).

The Miningtek RT system hardware was originally inspired by

Nickel and Cerny (1989) who used continuous wave radio waves at

HF frequencies in an empirical method they called the “radio wave

shadow” method. Rao and Rao (1983) use much the same type of

technique. There is not much literature in English on Russian ra-

dio wave shadowing work, but Buselli (1980) claims that about 300

systems were in use in the Soviet Union in 1980. At HF–UHF, RT

has been used for tunnel and cavity detection (Degauque et al., 1992;

Côte et al., 1995) and mineral exploration (Yu et al., 1998; Fullagar

et al., 1996; Zhou et al., 1998). Miningtek has also undertaken a con-
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Figure 2.2: An RT image of a massive sulphide prospect. The hotter

colours are the more conductive target rock and the cooler colours

are the more resistive host rock.

siderable number of RT surveys, mostly for base metal exploration

(Pitts and Kramers, 1995; Van Schoor et al., 1997).

RT occupies a niche between RIM and borehole radar because

of its frequency and imaging method. In favourable environments it

can operate over 50 m – 200 m while delivering resolution of a few

metres. The other radio imaging systems use different frequencies to

image with greater resolution or longer range.

2.1.2 Real constraints

In reality, RT works very well in environments where the host rock

is resistive, with a loss tangent of less than about 0.1, and the target

is more conductive (Van Schoor et al., 1997). Possibly the best such

environments are massive sulphide orebodies in resistive hosts. An

example of an RT image is shown in Figure 2.2.

Base metal targets are usually sampled using diamond drilling:

boreholes are drilled into the orebody using a drill bit that consists

of a hollow rod, with diamond teeth around the circumference of the

open end. Drilling normally proceeds for the length of one drill rod.

The whole drill string is then removed from the borehole and the
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core is extracted from the drill rod. The process is then repeated,

with an additional rod added to the drill string after each piece of

core is extracted (Heinz, 1985). Diamond drilled holes provide core

that is invaluable to geologists, but in hard rock environments they

are usually relatively narrow and are expensive to drill.

The narrow diameter of the drill hole provides the practical lim-

itation to RT equipment: it has to fit into existing boreholes. Explor-

ation in hard rock environments is typically undertaken using equip-

ment that drills holes with a diameter of 48, 72 or 96 mm. Drilling is

often carried out on a grid of 100 m or 200 m. Ideally, RT should offer

sufficient range to fit in with the existing drilling grid, but additional

holes may be drilled specifically for RT if the results have enough

value.

At ranges of 100 m – 200 m, in low to medium conductivity host

rocks, the minimum wavelength required for penetration is typically

of the order of several metres. Two choices of antenna present them-

selves: electric and magnetic. Magnetic antennas require area to be

efficient and area is not available in typical narrow boreholes, so elec-

tric antennas are used. The borehole shape simplifies the choice of

antenna further to electric dipoles and these are the only antennas

considered in this thesis.

2.1.3 A practical RT system

Before I started work on this thesis, I was involved in the design of

a commercial RT system (Vogt, 1995). That system is described as

background to the work undertaken here.

An RT system consists of a transmit antenna, a receive antenna,

a positioning system and a data recording system. The transmit an-

tenna needs to be driven by a transmitter and the signal at the receive

antenna needs to be measured. At its most fundamental, an RT sys-

tem can consist of an HF transmitter, two lengths of coaxial cable,

two antennas and a measurement receiver. Data can be measured

manually and recorded in a notebook and position can be controlled

by lowering the antennas on their coaxial cables.

For routine surveying, several elements need to be added:
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Figure 2.3: The test site.

• If the antennas are suspended on optical fibre, the cable is guaranteed

not to interfere with the antenna electrically.

• Data capture should occur on a computer, to automate all routine

tasks.

• Automatic winching removes the last requirement for manual inter-

vention during a routine survey.

The Pluto–6 system

The Miningtek Pluto–6 system meets all the requirements listed

above. It consists of a ruggedized PC for data acquisition and con-

trol, a pair of computer controlled winches, a transmitter probe and a

receiver probe. The winches are each loaded with 1000 m of optical

fibre cable. The transmitter and receiver probes are both insulated

electric dipole antennas. In the central portion of the probe, the two

arms of the dipole contain the battery and the probe electronics. The

length of the dipole can be adjusted by adding extensions to the top

and the bottom of the probe. In Figure 2.3 the system is shown in use

on a test site at Miningtek.

The transmitter is based around a direct digital synthesis integ-

rated circuit that can synthesize a sine wave having any frequency
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from less than 1 Hz up to 30 MHz. The synthesizer feeds a power

amplifier with gain control followed by a power meter. The power

meter measures the real power delivered to the antenna and the on-

board microprocessor adjusts the gain to maintain the real power at

1 W as far as possible. The transmitter is capable of delivering 1 W

into loads of between 20 Ω and 200 Ω.

The receiver is a microprocessor controlled superhet design and

uses a simple digital divider to provide its local oscillator (LO). Two

crystals, of 24 and 36 MHz are divided down to provide a choice

of 19 discrete frequencies between 1 MHz and 30 MHz. The input

amplifier has an impedance of 50 Ω. There is a narrow band filter to

lower the noise floor, followed by a detector and analogue to digital

converter (ADC).

The winch controllers provide low level control of probe depth,

and also function as communications switches. They route commu-

nications from the control computer to their attached probes, or to the

other winch controller. Distributing intelligence to the winch control-

lers and probes leads to simpler, more reliable communications links

and reduces the load on the control PC (Vogt, 1995).

The control PC runs software that acquires RT data while allowing

the operator to monitor data quality as each data point is acquired.

The operator can also use the software to edit data, to remove bad

points and to invert the data to produce output images. Once an image

is available, it is exported to an image processing package for a colour

table and annotation to be added, then released to the customer.

The probes are completely insulated dipoles. The probe hous-

ing is a tube of high-strength glass fibre, containing the antenna arms

made of conductive copper tube. The upper antenna extension is a

piece of insulated wire, with a core diameter of 4 mm and an insu-

lation thickness of 1 mm. The probe itself has 3 mm of glass-fibre

insulation, with a relative permittivity of 2.1. The lower antenna ex-

tension is contained within hydraulic hose to ensure that it descends

below the probe, rather than becoming entangled around it. Although

the conductor is also about 4 mm in diameter, the total thickness of

insulation, consisting of air and a variety of plastics, is about 10 mm.

The total dipole length can be varied between 4 m and 16 m using the
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Figure 2.4: Configuration for calculation of the Friis equation, from

Balanis (1982).
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2.2 THE RT EQUATION

RT data is collected as a series of measurements of transmitted power

and received signal strength. To invert the data to produce an atten-

uation image, the relationship between attenuation and the measured

quantities has to be defined. The resulting equation is the RT equa-

tion.

The power density, Wt, at a distance R from a transmitting an-

tenna buried in an lossy homogenous medium is given by (Balanis,

1982)

Wt =
PtGt(θt,φt)

4πR2 e−2αR (2.1)

where Pt is the power applied to the terminals of the transmitting

antenna, Gt is the gain of the antenna in the direction (θt, φt) and α

is the attenuation constant of the medium.

A receive antenna will convert the power density flowing past it

into received power, as shown in Figure 2.4. The antenna has an

effective capture area or aperture of Ae, given by

Ae = Gr(θr,φr)
λ2

4π
(2.2)

where Gr is the receive antenna gain and λ is the wavelength in the

medium (Balanis, 1982). The power received is then simply Pr =

AeWt. Expressed as a proportion of power transmitted, the power

received is

Pr

Pt
=

(

λ

4πR

)2

GtGre−2αR (2.3)

Equation 2.3 is the Friis Transmission Equation (Balanis, 1982),

modified for transmission through a lossy medium. In the form given
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Figure 2.5: The need for a path integral expression for the

attenuation.

in Equation 2.3, the antennas are assumed to have the same polariza-

tion and the medium is assumed to be isotropic, so the polarization of

the transmission is not changed between the two antennas. The term

(λ/4πR)2 is called the free-space loss factor (Balanis, 1982) and the

factor e−2αR is the attenuation.

In an RT system, the ground is not homogenous. The situation is

illustrated in Figure 2.5. In RT the reflections across the boundaries

are ignored because in practice the boundaries are usually diffuse.

If the boundaries are expected to be as sharp as those shown in the

figure, GPR or borehole radar may be more appropriate techniques.

In Figure 2.5, the total attenuation is the sum of the attenuation

in each material. In general, the total attenuation is the integral of

attenuation along the path:

atot = e2
∫ R

0 −α.dr (2.4)

Notice that attenuation is in addition to the free-space spreading,

which must also be taken into account. If the path integral is inserted

into the Friis transmission equation, 2.3, the resulting equation is the

basic form of the RT equation:

Pr

Pt
=

(

λ

4πR

)2

GtGre2
∫ R

0 −α.dr. (2.5)

It is useful to convert equation 2.5 into decibels by taking 10 log10

of both sides. I also introduce a different unit of attenuation, α∗ =

8.686α, where α∗ is attenuation in dB/m and α is attenuation in
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Nepers/m. The RT equation can then be written as:

∫ R

0
α∗. dr = PtdB + 10 log10

(

λ2GtGr

(4πR)2

)

− PrdB . (2.6)

The RT problem is the inversion of Equation 2.5 and is normally

written in the form of Equation 2.6: the transmitted and received

powers are known, or can be calculated and the distribution of atten-

uation must be discovered. A very simple example is illustrated in

Figure 2.6.

Equation 2.6 expresses the unknown distribution of attenuation

as a function of the transmitted power, the received power, the dis-

tance between transmitter and receiver and the performance of the

antennas. If the antenna effects are separated out from the spreading,

the equation becomes

∫ R

0
α∗. dr = PtdB + 10 log10

(

1
4πR2

)

+ 10 log10

(

GtGrλ
2

4π

)

− PrdB . (2.7)

Equation 2.7 is expressed in terms of both transmitted power and

received power. In practice, received power is measured by measur-

ing voltage. The received power is is a consequence of the effective

aperture of the receive antenna, Ae = Gλ2/4π , so it is defined with

the receive antenna terminated into a conjugate matched load. The

open circuit voltage of the receive antenna is then given by

Vroc = 2
√

PrRr (2.8)

where Rr = <(Zr) is the real part of the antenna impedance. If the

antenna feeds a receiver that does not have an infinite input imped-

ance, then the measured voltage becomes

Vr = Vroc

Zin

Zin + Zr
, (2.9)

where Zin is the input impedance of the receiver. The voltage divider

formed by the receiver input impedance and the antenna impedance
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A model has four zones with different attenuation rates. By mak-

ing four measurements along different raypaths, the attenuation

rates can be calculated. Assume that the antenna gains are unity.

Each pixel is S/2 square. Four equations can be written down

and solved simultaneously for α1–α4:

0.5Sα∗1 + 0.5Sα∗2 = Pt1 − Pr1 + 20 log10
λ

4πS

0.57Sα∗1 + 0.57Sα∗3 = Pt1 − Pr2 + 20 log10
λ

4π1.15S

0.57Sα∗2 + 0.57Sα∗3 = Pt2 − Pr1 + 20 log10
λ

4π1.15S

0.5Sα∗3 + 0.5Sα∗4 = Pt2 − Pr2 + 20 log10
λ

4πS

Figure 2.6: A simple RT example.
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can be incorporated in Equation 2.8 if the resistance Rr is replaced

by an effective resistance Rre,

Rre =

∣

∣

∣

∣

Zin

Zin + Zr

∣

∣

∣

∣

2

Rr. (2.10)

If the receiver has infinite input impedance then from Equation 2.10

Rre = Rr, as expected.

Taking 20 log10 of Equation 2.8, rearranging, and noting that

0 dBV=120 dBµV,

PrdBW = VrdBµV − 126− 10 log10 Rre. (2.11)

The RT equation for a system can now be written as

∫ R

0
α∗. dr = 126

+ PtdBW

+ 10 log10

(

1
4πR2

)

+ 10 log10

(

RreGtGrλ
2

4π

)

− VrdBµV . (2.12)

Equation 2.12 can be rewritten in decibel units, yielding the most

useful form of the RT equation:

∫ R

0
α∗. dr = Cu + PtdBW + S + Ap −VrdBµV . (2.13)

The five terms on the right hand side of Equations 2.12 and 2.13 are

Cu = 126 Conversion of units,

PtdBW Transmitted power,

S = 10 log10(1/4πR2) Spherical spreading,

Ap = 10 log10(RreGtGrλ
2/4π) Antenna parameters,

VrdBµV Received signal strength.

The transmitted power and received voltage can be measured and

the spreading is simple to calculate. It is the fourth factor, the antenna

term, that is not straightforward to calculate. It contains terms for the

gains of the both antennas, the wavelength and the impedances of the
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receive antenna and attached receiver. The gains are a function of

directivity and efficiency:

G(θ,φ) = ηD(θ,φ) (2.14)

where D is the directivity of the antenna as a function of angle, com-

pared to an isotropic radiator and η is the efficiency of the antenna.

The efficiency is defined as

η =

[

Rr

RL + Rr

]

(2.15)

where RL is the loss resistance and Rr is the radiation resistance (Bal-

anis, 1982). For antennas in air, the loss resistance is defined by the

energy lost to resistance in the conductor of the antenna itself. For an-

tennas in rock, there can be considerable loss in the near field which

has to be taken into account in calculating the efficiency. The dir-

ectivity is also a function of the rock surrounding the antenna: the

conductivity of the surrounding rock affects the current distribution

on the antenna and hence its pattern.

2.3 THE ELECTRICAL PROPERTIES OF ROCK

The antennas of an RT system are always embedded in rock. In order

to understand how the antennas work, it is useful to look at how radio

waves propagate in rock.

Maxwell’s equations describe how electric and magnetic fields

interact with one another and with material media. The four equa-

tions for a source free region are

∇× E = −∂B
∂t

, (2.16)

∇× H = Jc +
∂D
∂t

, (2.17)

∇ · D = 0, (2.18)

∇ · B = 0. (2.19)

E is the electric field, H is the magnetic field, B is the magnetic

field density, D is the electric displacement and Jc is the conduction

current.
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The equations cannot be coupled and solved until the constitutive

relations are introduced:

D = ε̂(ω)E, (2.20)

B = µ̂(ω)H , (2.21)

Jc = σ̂(ω)E (2.22)

where ε̂ is the permittivity, µ̂ is the permeability and σ̂ is the con-

ductivity of the medium.

In general, the constitutive parameters given in equations 2.20 to

2.22 are complex tensor functions of frequency. The tensors simplify

to complex functions of frequency if the medium is isotropic. Most

rocks are not magnetic, so have µ̂(ω) = µ0, the permeability of free

space. Magnetic media and anisotropic media are not considered

further in this thesis. The complex permittivity and conductivity are

ε̂(ω) = ε′(ω) + jε′′(ω), (2.23)

σ̂(ω) = σ ′(ω) + jσ ′′(ω). (2.24)

If the material has complex constitutive parameters, it is often

useful to introduce two further constitutive relations (Tai, 1999):

D = ε(E + P), (2.25)

B = µ(H + M) (2.26)

where P is the electric polarization density and M is the magnetic po-

larization density. Since materials with complex magnetic permeab-

ility are not discussed further here, no use is made of the magnetic

polarization density either.

In general, the conductivity describes the movement of free charge

and the permittivity describes the effect of bound charge in polar situ-

ations. The polar moment may be caused by the permanent dipole

moment of individual molecules, or it may result from induced di-

pole moments or migration of ionic charges (Kong, 1986).

2.3.1 Frequency invariant material parameters

King and Smith (1981) show that it is not possible to distinguish

between the effects of complex conductivity and complex permit-

tivity at a single frequency. In general other information is needed
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to determine the contribution of each to the overall behaviour of the

material. It is useful to derive invariant measures of the material prop-

erties.

In an infinite, conductive, source free region, the constitutive re-

lations and Maxwell’s equations can be solved to produce a wave

equation:

∇2E−µε
∂2E
∂2t

−µσ
∂E
∂t

= 0. (2.27)

For time harmonic waves

∂
∂t

= jω ;
∂2

∂2t
= −ω2 ; (2.28)

and the wave equation reduces to the Helmholtz equation,

∇2E− jωµ(σ + jωε)E = 0. (2.29)

The Helmholtz equation shows how the permittivity and con-

ductivity are always found in combination and provides the invariant

measure of electrical properties required above:

σ + jωε. (2.30)

If σ and ε are both complex, the invariant property has real and com-

plex components, which can in turn be related to effective properties.

Then

σe(ω) = σ ′(ω) + ωε′′(ω), (2.31)

εe(ω) = ε′(ω) +
σ ′′(ω)

ω
. (2.32)

Because the effective properties in equations 2.31 and 2.32 can

be measured directly, they are the most widely quoted properties and

the most useful for calculation. If not otherwise specified, all per-

mittivities and conductivities in this thesis are assumed to be the real

effective values of the constitutive parameters.
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2.3.2 Wave propagation properties

One solution of the Helmholtz equation is given by a plane wave

propagating in the z direction,

E = E(z) = nxE0ej(ωt−kz) (2.33)

where k is the wavenumber, given by

k =
√

−jωµ(σ + jωε). (2.34)

If the medium is conductive, k is complex and can be written as

k̂ = β− jα, (2.35)

where α, the plain wave attenuation and β, the phase constant, are

given by

α = ω

[

µε

2

(
√

1 +
σ2

ω2ε2 − 1

)]1/2

(2.36)

β = ω

[

µε

2

(
√

1 +
σ2

ω2ε2 + 1

)]1/2

(2.37)

The phase velocity is then given by

v =

[

µε

2

(
√

1 +
σ2

ω2ε2 + 1

)]−1/2

. (2.38)

The loss tangent can be defined as

tan δ =
σ

ωε
. (2.39)

The loss tangent categorizes materials: poor conductors, also called

insulators or dielectrics, with σ � ωε, good conductors, where σ �
ωε and lossy dielectrics, or quasi conductors at intermediate values

of conductivity, where σ ≈ ωε. For RT, the host rock must usually

be a dielectric or a semiconductor otherwise penetration range will

be negligible.
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Figure 2.7: The Vector Impedance Meter, with its probe in the

foreground, connected to the sample holder containing a rectangular

slice of rock.

2.4 MEASURING ROCK ELECTRICAL PROPERTIES

2.4.1 Measurement technique

There are many methods for measuring the electrical properties of

material samples, each with its own advantages and disadvantages.

A good summary is included in Turner (1993). Miningtek uses the

capacitive sensor method to measure electrical properties over a wide

bandwidth from 1 MHz to 64 MHz. The rock sample is placed as the

dielectric in a capacitor and the complex impedance of the capacitor

is then measured. The facility is illustrated in Figure 2.7. The sample

holder and measurement system were designed by Martin Higginson

and the initial calculation procedure was designed by Eric Wedepohl.

I devised the correction for inductance and the calculation of meas-

urement uncertainty presented here.

A rock sample is usually available as a cylindrical piece of core,

between 30 and 80 mm in diameter. The simplest way to prepare a

sample is to cut a 4 mm slice from the core. After polishing, the slice
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b) Inductance includeda) Inductance ignored

Figure 2.8: Equivalent circuits for rock property measurements.

is placed between two plates each with a diameter of 25 mm and be-

comes the dielectric in a capacitor. A sheet of silver foil is inserted

between each plate and the rock sample to ensure good contact and

a mechanism is used to hold the plates and the sample securely, as

shown in Figure 2.7. The impedance of the capacitor is then meas-

ured using an HP4815A vector impedance meter. Results from the

vector impedance meter are entered into a computer program to cal-

culate the effective material properties.

The HP4815A cannot be easily automated, so the process of

measurement is manual. Normally, measurements are made at seven

frequencies: 1, 2, 4.4, 8, 16, 32 and 64 MHz. High accuracy is not

required or expected: the main purpose of the measurements is to

make performance predictions for GPR and RT .

Rock electrical properties are highly variable. Even very accurate

measurements of rocks in the laboratory do not reflect their electrical

properties in situ, so the measurements are made purely to get an

indication of the electrical regime of the sampled rocks (Grant and

West, 1965).

The vector impedance meter measures the magnitude and phase

of the impedance of the test piece. If the inductance of the test leads is

ignored, the test piece appears as a lossy capacitor, with the equival-

ent circuit shown in Figure 2.8a. Considering the cylindrical sample

geometry, the capacitance and parallel loss resistance are given by

C =
ε0εrπr2

d
(2.40)

R =
d

σπr2 . (2.41)

where d is the distance between the plates of the capacitor and r is

the radius of the plates. There is some capacitance between the two
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Table 2.1: Measurement accuracy of the HP4815A

(Hewlett-Packard, 1966).

Frequency ± 2% of reading

Impedance ±[4+( f /30) + (Z/25)]%

Phase ± [3+( f /30)+(Z/25)]◦

where f is the frequency in MHz and Z is the impedance in kΩ.

sides of the system other than through the sample. The simplest way

to take this capacitance into account is to measure it and assume that

it is in parallel to the required sample capacitance, C.

The measured parameters are given by

|Z| =
d

σπr2
√

1 + ω2ε2

σ2

, (2.42)

arg Z = arctan
ε0εrω

σ
. (2.43)

The complex impedance is then

Z =
R

1 + jωRC
. (2.44)

Combining equations 2.40–2.44 gives the sample electrical proper-

ties in terms of the measured impedance:

εr =
d

πr2
sin(arg Z)

|Z|ωε0
, (2.45)

σ =
d

πr2
cos(arg Z)

|Z| . (2.46)

If the inductance of the test leads is included, then the impedance

of the test piece, Z is related to the measured impedance, Z ′ by

|Z| =
√

|Z′|2 + ω2L2 + 2|Z′|ωL sin(arg Z) (2.47)

arg Z = arg Z′ + arcsin
ωL cos(arg Z′)

|Z| (2.48)

The instrument accuracy of the HP4815A is presented in Table 2.1.

Note that Equations 2.45 and 2.46 are trigonometric functions of

arg Z, while the errors quoted in Table 2.1 are linear functions of

arg Z. As a result, the accuracy of the calculated permittivity is poor
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Figure 2.9: Measured and fitted values of loss tangent as a function

of frequency in an anorthosite sample.

for low values of arg Z, while the accuracy of the calculated con-

ductivity is poor for high values of arg Z. The correction for stray

inductance, Equations 2.47 and 2.48, only has an influence at low im-

pedances or high rock conductivities, but it can then have a marked

effect on measured permittivity.

2.4.2 A summary of results

Between 1987 and 1999, 4835 samples were entered into the rock

properties database at Miningtek. The majority of the samples were

prepared and measured by Jonathon Manganye. After excluding

samples which were measured at a single frequency, 3797 records

remained that had been measured at 7 frequencies from 1 MHz to

64 MHz. Many samples are described in the database only in terms

of their borehole numbers and depth. I decided to ignore samples

which did not have an identifiable rock type, further reducing the

number of samples to 2151. These were processed to provide the

data presented here.

For each sample, the loss tangent was calculated at each fre-

quency and a line was fitted to the loss tangent as a function of

frequency using the least mean square approach. An example for

a single sample is shown in Figure 2.9.

If the loss tangent as a function of frequency for a sample is now
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Figure 2.10: Loss tangent slope for 2151 samples.

characterized by a line, the line consists of two parameters: the slope

and the x-intercept. If the slope is normalized by the x-intercept,

the slopes can be compared directly. A histogram of the normalized

absolute values of slope for all the samples analyzed is shown in

Figure 2.10.

The graph shows that the majority of samples do not have con-

stant loss tangents as a function of frequency, but loss tangents that do

not vary from constant by more than a few percent. The small slopes

of the majority of the samples show that the constant loss tangent

model is a good first approximation for the behaviour of electrical

properties of rocks as a function of frequency, supporting results re-

ported in Turner (1993).

Another result is plotted in Figure 2.11. As a general trend, per-

mittivity increases with increasing conductivity. This is likely to

be a consequence of Maxwell–Wagner polarization: tiny conduct-

ive particles embedded in an insulating host have large polarizations,

because the electrons in the particle are free to move to its edges un-

der an applied force (Hasted, 1973). Many conductive ores consist of

tiny conductive particles in a resistive host matrix.

2.4.3 RT range/resolution estimation

The initial problem of RT surveying is to determine the operating

frequency that will provide an image between two boreholes, where
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Figure 2.11: Conductivity against permittivity for all the samples in

the database.

the distance between the boreholes is fixed. A constant loss tangent

model can be used to estimate range as a function of frequency. In

general, the aim is to use the highest frequency that will allow penet-

ration between the two boreholes. The highest frequency corresponds

to the shortest wavelength and the highest resolution.

Equation 2.13 on page 17 gives the basic RT equation in dB form.

If the rock between the two boreholes is homogenous, then

α∗R = Cu + PtdBW + S + Ap −VrdBµV . (2.49)

To determine the maximum possible attenuation that can be toler-

ated, assume the range R is given and that all the system related fig-

ures within Ap are known, or can be replaced by worst case figures.

The lowest received voltage that can be detected is determined by the

system noise, Vr(min) ≥ Vn. The system noise is composed of two

parts: the background noise of the rock around the receiver and any

noise introduced by the receiver system. For the purposes of estim-

ating range, it can be taken to be

Vn =
√

kTBR (2.50)

where k is Boltzman’s constant, 1.38× 10−23 J/K ,T is the temper-

ature of the system in Kelvin, B is the bandwidth in Hz and R is

the antenna impedance in ohms. If R = 50Ω, Vn ≈ −67dBµV +

10 log10 B. Equation 2.50 is a simplification, because it does not
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consider how the antenna impedance changes as a function of fre-

quency, but it is adequate as a first approximation.

The maximum voltage that can be received corresponds to the

voltage at the receiver for maximum transmitted power, in the ab-

sence of path loss and assuming the best possible figures for gain.

Vr(max) = Cu + PtdBW + Ap. (2.51)

The difference between the maximum possible received signal

and the minimum detectable signal is the system performance figure,

Fsp, where

Fspmax = Vr(max) −Vn. (2.52)

It must be stressed that the system performance figure will change

in different environments, as the impedance and gain of the antenna

change. Note that the expression for Fsp does not include the spread-

ing factor, S.

If the RT equation for a homogenous medium is rewritten in terms

of the system performance and the spreading term is expanded, the

RT equation becomes

α∗R = Fspmax − 10 log 4πR2. (2.53)

The maximum average attenuation that can be tolerated for a given

set of equipment (Fsp) and a given required range (R) is

α∗ =
Fsp − 10 log 4πR2

R
. (2.54)

If the loss tangent is assumed to be constant as a function of fre-

quency and if α∗ is expressed in terms of the loss tangent,

α∗ = 8.686ω
√

µε

2

[
√

1 + tan2 δ− 1
]1/2

(2.55)

the operating frequency can be determined:

ω =
Fsp − 10 log 4πR2

8.686R
√

µε
2

[√
1 + tan2 δ− 1

]1/2
. (2.56)
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Figure 2.12: Resolution as a function of loss tangent for constant

loss tangent background rocks (R=100 m, Fsp = 120 dB).

Resolution is a function of wavelength, which in turn is given by

λ =
2π

β
=

2π

ω
√

µε
2

[√
1 + tan2 δ + 1

]1/2
(2.57)

but the operating frequency, ω, is given by equation 2.56, so

λ

R
=

[√
1 + tan2 δ− 1√
1 + tan2 δ + 1

]1/2
2π8.686

Fsp − 10 log 4πR2 . (2.58)

Equation 2.58 implies that there is a lower limit on the resolution

that can be achieved using RT and that limit is a fraction of the bore-

hole spacing. At high loss tangents, the operating frequency must be

decreased substantially to achieve penetration, but at the same time,

the velocity of propagation in conductive rocks is low and there is a

corresponding drop in wavelength. For an example system perform-

ance figure of 120 dB, over a range of 100 m, the shortest wavelength

at a high loss tangent is 80 m.

Equation 2.58 is illustrated graphically in Figure 2.12, for a spe-

cific value of range (100 m) and system performance figure (120 dB).

The figure shows clearly that RT is best suited to environments where

the majority of the rock between the two boreholes has a loss tan-

gent lower than about 0.2, because reasonable resolutions are then

possible. For higher loss tangents the resolution and operating fre-

quency decrease rapidly.
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2.4.4 A selection of measurements

In order to reduce the scope of the modelling problem, seven rocks

have been selected from the database. The selection includes a wide

range of loss tangents from among the lowest in the database to

among the highest. The variation of conductivity, permittivity and

loss tangent as a function of frequency are plotted in Figure 2.13.

More detailed electrical properties for each of the selected samples

are included in Appendix B.

Each sample is presented here as measured. There is no attempt

to generalize from a single sample to the rock type as a whole. No

error bars are presented on the plot, although the data presented in

Appendix B does include error bars. Apart from measurement un-

certainty, high variability of physical properties is normal for rocks

in the field and has also been observed in the laboratory: rocks of the

same type, taken from the same borehole, within centimetres of one

another in the core, can have electrical properties varying by an order

of magnitude or more.

Rock models separate naturally into two categories: lossy dielec-

trics and conductors. Lossy dielectrics have an effective conductivity

that increases linearly with frequency. They can be considered to

have a constant complex permittivity and a complex conductivity of

zero. If

ε̂(ω) = k1 + jk2 (2.59)

σ̂(ω) = 0 (2.60)

where ki are arbitrary constants, then

σe(ω) = k2ω (2.61)

tan δ(ω) =
σe

ωεe
=

ωk1

ωk2
= k3. (2.62)

Quartzite, granite and dolerite are good examples of lossy dielectrics.

Although their DC conductivity is not zero, it is very close to zero and

their conductivity increases in proportion to frequency. Their loss

tangents are also approximately constant with frequency.

The other dominant rock model is the conductor. In a conductive

material, the complex conductivity has a large real part and often a
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Figure 2.13: A selection of rocks across the electrical property

spectrum from lossy dielectric to conductor.
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negligible imaginary part. The complex permittivity may have real

and imaginary parts, but the effective conductivity is dominated by

the real part of the conductivity. In a material that fits the model

perfectly, effective conductivity is constant with frequency, as is per-

mittivity, so the loss tangent decreases with frequency.

Massive sulphide orebodies are close to ideal conductors, with

almost constant conductivity across frequency, as shown in the con-

ductivity plot in Figure 2.13. However, their permittivities are not

constant, but fall rapidly from very large values at low frequencies.

The high permittivity at low frequencies is probably a consequence

of Maxwell–Wagner polarization, discussed earlier. The result is a

loss tangent that is not inversely proportional to frequency, but that is

nearly constant at both low and high frequencies.

Many rocks, including the remainder of the rocks plotted in Fig-

ure 2.13, fall between the lossy dielectric and the conductor: at low

frequencies, their effective conductivity is dominated by the real part

of the complex conductivity, while at higher frequencies the imagin-

ary part of the complex permittivity starts to dominate.

The discussion is particularly valid in the RT regime: at lower

or higher frequencies, other conceptual models can be applied. The

plots of the rocks chosen here also show that while a constant loss

tangent is a good first approximation for the change in electrical prop-

erties as a function of frequency, a loss tangent that decreases with

frequency is more realistic. Fortunately, this implies that the tradeoff

between range and resolution given in the previous section is conser-

vative rather than optimistic.

2.5 MODELLING ROCK ELECTRICAL PROPERTIES

As shown above, it is possible to measure rock electrical properties

across a frequency band and hence estimate the performance of vari-

ous electromagnetic methods in that rock. It would be useful to re-

duce the variation of properties with frequency to simple relation-

ships. Debye derived a relationship to describe the electrical proper-

ties of polar molecules with a single relaxation time (Daniel, 1967).

The relaxation time is the time lag between applying an external field
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Figure 2.14: Characteristic variation of material properties for a

Debye medium, after Daniel (1967). In the graphs εs = 8 and

ε∞ = 2.

and alignment of the molecule with the field. The Debye equation is

ε(ω) = ε∞ +
εs −ε∞
1 + jωτ

(2.63)

where εs is the permittivity at ω = 0, ε∞ is the permittivity as

ω → ∞ and τ is the relaxation time. The Debye equation is a

solution to the differential equation that describes the polarization of

a material with a single relaxation time, for example a polar liquid

such as water:

τ
dP(t)

dt
+ P(t) = (εs −ε∞)E(t). (2.64)

The interpretation of τ as a relaxation time is now obvious.
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The Debye relationship of equation 2.63 can be separated into

real and imaginary components

εe(ω) = ε′(ω) = ε∞ +
εs −ε∞

1 + ω2τ2 , (2.65)

ε′′(ω) = ωτ
εs −ε∞

1 + ω2τ2 . (2.66)

The conductivity and loss tangent are then described by

σe(ω) = ω2τ
εs −ε∞

1 + ω2τ2 , (2.67)

tan δ =
(εs −ε∞)ωτ

εs +ε∞ω2τ2 . (2.68)

Equations 2.67 and 2.68 only apply if the material has no DC conduct-

ivity, σ ′ = 0. The relationships in Equations 2.65 – 2.68 are shown

graphically in Figure 2.14. Note that the loss tangent always peaks at

the frequency corresponding to the relaxation time. As shown earlier,

many real rocks have a nearly constant loss tangent over frequency,

so the single term Debye equation is not a suitable model over a wide

bandwidth.

The Cole-Cole equation (Daniel, 1967) is an alternative empirical

expression used to model rock electrical properties. The equation is

ε(ω) = ε∞ +
εs −ε∞

1 + (jωτ)1−αcc
, (2.69)

where αcc, the empirically derived Cole-Cole parameter, has the ef-

fect of broadening the loss tangent peak. The Cole-Cole equation can

then be applied over a wider bandwidth than the Debye equation with

a single relaxation time. It is widely used as a model for the electrical

properties of material media (Turner, 1993).

The Jonscher parameterization (Hollender and Tillard, 1998) is

also a good approximation for the frequency variation of the elec-

trical properties of rock. It gives the effective permittivity as

εe(ω) = ε0χr

(

ω

ωr

)n−1
[

1− j cot
(nπ

2

)]

+ε∞. (2.70)

There are three real constant parameters to be fitted, n, χr and ε∞.

The frequency ωr is arbitrary and cannot be compared to the Debye
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relaxation frequency. The Jonscher parameterization offers an excel-

lent fit to many sets of experimental data, but has not been pursued

here because it does not integrate well into the time domain finite–

difference approach of the FDTD method.

The Debye relationship was originally developed to explain the

dielectric properties of a polar liquid (Debye, 1929). Rocks consist of

mixtures of crystals of various minerals, so it is reasonable to approx-

imate real rock electrical properties as the sum of Debye relaxations

(Taflove, 1998):

ε(ω) = ε∞ +
εw1

1 + jωτ1
+

εw2

1 + jωτ2
+ ... (2.71)

where εw1 + εw2 + ... = εs − ε∞. For any given material and fre-

quency range of interest, it is often appropriate to consider only those

terms with relaxation times close to the frequencies of interest.

It is possible to fit the experimental data shown in Figure 2.13

on page 31 within experimental error, to materials with between one

and four relaxation times. The process of fitting the experimental

data and the results for the samples are given in Appendix A.

2.6 CONCLUSION

The central problem examined in this thesis is the determination of

the antenna parameter in the RT equation,

Ap = 10 log10(RreGtGrλ
2/4π) (2.72)

for an electric dipole antenna embedded in rock. The rock properties

come from measurement and are modelled as Debye materials with

multiple relaxation times.

Measurements show that it is reasonable to assume that rocks

have a constant loss tangent with frequency as a first approximation.

The assumption of constant loss tangent leads to a simple expres-

sion for the expected resolution from a survey, which is useful during

initial survey design.

In the next chapter, various approaches are considered to determ-

ine Rr, Gr and Gt as functions of the design of the antenna and the

rock in which it is embedded.





3
Modelling propagation in the earth

3.1 INTRODUCTION

The previous chapter introduced RT and showed that in order to im-

prove the quality of RT images, it is necessary to have a good under-

standing of the antenna impedance and gain. In this chapter, some of

the techniques for calculating the antenna parameters are discussed

and the Finite-Difference Time-Domain (FDTD) technique is chosen

for this thesis.

If the current distribution on the antenna is known, the rest of

the antenna parameters can easily be calculated. In the case of an

electric dipole antenna in air, sinusoidal current distribution is often

assumed (Balanis, 1982). The assumption is based on the idea that

from the feed point, the antenna acts as a pair of transmission lines,

with open circuits at the end of each line. King and Smith (1981)

go as far as to model an insulated antenna using a transmission line.

If the end of the antenna is an open circuit, it reflects all arriving

electromagnetic energy resulting in a sinusoidal standing wave for

sinusoidal excitation.

A sinusoidal current distribution is a good first order estimate for

an antenna in air. If the antenna is immersed in a conducting me-

dium, the approximation breaks down as the conductivity increases

(King and Smith, 1981). In addition, if an electrical structure is intro-

duced near the antenna, the interaction of fields between the antenna

37



38 MODELLING PROPAGATION IN THE EARTH

and currents induced on the structure also causes the current distribu-

tion to become non–sinusoidal. For simple cases, such as two dipole

antennas in echelon, analytical solutions can be determined (King,

1957). Even for this case, the analytical expression is too complic-

ated to easily improve our understanding of the factors affecting the

problem.

For the general problem of modelling an RT antenna in a realistic

rock environment, complete with different rock types and potential

targets, a numerical solution is more appropriate. Computational

electromagnetics (CEM) enables the user to do parametric analysis

without having to build and test physical antennas in the difficult en-

vironment of a borehole.

Any grouping of techniques for antenna analysis tends to be ar-

bitrary. In the sections that follow, I consider analytical techniques

and then divide CEM techniques into “large scale” and “small scale”

(Cloude, 1996):

• In large scale techniques, the structures to be modelled are divided

into segments and the relationship between each segment and all the

others is defined. The problem is then to determine the currents on

conductive segments, given the interrelationships between the seg-

ments. The most common large scale techniques are finite element

methods and the related method of moments.

• In small scale techniques, the space to be modelled is divided into

elements, where each element depends only on those nearby. The

current distribution is determined by applying a source voltage at

some point in space and time stepping the space. The most common

small scale techniques are the FDTD method and the Transmission

Line Matrix (TLM) method.

Foster (2000) contains a good summary of various modelling

techniques and discusses the advantages and shortcomings of all the

dominant modelling methods. Foster divides CEM into methods that

model current distributions on surfaces and those that model current

distributions in volumes. The division is equivalent to that used here,

where large scale techniques typically model current distributions on

surfaces.

Techniques used to model electrically large conducting struc-
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Figure 3.1: Geometry of the King-Smith insulated antenna (Casey

and Bansal, 1986).

tures, such as the Physical Optics model, or the Geometric Theory

of Diffraction are not considered, because in the RT problem, the

conducting structure is relatively small.

3.2 ANALYTICAL METHODS

Although many electromagnetic problems do not have closed form

analytical solutions there are approximate solutions available for a

wide range of problems. Analytical solutions can give an insight into

the physical processes occurring.

Two leading exponents of the analytical approach for antennas

in the earth are King and Smith (1981). For an insulated electric di-

pole antenna embedded in a material, King and Smith propose equat-

ing the two arms of the antenna with two coaxial transmission lines,

fed from their centre point. In each case, the antenna itself forms

the inner conductor of the transmission line, the insulation forms

the dielectric and the material medium forms the outer conductor,

as shown in Figure 3.1.

In the classic King-Smith antenna configuration, the insulation

consists of two layers, layers 2 and 3. If only one layer is used, the

ambient medium is still referred to as layer 4. The wave number of

the insulation is given by k2 = ω(µ0ε
′
2)

1/2, while the wave number

of the ambient medium is k4 = β4 + iα4 = ω(µ0ε4)
1/2 where

ε4 = ε̂′4 + iσ ′′4 /ω.
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For an insulated dipole that satisfies the following conditions

|k4/k2|2 � 1 (3.1)

(k2b)2 � 1 (3.2)

the distribution of current on the antenna can be approximated by

equation 4.15 on page 509 of King and Smith (1981):

I(z) = − iVe
0

2Zc

sin kL(h− |z|)
cos kLh

, (3.3)

where

Zc =
ζ2kL

2πk2

[

ln(b/a) +
k2

2

k2
4

H(1)
0 (k4b)

k4bH(1)
1 (k4b)

]

(3.4)

and

kL = k2

[

k2
4[H

(1)
0 (k4b) + k4b ln(b/a)H(1)

1 (k4b)]

k2
2 H(1)

0 (k4b) + k2
4k4b ln(b/a)H(1)

1 (k4b)

]1/2

. (3.5)

H(1)
0 is the Hankel function of the first kind and order zero and ζ2 is

the wave impedance of the insulation, where ζ2 = (µ2/ε2)
1/2.

Equations 3.4 and 3.5 correspond to equations 4.21 and 4.22 on

Page 510 of King and Smith (1981), referred to in Sato and Thierbach

(1991). These approximations of the characteristic impedance and

the wave number are acceptable as long as |k2
4/k2

2| ≥ 2. However,

the current distribution on the antenna given in Equation 3.3 is only

accurate under the more severe restriction that |k2
4/k2

2| � 1.

Casey and Bansal (1986) show weaknesses in the King approx-

imation close to the antenna. In particular, King and Smith take an

approximation to evaluate an integral that is only valid when

|k4c|2 � 1. (3.6)

Casey and Bansal (1986) use a numerical technique to evaluate the

same integral and claim more accurate results in the near field, al-

though their far field results correspond closely to those reported in

King et al. (1983).

Analytical methods are not introduced here to propose an exact

method of modelling RT antennas, but to extract what understanding
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is available about the underlying physics from the analytical expres-

sions. For example, Hansen (1999) offers a good detailed analysis of

a somewhat unrealistic problem: the Hertzian dipole in a borehole.

Although the problem is unrealistic, the insights gained are physic-

ally useful: how waves propagate along the interface between the

borehole and the rock, and when that propagation is important.

The aim of this section is to introduce the idea of modelling one

arm of an insulated dipole antenna as a coaxial cable, together with

its effective wave number and effective wave impedance. These con-

cepts are useful when normalizing the electrical length of insulated

antennas.

3.3 FINITE ELEMENT METHODS

The first of the large scale numerical techniques discussed here is the

Finite Element Method. The principle of the method is to break the

problem space down into finite elements, often triangles, where prop-

erties within the elements are related to those of nearby elements.

The whole system is then subject to boundary conditions and solved

subject to a solution constraint; usually minimum energy (Silvester

and Ferrari, 1996).

For static electromagnetic problems the finite elements are only

related to immediately adjacent elements. The solution matrix is

sparse so large matrices can be solved using sparse matrix solvers.

However, for full Maxwell’s equation solutions, each finite element

is often related to all the others and the matrix becomes dense, lim-

iting the problem size. For unbounded problems, there is also often

the need to define absorbing boundary conditions. The method of

moments represents an alternative formulation for solving finite ele-

ment problems.

The finite element computational domain is finite, but the prob-

lem space may be unbounded. Some way of truncating the problem

is required. Absorbing boundary conditions (ABCs) are implemen-

ted to simulate a boundary through which energy only passes in one

direction, truncating the problem space. The development of ABCs is

currently an active research area. The latest ABCs for the finite ele-



42 MODELLING PROPAGATION IN THE EARTH

ment method are being developed from those for the FDTD method,

for example those of Wu et al. (1997).

A variation on the finite element technique is the volume current

method, detailed in Howard and Kretzschmar (1986). This code was

used to generate the RT data in Van Schoor et al. (1997). It is not

suitable for use as an antenna model, because it is 2D and assumes

infinite line sources.

3.4 THE METHOD OF MOMENTS

Possibly the most popular large scale technique for modelling elec-

tromagnetic problems is the method of moments introduced by Har-

rington (1967). The electromagnetic problem is broken down into

current carrying wires and surfaces and the interactions between all

the elements.

The method of moments is a technique to solve general problems

of the form

L( f ) = g (3.7)

where L is a linear operator, g is a known excitation or source func-

tion and f is the desired field response.

For example, Maxwell’s equations for the time-harmonic case are

∇× E = −jωµH (3.8)

∇× H = jωεE + J. (3.9)

The two equations can be combined into a single equation for E as

−1
jω
∇× (µ−1∇× E)− jωεE = J. (3.10)

This is of the form

L(E) = J (3.11)

and follows the form of Equation 3.7. Conditions need to be applied

to Equation 3.10 to restrict the domain of L and boundary conditions

are needed on E, but once these are in place, Equation 3.11 can be
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set up in matrix form and solved. Wire antennas are modelled in a

similar manner, using a different set of basic equations.

The moment method has the advantage that it does not require

boundaries to model antennas because the interactions are only be-

tween antenna elements. By the same token, modelling additional

structure near antennas adds considerably to the cost, because the

additional structure must be discretized.

There are two costs in solving a moment method problem: set-

ting up the matrix L and solving the matrix. Setting up the matrix

is not trivial as it involves numerical integration for typical antenna

problems. The matrix is square, N × N, where N is the number of

unknowns, typically the number of segments in the problem. The

computational cost of solving a moment method problem is propor-

tional to N3 and the memory requirement is proportional to N2.

For the general problem of antennas in inhomogenous earth, the

problem quickly becomes large because of the need to discretize the

surfaces that represent changes in the earth material properties. For

some specific geometries, the Green’s functions used to create L can

incorporate an inhomogenous earth structure, for example by assum-

ing a layered earth (Van Tonder, 1995). In a similar way, new Green’s

functions can be derived to handle insulated coatings by introducing

surface current densities (Richmond and Newman, 1976; Lee and

Balmain, 1979). Iterative techniques can extend the moment method

to model inhomogenous lossy dielectric objects (Sultan and Mittra,

1985).

In general, there are two problems with using the method of mo-

ments to model RT antennas: firstly, the method cannot handle in-

homogenous earth and secondly, changing the method to incorporate

novel elements, including insulated antennas, is a significant research

effort in itself.

3.5 FINITE DIFFERENCE METHODS

The two small scale modelling techniques described here are both fi-

nite difference methods, that is, they break the volume to be modelled

into a computational grid that maps the electromagnetic fields of the
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problem spatially. They are also both time-domain methods, where a

source waveform is introduced at a point or points in the grid and the

electromagnetic field propagation is simulated by time-stepping the

system. The two methods discretize space in fundamentally different

ways.

3.5.1 The Finite-Difference Time-Domain method

Within the FDTD method, space is discretized directly. Yee (1966)

proposed that Maxwell’s equations be discretized as a set of finite

difference equations, on a grid with electric fields offset both spatially

and temporally from magnetic fields. Update equations express the

present values of fields in terms of past values. Fields are updated in a

leapfrog scheme, to incrementally march the E and H fields forward

in time.

A source is implemented in FDTD by setting E or H fields to

values of a function specified in the time-domain as the model is

time stepped. Both point and wave sources can be modelled. If the

source function contains many frequencies, a single run of the model

will produce results for all the frequencies contained in the source

waveform.

The technique did not attract much attention initially, partly be-

cause of its high computational cost. Since the mid 1980’s, as com-

puters have become ever cheaper and more powerful, the technique

has attracted a great deal of interest (Schlager and Schneider, 1995,

1998).

The FDTD method cannot model radiation problems without modi-

fication, because the modelling space is finite. It is necessary to ter-

minate the modelling space numerically in such a way that waves

radiating out through the boundary appear to travel on infinitely. The

boundary termination is often called an absorbing boundary condi-

tion (ABC). It can be implemented through one-way wave equations,

or through the introduction of absorbing media.

The FDTD method can be used to model material media, in-

cluding dispersive media, either by recursive convolution (Luebbers

and Hunsberger, 1992) or by adding auxiliary differential equations
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(ADEs)(Gandhi et al., 1993). This makes it ideal for modelling RT

and it has been used to model GPR (Giannopoulos, 1997; Bourgeois

and Smith, 1996).

The FDTD method can be expressed as a full three-dimensional

model, or as a two-dimensional model, where the system is uniform

in its third dimension. It can also be modelled for specific geometries

such as cylinders, with body of revolution (BOR) symmetry (Maloney

et al., 1990). The BOR model is numerically accurate in 3D, but

has a 2D computational cost. Since RT antennas have cylindrical

symmetry, BOR symmetry is appropriate to model a wide range of

RT problems. One problem that cannot be modelled by a BOR code

is an antenna close to a conductive body on one side. Such a problem

requires full 3D modelling.

3.5.2 Transmission Line Matrix method

The Transmission Line Matrix (TLM) method (Christopoulos, 1995)

is another differential time-domain technique. In TLM, the modelling

space is simulated by a network of transmission lines. The voltages

and currents on the transmission lines give information about electric

and magnetic fields in the modelling space. Lines intersect at nodes.

At each time step, voltage pulses are incident on each node from

each transmission line connected to that node. The node voltage is

calculated and the result is then scattered to produce a new set of

pulses at each connected node at the next time step.

The characteristics of the transmission lines are set up to be con-

sistent with Maxwell’s equations. Transmission line stubs can be

connected to each node to add different material properties. TLM

is excellent for applications that are naturally expressed in terms of

reflection coefficients. Shielding problems in EMC work are a good

example, because shielding effectiveness is often measured in terms

of S11 and S21 parameters, which can be applied easily within the

TLM model.

Comparisons of TLM and FDTD tend to end inconclusively. For

example, Giannopoulos and Tealby (1995) compare an ABC in the

two techniques and conclude that performance is better in TLM, but
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that TLM is also more computationally expensive. In general, features

such as lossy dispersive media, or advanced ABCs are implemented

first within FDTD models and only later in TLM. Efforts have been

made recently to combine the two (Eswarappa and Hoefer, 1996;

Chen and Xu, 1997), particularly to reap the benefits of new ABC

techniques within TLM (Eswarappa and Hoefer, 1995). Krumpholz

et al. (1995) argue that since TLM leads to some non-physical eigen-

values, as well as all the physical eigenvalues of FDTD, it contains

redundant information, but they do not take a position on the superi-

ority of either technique.

3.6 CHOICE OF MODELLING TECHNIQUE

Modelling RT presents an interesting challenge. Although RT images

are created at a single frequency, the choice of frequency is the most

important choice an operator can make, so modelling at different fre-

quencies is a requirement. The model must be able to incorporate

electric dipole antennas coated with a thin layer of insulation embed-

ded in a lossy dispersive medium. It is an advantage if the modelling

technique can incorporate targets in the earth medium that have dif-

ferent electrical characteristics.

Ideally, a commercial modelling package would be used. No

available method of moments code could be found that implements

antennas embedded in rock. The method of moments has been used

to model GPR , notably in Turner (1993), but the code used is often

NEC 3, a version of the Numerical Electromagnetics Code (Burke

and Poggio, 1981) that can incorporate a lossy earth. However, in

1997, when this research was initiated, NEC 3 was only licensed by

the US Government to specific military customers. A commercially

available code, Concept (Singer et al., 1997) was also assessed, but

again, its implementation of a lossy earth did not permit a general

solution to the RT problem.

Certainly, it is possible to extend the method of moments to in-

corporate thin layers of insulation and generalized lossy media, but if

a code is to be written or extended, the FDTD method offers a smal-

ler, simpler kernel as a base to extend from, so the FDTD code was
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chosen above the moment method. The time-domain formulation of

FDTD gives results for many frequencies from a single run and the

computational cost of a run does not go up substantially if the target

becomes geometrically complex. Although simple geometries take

longer to run than in a moment method code, the time is not substan-

tial enough to present an obstacle to using the code.

Both finite elements and the method of moments require an excel-

lent understanding of the electromagnetics of the problem and need

to be set up in different terms for different problems. For example,

adding a thin layer of insulation to a wire antenna changes the equa-

tions used to model the wire. By contrast, finite difference methods

apply everywhere in space, although specific electromagnetic equa-

tions may be required to define subcell extensions. It can be argued

that if a technique must be modified, as is the case for modelling RT,

the correct choice of technique is the one that is easiest to modify.

Johns (1979) argues that there is some danger in using model-

ling techniques that are too far removed from the physical process,

because of the loss of insight that occurs. He feels that the calcu-

lus approach of FDTD obscures the propagating nature of the wave,

but I feel equally that TLM obscures the underlying field properties

through its translation to transmission lines. Johns (1987) goes on to

say that FDTD and TLM are complementary and that “Some engin-

eers prefer to think of time-domain discretization through mathemat-

ical finite differencing; others prefer to model with transmission-line

networks.” I am one of the former and for that reason I have chosen

FDTD over TLM as my tool of choice.

There have been several published FDTD models of the earth, in-

cluding Bourgeois and Smith (1996); Debroux (1996); Teixeira et al.

(1997); Holliger and Bergmann (1998); Liu (1999) and at least one

including BOR symmetry (He and Liu, 1998), all of which support the

choice of FDTD as a modelling methodology. Giannopoulos (1997)

modelled GPR, a very similar problem to modelling RT, using both

FDTD and TLM and concluded that FDTD was easier to apply. Malo-

ney et al. (1990) claimed very good results modelling a simple an-

tenna using a BOR code. The same group later published a study of

radiation from a resistive monopole that was created using a thin-
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layer approximation (Maloney and Smith, 1993). The authors com-

pared their results with measurements and claimed “A survey of the

literature for this antenna shows that no better agreement has been

obtained.” Although their claim is specific to their model, it does

show the ability of an FDTD code with subcell extensions to model

antennas accurately.



4
The RT FDTD model

4.1 INTRODUCTION

In the previous chapter, the FDTD method was chosen as suitable for

modelling RT antennas and systems. A computer code for model-

ling RT has been written and is described in this chapter. The most

important characteristics of the model are described together with the

update equations for novel aspects of the model. The complete deriv-

ations of the update equations are included in Appendix A, collecting

together in one algorithm several techniques that have not been pub-

lished together before.

The problem is assumed to be rotationally symmetrical, so body–

of–revolution (BOR) symmetry is applied. It is assumed that the an-

tenna is thin enough that there are no circulating currents on the an-

tenna. Even in a rock of high conductivity and dielectric constant,

the antenna diameter of 44 mm is well below the 10 m wavelength of

a 30 MHz radio wave. Because there are no circulating currents, and

excitation is only of the Ez field, only a TM mode is propagated from

the antenna so only the TM mode is modelled in the computational

space. A cylindrical co-ordinate system is used and update equations

are provided for Ez, Er and Hφ.

The antenna is placed on the axis of the modelling space as shown

in Figure 4.1. The image line is a perfectly electrically conducting

(PEC) plane that converts the monopole model into the effective di-

49
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Figure 4.1: The geometry of the computational space.

pole shown. In general the code is capable of modelling a dipole, but

the antenna is normally modelled as a monopole over a PEC ground

plane. Image theory allows the performance to be equated to that of

a dipole with twice the voltage across it.

The right and top of the modelling space are truncated in ab-

sorbing boundaries. The bottom boundary can be either a perfectly

conducting ground plane or an absorbing boundary. Second order

Higdon boundaries are used, because they offer adequate perform-

ance with a small computational burden. The antenna is modelled

using a thin-wire approximation and is coated using a thin-layer ap-

proximation. Electrical properties can be varied with frequency in

accordance with the Debye model. The combination of Debye model
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and thin coated wire presented here is novel.

The antenna is driven by forcing the Ez field across the driving

element. A more accurate driving method could be employed, but

forced E fields have the benefits of extreme simplicity and great ro-

bustness. A bipolar, or differentiated, Gaussian pulse is used to excite

the antenna, producing a range of frequencies from just above DC

to a specified maximum frequency, normally between 20 MHz and

30 MHz. Results are obtained for discrete frequencies by taking the

Fourier Transform of the time domain results.

No near-to-far field transformation is used. In an RT system, the

observation points are usually sufficiently close to the transmitter to

be included in the computational domain. Because the model is 2D,

fields would have to be extrapolated into 3D to calculate the far fields.

Although the near-to-far field transformation could reduce the size of

the computational space, that advantage is outweighed by the extra

computational cost of the extrapolation.

The modelling code was prototyped in IDL, a mathematics and

visualization language (RSI, 1995). Once the model and visualiza-

tion tools were working in IDL, the model itself was translated into

C, to reduce run times. The modelling code was written to run on

a PC but has also been compiled and executed on a workstation.

As an example of execution speed, one run of a model consisting

of 200 × 200 cells, modelled for 4096 time steps, takes approxim-

ately 400 seconds on a computer with a Pentium processor running

at 166 MHz.

4.2 THE FDTD ALGORITHM

Yee (1966) proposed what came to be known as the FDTD technique.

He substituted finite-difference equations for Maxwell’s equations

and made the crucial proposal that E and H fields be placed on grids

offset from one another by half a grid space. The evaluation of E and

H then also takes place half a time step apart. The system of equa-

tions is excited with a point or wave source and values of E and H
are updated at each time step.

As an example, assume the electromagnetic field and the excit-
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Figure 4.2: A 1D FDTD example.

ation have no variation in the y or z direction, as illustrated in Fig-

ure 4.2. In effect the medium is infinite in extent with possible lay-

ering in the x direction. Maxwell’s equations for the TM mode then

reduce to

∂
∂t

Ez =
1
ε

(

∂
∂x

Hy −σEz

)

(4.1)

∂
∂t

Hy =
1
µ

(

∂
∂x

Ez − ρ′Hy

)

(4.2)

where ρ′ is the equivalent magnetic resistivity, normally zero. The Ez

field points are placed on a line,4x apart, with the Hy fields centred

between each pair of Ez points. It is possible to derive a set of finite

difference equations to update the E fields from the H fields at time

step n and then update the H fields from the E fields at time step

n + 1/2.

Yee chose to take derivatives as central differences. The idea of

difference equations follows from the definition of the derivative as

the limit of a difference (Spiegel, 1971)

dx
dy

= lim
4y→0

4x
4y

. (4.3)

Taflove (1995) uses a notation for describing vector fields at po-

sitions in a grid in space and time:

V
∣

∣

n

i, j,k
(4.4)

describes a vector V at a position defined by grid points i, j and

k, at a time n. The subscripts and superscripts do not refer to the



4.2 THE FDTD ALGORITHM 53

actual position in time and space, but to the integer grid: x = i4x,

y = j4y, z = k4z and t = n4t.
Using Taflove’s notation, derivatives with respect to time and

space for an arbitrary vector V can be written as

dV
dt

=
V
∣

∣

n+1

i, j,k
− V

∣

∣

n

i, j,k

4t
, (4.5)

dV
dx

=
V
∣

∣

n

i+1, j,k
− V

∣

∣

n

i, j,k

4x
. (4.6)

Values not available at a particular time step can be estimated using

a time average of the half steps before and after:

V
∣

∣

n+1/2

i, j,k
=

V
∣

∣

n+1

i, j,k
+ V

∣

∣

n

i, j,k

2
. (4.7)

Schuster et al. (2000) recommend the use of a different scheme, time

forward. They show that time average is less stable than alternative

formulations when modelling materials with high conductivity. Ex-

perimental results confirm their findings, but their paper only became

available after the bulk of the modelling had been done for this thesis.

Time averaging was used for all the modelling shown here.

Using Equations 4.5 – 4.7, the 1D Maxwell’s equations (Equa-

tions 4.2 and 4.1) can now be expressed in difference form as

Ez
∣

∣

n+1/2

i+1/2
− Ez

∣

∣

n−1/2

i+1/2

4t
=

1
ε

[

Hy
∣

∣

n

i+1
Hy
∣

∣

n

i

4x

−σ
Ez
∣

∣

n+1/2

i+1/2
− Ez

∣

∣

n−1/2

i+1/2

2

]

(4.8)

Hy
∣

∣

n+1

i
− Hy

∣

∣

n

i

4t
=

1
µ

[

Ez
∣

∣

n+1/2

i+1/2
− Ez

∣

∣

n+1/2

i−1/2

4x

− ρ′
1
µ

Hy
∣

∣

n+1

i
− Hy

∣

∣

n

i

2

]

(4.9)

Equations 4.8 and 4.9 can be manipulated into a pair of update

equations for the E and H fields in a 1D simulation:

Ez
∣

∣

n+1/2

i+1/2
=

[

2ε−σ4t
2ε +σ4t

]

Ez
∣

∣

n−1/2

i+1/2

+
24t

4x(2ε +σ4t)

[

Hy
∣

∣

n

i+1
− Hy

∣

∣

n

i

]

, (4.10)
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Hy
∣

∣

n+1

i
=

[

2µ − ρ′4t
2µ + ρ′4t

]

Hy
∣

∣

n

i

+
24t

4x(2µ + ρ′4t)

[

Ez
∣

∣

n+1/2

i+1/2
− Ez

∣

∣

n+1/2

i−1/2

]

. (4.11)

To simulate propagation, Equation 4.10 is run to update all the E
field vectors. Equation 4.11 is then run to update all the H field

vectors. The process is then repeated, corresponding to the next time

step of the model. Exactly the same process is followed in a three

dimensional model. The grid is offset between E and H and the E
and H field updates are separated in time by half a time step.

It is not possible to construct a grid of arbitrary size. The size

of a single cell must be significantly less than a wavelength (Yee,

1966). A cell size of λ/10 is often used, although λ/20 gives a more

accurate model. The time step needs to be such that a wave does not

cross a cell in less than one time step. This is formally stated as the

Courant stability criterion for a 3D model:

4t ≤ 4
cmax

√
3

(4.12)

where4 is the dimension of one side of the cell (where4x = 4y =

4z = 4) and cmax is the maximum velocity of propagation in the

model. The cube root comes about because of three dimensional

geometry. In a 2D geometry, it is replaced by
√

2.

Note that in media where the velocity is not constant either across

the modelling space or as a function of frequency, the size of the time

step needs to be set according the highest velocity in the modelling

space. In general, when the media become dispersive, it is difficult

to formulate a simple criterion for stability (Taflove, 1995). Stability

considerations are discussed in detail in Section 4.8 on Page 81.

4.3 FREQUENCY DEPENDANT ELECTRICAL PROPERTIES

In its basic form, the FDTD method does not allow for material prop-

erties to vary with frequency. However, as discussed in Chapter 2,

real rock has electrical properties that vary with frequency. There

are a number of ways of handling varying material properties. The

simplest is to assume that material properties are constant with fre-

quency and repeat the computation of the model with different fixed
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properties for each frequency point. If results are required at ten fre-

quency points, ten separate runs will be required.

Dispersive material properties can also be incorporated into the

update equations through recursive convolution (Kunz and Luebbers,

1993; Luebbers and Hunsberger, 1992), auxiliary differential equa-

tions (Gandhi et al., 1993; Taflove, 1995) or Z transform techniques

(Sullivan, 1992; Weedon and Rappaport, 1997). In this thesis, the

FDTD formulation is extended by the auxiliary differential equation

(ADE) method, from Gandhi et al. (1993) as outlined in Gianno-

poulos (1997).

Gandhi et al. (1993) base their ADE method on the frequency

domain relationship,

D = ε̂ (ω)E. (4.13)

If a polarization vector P is defined as

P = ε0χ(ω)E (4.14)

(Balanis, 1989), Equation 4.13 can be extended to include any fre-

quency dependant effects (Young, 1995). The frequency domain

susceptibility, χ(ω) can be made arbitrarily complex, allowing for

the modelling of any material variation with frequency (Kunz and

Luebbers, 1993). As discussed earlier, the Debye model forms the

basis for a suitable model of the frequency dependence of the elec-

trical properties of rock. The Debye model with a single relaxation

time gives complex permittivity in terms of frequency as

ε̂ (ω) = ε∞ +
εs −ε∞
1 + jωτ

(4.15)

where εs is the static permittivity when ω=0, ε∞ is the permittivity

as ω →∞ and τ is the relaxation time. If

χ(ω) =
εs −ε∞
1 + jωτ

(4.16)

then Equation 4.15 can also be written as

ε̂(ω) = ε0ε∞ +ε0χ(ω) (4.17)
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Equation 4.14 can now be expanded for the specific case of a Debye

medium to

P = ε0
εs −ε∞
1 + jωτ

E. (4.18)

Equation 4.18 can then be transformed into the time domain, result-

ing in

∂P
∂t

=
1
τ

[ε0(εs −ε∞)E− P]. (4.19)

Equation 4.19 is the auxiliary differential equation from which

the technique gets its title. It is now possible to express Equation 4.13

in terms of known parameters for a Debye material. From Equations

4.13 and 4.17,

D = (ε0ε∞ +ε0χ(ω))E, (4.20)

but by including Equation 4.14 this becomes

D = ε0ε∞E + P. (4.21)

Equation 4.21 can now be used with Ampère’s law to relate E and H
fields on a surface.

The choice of the Debye model over the Cole–Cole model or the

Jonscher parameterization is now justified. Because the Debye model

is the solution to a time domain differential equation, it is straight-

forward to implement in an FDTD scheme. It is far less straightfor-

ward to implement either of the other dispersion models into an FDTD

scheme.

4.3.1 Debye media with multiple relaxation times

As shown in Chapter 2, many rocks require more than a single re-

laxation time to model their electrical properties accurately. Equa-

tion 4.18 can be replaced by one describing the polarization as a sum

of Debye relaxations:

P =
n

∑
i=1

εwi

1 + jωτi
E (4.22)
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where

n

∑
i=1

εwi = εs −ε∞. (4.23)

The total polarization in Equation 4.22 can be considered as a sum of

a series of polarization components, so

P =
n

∑
i=1

Pi (4.24)

where

Pi =
εwi

1 + jωτi
E. (4.25)

The derivation of update equations now follows that given earlier

for a Debye medium with a single relaxation time. The differential

equation for each component polarization is given by

∂Pi

∂t
=

1
τi

[ε0εwiE− Pi]. (4.26)

The total polarization is the sum of the components as given in Equa-

tion 4.24. The alternative formulation is to expand Equation 4.22 into

a function with higher order time derivatives in E and P. Implement-

ing the higher order derivatives in the FDTD code requires storage of

the recent time history of E and P. This formulation requires all the

component polarizations, Pi to be stored, so it does not offer an im-

provement in computer storage. However, I believe it is conceptually

easier to understand.

Equation 4.24 can be converted to difference form, leading to an

update equation for Pi of

Pi
∣

∣

n+1/2

r,z
= pi,1Pi

∣

∣

n−1/2

r,z
+ pi,2E

∣

∣

n

r,z
(4.27)

where

pi,1 =
2τi −4t
2τi +4t

(4.28)

pi,2 =
24tε0εwi

2τi +4t
(4.29)
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Figure 4.3: A conventional Yee grid in 3D.

4.4 THE BODY OF REVOLUTION MODEL

As discussed earlier, RT lends itself to being modelled using a code

with BOR symmetry. The conventional FDTD model is derived on

a rectangular 2D or 3D interlaced grid, shown in Figure 4.3, and

is based on the differential form of Maxwell’s equations applied at

points in space.

The BOR model is based on applying the integral form of two of

Maxwell’s equations to patches that interlock in space. The surface

integral of the field normal to the patch is then calculated in terms

of the fields on the line integral around the patch. In each patch,

the field normal to the surface is assumed to be constant over the

whole patch and the fields along each side of the patch are assumed

to be constant along each side. The complete derivation of the update

equations is presented in Appendix A and follows the method presen-

ted in Jurgens and Saewert (1995). Total BOR symmetry is assumed,

equivalent to the single Fourier mode m = 0 in Jurgens and Saewert.

The way the cells interlink and the exact cell numbering and geo-

metry used are shown in Figure 4.4. In cylindrical geometry, TE and
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Figure 4.4: Spatial relationship of the field components for the

FDTD unit cell in cylindrical coordinates.

TM modes are separable. Since the electric dipole antenna excites

only Ez, only the TM mode is modelled simplifying the FDTD al-

gorithm from six components to three: Er, Ez and Hφ. The update

equations for the three components are

Ez
∣

∣

n+1

rr,z
= c1Ez

∣

∣

n

rr,z

+
n

∑
i=1

c2iPzi
∣

∣

n+1/2

i, j+1/2

+ c3
i + 1/2

i
Hφ

∣

∣

n+1/2

i+1/2, j+1/2

− c3
i− 1/2

i
Hφ

∣

∣

n+1/2

i−1/2, j+1/2
(4.30)

Er
∣

∣

n+1

i, j+1/2
= c1Er

∣

∣

n

i, j+1/2

+
n

∑
i=1

c2Pri
∣

∣

n+1/2

i, j+1/2

+ c4

(

Hφ

∣

∣

n+1/2

i+1/2, j+1/2
− Hφ

∣

∣

n+1/2

i+1/2, j−1/2

)

(4.31)

Hφ

∣

∣

n+1/2

i+1/2, j+1/2
= Hφ

∣

∣

n−1/2

i+1/2, j+1/2

+ m1

(

Ez
∣

∣

n

i+1, j+1/2
− Ez

∣

∣

n

i, j+1/2

)

− m2

(

Er
∣

∣

n

i+1/2, j+1
− Er

∣

∣

n

i+1/2, j

)

(4.32)
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where the coefficients are

c1 =
2ε∞ −4t ∑n

i=0
εwi
τi
−σ4t

2ε∞ +4t ∑n
i=0

εwi
τi

+σ4t
(4.33)

c2i =
24t/τi

2ε∞ +4t ∑n
i=0

εwi
τi

+σ4t
(4.34)

c3 =
24t/4r

2ε∞ +4t ∑n
i=0

εwi
τi

+σ4t
(4.35)

c4 =
24t/4z

2ε∞ +4t ∑n
i=1

εwi
τi

+σ4t
(4.36)

m1 =
4t

µ04r
(4.37)

m2 =
4t

µ04z
(4.38)

From the geometry illustrated in Figure 4.4, only one component

occurs on the axis of rotation, namely Ez. The update equation for

Ez on the axis is given by

Ez
∣

∣

0, j+1/2

n+1
= c1Ez

∣

∣

0, j+1/2

n+1

+
n

∑
i=1

c2iPzi
∣

∣

0, j+1/2

n+1/2
+ c5Hφ

∣

∣

1/2, j+1/2

n+1/2

(4.39)

where c1 and c2i are defined as above in equations 4.33 and 4.34 and

c5 =
84t/4r

2ε∞ −4t ∑n
i=0

εwi
τi
−σ4t

. (4.40)

4.5 ABSORBING BOUNDARY CONDITIONS

As the FDTD method is grid based, the computational space is finite

and limited to the grid. As discussed in in Chapter 3, if the problem

to be modelled is open, the grid has to be truncated in some way,

usually with an ABC. The quest for an ABC that produces negligible

reflections is one of the most active areas of FDTD research (Schlager

and Schneider, 1998). Most of the popular ABCs fall into two cat-

egories: ABCs employing a material absorber and ABCs derived from

differential equations.
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4.5.1 Material based ABCs

One way to truncate the computational domain is to place lossy ma-

terials at the edge of the domain, in an attempt to damp waves reach-

ing the boundary and reflections from the boundary. The method

is analogous to placing absorbing foam in front of the walls of an

anechoic chamber. However, real materials can only be impedance

matched to the rest of the computational space for normal incidence.

Bérenger (1994) advanced the cause of material based ABCs by

introducing the perfectly matched layer, or PML. He introduced a

split-field formulation of Maxwell’s equations, allowing boundaries

to absorb the components of waves normal to the boundary. The ma-

jor advantage of the PML method is that it is not affected by numer-

ical accuracy problems at higher orders, unlike differential-equation

based ABCs (Taflove, 1995).

Bérenger’s paper lead to a flood of interpretations, improvements

and design aids. Veihl and Mittra (1996) introduced a more efficient

formulation by combining some elements. Sullivan (1996) proposed

a different formulation by introducing fictitious conductivities asso-

ciated with H and D instead of H and E, but the formulation is more

computationally expensive. Chew and Weedon (1994) and Rappa-

port (1995) reported PMLs based on coordinate stretching, where the

field splitting occurs through an anisotropic stretching of the geo-

metry. Sacks et al. (1995) proposed an alternative anisotropic map-

ping, based on expressing the permittivity and conductivity of the

PML medium as complex diagonal tensors. Gedney (1996) exten-

ded the formulation and showed that it is more computationally effi-

cient than the Bérenger PML. Ziolkowski (1997b,a) showed how the

Bérenger PML is actually a passive lossy electrical and magnetic me-

dium with Debye dispersion characteristics. He then went on on to

propose a more general Maxwellian PML based on a time-derivative

Lorentz material, as did Zhao and Cangellaris (1996).

Liu and He (1998) showed that a true Bérenger PML is not reflec-

tionless at the boundary of a cylindrical FDTD computational space.

They proposed a quasi-PML. Teixeira and Chew (1997) described

a PML for cylindrical coordinates in terms of coordinate stretching.
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Shen and Chen (2000) go further and define a generalized system for

a cylindrical FDTD that includes a PML. However, their system is

essentially a combination of previous work synthesized into a single

algorithm. Several authors also reported adaptations of the PML to

dispersive or lossy dispersive media, including Uno et al. (1997).

Gedney (1998) is an excellent overall reference on PML methods.

He reviews the advances in the PML method, its application to lossy

dispersive media and to non-Cartesian grids.

In the model reported in this thesis, a PML ABC is not used be-

cause it is computationally more complex and costly than a one-way

wave equation PML. The extra performance it can deliver is not re-

quired because a traditional one-way wave equation ABC is sufficient

for modelling RT antennas.

4.5.2 Analytical ABCs

Traditionally, ABCs have been based on factoring the wave equation

into incoming and outgoing waves and allowing only outgoing waves

at the boundary. The traditional ABCs are usually local in the sense

that the field at a point on the boundary depends only on fields local

to that point. Taflove (1995) describes a series of four stages that oc-

curred in the development of analytical ABCs before the introduction

of the PML.

The Bayliss–Turkel annihilating operator

Bayliss and Turkel (Taflove, 1995) proposed an ABC based on the

expansion of the outward propagating solutions of the wave equa-

tion in spherical or cylindrical coordinates. The idea is to construct

a weighted sum of three partial derivatives of the field: 1) the partial

spatial derivative of the field in the direction of outgoing propaga-

tion, 2) the partial spatial derivative perpendicular to the direction of

outgoing propagation and 3) the time partial derivative. By careful

construction of the weighted sum, the operator “kills” or “annihil-

ates” the outgoing wave.
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The solution to the spherical wave equation

∂2U
∂t2 = c2∇2U (4.41)

can be expanded as a convergent series and simplified in the limit as

the radius, R →∞. If the partial derivative operator

L ≡ 1
c

∂
∂t

+
∂

∂R
(4.42)

is formed and applied to the convergent series emerging from Equa-

tion 4.41, it leads to

∂U
∂R

= −1
c

∂U
∂t

+ O(R−2). (4.43)

In principle, Equation 4.43 can be used to terminate the outer grid

boundary, if the remainder term is neglected. However the remainder

is not negligible, unless R is very large. Equation 4.42 is known

as the Sommerfeld radiation condition (Taflove, 1995). Bayliss and

Turkel sought to devise an operator similar to L with a remainder

term that diminished more rapidly to zero and proposed

B1 = L +
1
R

(4.44)

which leads to a remainder term of the order of R−3. Higher orders

can be derived recursively. Bn annihilates the first n terms of the

expansion of Equation 4.41.

The main problem with the Bayliss–Turkel operator is that it is

expressed naturally in spherical coordinates. In Cartesian space, the

boundary of the space is not at a constant distance R from the centre

of the grid, leading to azimuthal spatial derivatives outside the grid.

It is possible to create a Bayliss-Turkel annihilating operator for a

2D cylindrical geometry, but the geometry is 2D seen from above the

cylinder, where structures are constant in z, rather than the 2D BOR

symmetry being used here, where structures are constant in φ.

One-way wave equations

A partial differential equation that only permits wave propagation in

certain directions is called a one-way wave equation. It can be used to



64 THE RT FDTD MODEL

truncate the boundary of an FDTD grid. Consider a two-dimensional

wave equation in Cartesian coordinates:

∂2U
∂x2 +

∂2U
∂xy −

1
c2

∂2U
∂t2 = 0. (4.45)

It is possible to define a partial differential operator, so that

L ≡ ∂2

∂x2 +
∂2

∂y2 −
1
c2

∂2

∂t2 ≡ D2
x + D2

y −
1
c2 D2

t (4.46)

where Dx is the partial derivative with respect to x. The wave equa-

tion can then be compactly written as

LU = 0. (4.47)

The wave operator L can be factored as (Taflove, 1995)

LU = L+L−U = 0, (4.48)

where L− is defined as

L− ≡ Dx −
Dt

c

√

1− S2 (4.49)

where

S ≡ Dy

Dt/c
. (4.50)

Engquist and Majda (Taflove, 1995) showed that at the left grid

boundary, x = 0, the application of L− to the wave function absorbs

a plane wave propagating normally toward the boundary.

The problem with the one way wave equation method is the

square-root function in Equation 4.49. If the square root is expan-

ded as a Taylor series, a limited number of terms can be taken as an

accurate approximation and those terms can then be used to create a

differential equation suitable for use in a FDTD code. Mur (Taflove,

1995) created a scheme based on the Taylor series expansion, that be-

came very popular. Trefethen and Halpern (Taflove, 1995) proposed

a different scheme based on a polynomial expansion of the square

root. They showed that different choices of the polynomial lead to

perfect absorption for plane waves impinging on the boundary from

different angles α. The design process for a Trefethen–Halpern ABC

is not set up in terms of absorption angle.
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The theoretical performance of both the Mur and Trefethen–

Halpern ABCs can be improved by taking higher orders of the Taylor

series. However, in numerical experiments, the actual performance

typically converges to about 1% reflection (Taflove, 1995). The prob-

lem probably occurs because the formulations assume that waves

propagate in the grid at the speed of light in free space, c, but in

fact, numerical dispersion causes phase velocity variations of 0.1 to

1%.

Higdon (1986) took a different approach: rather than produce

an analytical ABC (Equation 4.49) and then create a finite-difference

form of the analytical ABC, he produced a finite-difference ABC dir-

ectly and then calculated its equivalence to an analytical boundary

condition. The ABC that resulted is different from those already

discussed because it is expressed both in terms of its order and in

terms of specific angles that are absorbed perfectly. For example, a

second order Higdon ABC can perfectly absorb energy impinging on

the outer boundary from two given angles.

The freedom to assign the angle for perfect absorption does im-

prove the ability of the modeller to specify an appropriate boundary.

Higdon (1987) also showed that the Higdon ABC is equivalent to the

Mur and Trefethen–Halpern ABCs for specific values of α. Higdon’s

differential annihilator is given by (Higdon, 1987)
(

p

∏
j=1

(

(cosα j)
∂
∂t
− c

∂
∂x

+ε j

)

)

u = 0. (4.51)

The discretization scheme for Equation 4.51 is given by (Gianno-

poulos, 1997)

p

∏
j=1

[
I− Z−1

4l
((1− b)I + bK−1) +

cosθ j

u
I−K−1

4t
((1− a)I + aZ−1)]U = 0

(4.52)

where I, K and Z are defined as

IU
∣

∣

n

i, j
= U

∣

∣

n

i, j
(4.53)

KU
∣

∣

n

i, j
= U

∣

∣

n+1

i, j
(4.54)

ZU
∣

∣

n

i, j
= U

∣

∣

n

i+1, j
(4.55)
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Figure 4.5: The stencils for the Mur and Higdon ABCs.

and the coefficients a and b are weighted space and time averages of

the space and time derivatives. Higdon examined some specific sets

of a and b, but the most popular and the one used in this thesis, is

the box scheme, a = 0.5 and b = 0.5. The first order Higdon ABC

applied at the boundary x = xmax = M of a 2D Cartesian mesh is

then

Ey
∣

∣

n

M, j
= Ey

∣

∣

n−1

M−1, j
+ h(Ey

∣

∣

n

M−1, j
− Ey

∣

∣

n−1

I, j
) (4.56)

where

h =
u4t− cos(θ)4l
u4t + cos(θ)4l

(4.57)

In Equations 4.52 and 4.57, θ is the angle of incidence for which

zero reflection is required. In the event that higher order boundaries

are applied, several values of θ j can be used to prevent reflections in

specific directions.

Higher order Higdon boundaries can be created by expressing

the Higdon operator in a matrix form and applying it iteratively, as

discussed in Randhawa (1996).

The Higdon ABC has a number of properties that make it ideal

for RT modelling:
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• Equation 4.56 is easy to apply, as are the higher order expressions of

Equation 4.56.

• The Higdon ABC only requires knowledge of field values perpendic-

ular to the boundary, as shown in Figure 4.5. The Mur ABC, requires

knowledge of fields in adjacent rows so it needs special treatment in

corner regions.

• The angle of total absorption can be specified for each point on the

boundary. If the source position is known, the ABC can be optimized

for each point on the boundary by calculating the expected angle of

incidence of the outgoing wave.

• The velocity is required to set up the Higdon ABC, but velocities other

than the velocity of light in free space can be used. Fortunately, low

loss rocks, as shown in Appendix B, have relatively constant velo-

cities as a function of frequency. In rocks with higher loss the per-

formance of the ABC is less important because reflections are highly

attenuated.

The Liao ABC

Liao et al. (1984) introduced an alternative formulation for an ABC

that is not based on a wave equation. In the Liao ABC, the value of the

field on the boundary is determined by using a space-time extrapola-

tion from known fields along the line perpendicular to the boundary.

The extrapolation is given by (Giannopoulos, 1997)

x− ut = constant. (4.58)

The Liao ABC is (Liao et al., 1984)

U
∣

∣

n+1

x
=

N

∑
m=1

(−1)m+1CN
m U
∣

∣

n−(m−1)

x−mαc4t
(4.59)

where the binomial coefficient, CN
m is

CN
m =

N!
(N −m)!m!

. (4.60)

Liao introduces a factor, cA, the artificial transmitting velocity, where

cA = αc. (4.61)
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Values for α can be between 0.5 and 2 (Liao et al., 1984). Note

that α here is not the angle of incidence, as it is in other ABCs. The

Liao method is a Newton backward-difference polynomial used to

extrapolate the field value on the boundary. If α can take any value

between 0.5 and 2, it makes sense to choose values of α that will

place x−mαc4t at known grid points. For meshes abiding by the

stability criterion, c4t = 4/2, then for α = 2, mαc4t = m4
which is on the standard FDTD mesh. The update equation for a

boundary point at x = xmax = M is then given by

U
∣

∣

n+1

X
=

N

∑
m=1

(−1)m+1CN
m U
∣

∣

n−(m−1)

M−m
. (4.62)

The Liao ABC has some advantages and some problems:

• The nature of the wave propagation is not referred to anywhere in the

derivation of the ABC. The method appears to be very robust and the

wide range of permissible values for α implies that a Liao boundary

will work within a model where propagation is dispersive.

• Like the Higdon and other earlier ABCs, higher order Liao boundar-

ies have better performance than lower order boundaries. However,

unlike the earlier ABCs, the performance of the Liao boundary does

increase for higher orders in real problems. This is probably because

the Liao ABC is robust and is not based on any assumptions about

velocity or angle of incidence of the outgoing waves (Taflove, 1995).

• The Liao ABC, like the Higdon ABC, uses a stencil of field values that

are perpendicular to the boundary, as shown in Figure 4.5.

• The Liao boundary is reported to be unstable when run on com-

puters using single-precision arithmetic(Taflove, 1995). Taflove cites

Moghaddam (1990) who explains this instability as a consequence of

a pole close to the unit circle. With an accumulation of error as a con-

sequence of single-precision arithmetic, the pole can be moved out of

the unit circle. The problem can be solved by using double precision

arithmetic. Moghaddam recommends subtracting an adiabatic loss

term of about 0.5% from each interpolation coefficient. Even with

the loss term, performance of a second order Liao boundary is still

better than second-order Mur.

The Liao ABC has been implemented in the RT model and can

be used as an alternative to the Higdon ABC. In practice, there is a
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problem with the Liao ABC, because of the limits on α: Parts of the

RT FDTD model sometimes require the time step to be made consid-

erably smaller than 4t = 4/
√

2 dictated by the Courant stability

criterion. The Liao ABC cannot then be adjusted to fit existing grid

values through judicious choice of α because α is restricted to values

between 0.5 and 2. For example, if 4t = 4/16 the Liao ABC can

become ineffective and may also be unstable.

Superabsorption and the complementary operators method

The final analytical ABCs discussed here use the concept of comple-

mentary solutions. The first of these is superabsorption, introduced

by Mei and Fang (Taflove, 1995). Any ABC introduces some error,

compared to the fields that would be calculated at the position of the

ABC if the computational area were infinite. However, with some

manipulation, the error can be substantially reduced.

Consider an outer grid boundary, xmax = M4 where the field

component EABC
z

∣

∣

n

M, j
has been calculated using some local ABC. The

error in the ABC is

Error1 = EABC
z

∣

∣

n

M, j
− E∞−grid

z
∣

∣

n

M, j
(4.63)

where E∞−grid
z

∣

∣

n

M, j
is the ideal FDTD solution that would be obtained

in an infinitely large grid. If Equation 4.63 is used to calculate the

adjacent magnetic field, that field will also have an associated error:

H(1)
y
∣

∣

n+1/2

M−1/2, j
= H(1)

y
∣

∣

n+1/2

M−1/2, j
+
4t

µ04
· Error1. (4.64)

We can obtain a second estimate for the adjacent magnetic field

by applying the same ABC used on the electric field to the magnetic

field, at the plane x = (M− 1/2)4:

HABC
y

∣

∣

n+1/2

M−1/2, j
≡ H(2)

y
∣

∣

n+1/2

M−1/2, j
= H∞−grid

y
∣

∣

n+1/2

M−1/2, j
+ Error2. (4.65)

The key observation is that Error1 and Error2 are not independ-

ent. By assuming an outward propagating wave, Mei and Fang re-

lated the two errors and used the relationship to cancel the error in

Hy
∣

∣

n+1/2

M−1/2, j
.



70 THE RT FDTD MODEL

Taflove (1995) concludes that superabsorption was well worth

applying before the PML was developed, but doubts that it will

achieve the overall performance of the PML.

The complementary operators method (COM) (Ramahi, 1997a)

is similar to superabsorption, except that instead of deriving two ex-

pressions for the same error, it strives to develop two ABCs with com-

plementary errors. Ramahi achieves this by using a Higdon ABC and

its derivative with respect to the direction of propagation, which has

the same reflection coefficient but is 180° out of phase.

Initially, the COM required two runs of the FDTD code, but it was

later improved to operate in a single run and also to remove second-

order reflections in both 2D and 3D models (Ramahi, 1997b, 1998).

Ramahi and Schneider (1998) show that the complementary COM can

outperform the PML for certain very difficult ABC problems.

Although the COM provides excellent performance, it is a costly

technique to implement; certainly of the same order as the PML for

ABCs with similar performance. It is not used for RT modelling be-

cause the additional performance is not required.

4.6 SOURCES

The nature of the source is determined by the type of problem being

modelled. For a receiving antenna, or a scattering problem, a wave

is introduced at the boundary of the numeric model and allowed to

propagate across the model. For a transmitting antenna, a voltage

wave can be introduced at the terminals of the antenna.

Yee (1966) provided the original plane wave source condition

by inserting E and H fields for a wave into the model as an initial

condition. If the H fields that are inserted are calculated offset by

half a time step from the E fields, then when modelling is started

the wave will continue to propagate in the desired direction and will

scatter off any structure in the grid.

There are two problems with inserting the incident wave as an

initial condition (Taflove, 1995): if long duration pulses are used,

the physical space required to contain them may be quite large; and

plane waves in 2D or 3D grids, at oblique angles to the grid, undergo
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wavefront distortion. For these reasons, the initial condition wave

source is usually applied only in specialized models, primarily 1D

FDTD simulations.

The simplest source to implement is the “hard source” (Taflove,

1995). The hard source is implemented by assigning a desired time

function to a specific electric or magnetic field component in the

FDTD space lattice. For example, if a wire antenna in the z direc-

tion is modelled as a series of cell boundaries where Ez = 0, then

a source voltage can be introduced at the feed point of the wire, by

setting the value of that electric field vector at each time step.

Many different voltage waveforms can be used. For single fre-

quency simulations, a sinusoidal source waveform may be appropri-

ate. However, since the FDTD method is inherently broadband, a

source waveform that contains a range of frequencies is more suited

to its abilities. The Gaussian is a common hard source pulse that

contains DC. Its general form is (Taflove, 1995),

Ez
∣

∣

n

is
= E0e−[(t−t0)/tdecay]2 . (4.66)

The pulse is centred at time step n0 and has a 1/e characteristic decay

of ndecay.

When designing an FDTD simulation, the source pulse is usually

specified in terms of the required bandwidth. If a Gaussian source

pulse is used, its bandwidth is simply the inverse of the width of the

pulse, measured at 50% of its maximum value. This width is called

the full width half maximum, or FWHM,

FWHM = 1/ fmax. (4.67)

The decay time used in the modelling code described in this

thesis is then

tdecay = FWHM/1.667. (4.68)

where fmax is the desired bandwidth, or in this case the desired max-

imum frequency. The factor 1.667 implies that the frequency re-

sponse will be 30 dB down from its maximum value at the specified

maximum frequency. The value of 30 dB is a compromise based on
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Figure 4.6: Monopolar and bipolar Gaussian source pulses, in the

time and frequency domain, with a bandwidth of 20 MHz.

the need to have as much energy as possible at the maximum fre-

quency, but as little energy as possible above it. In practice, the value

works well.

From Equation 4.66 Ez is not zero at time step n = 0. In order

to avoid truncation error when converting to the frequency domain,

the value of the pulse at time step n = 0 has to be small, so the pulse

centre needs to be delayed by some factor. The recommended value

is three times the pulse width (Taflove, 1995), so

n0 = 3FWHM. (4.69)

The value of the pulse at truncation depends on both the decay

time and the delay. From the values in Equations 4.68 and 4.69, the

pulse is truncated at e−25, or more than 217 dB down on the max-

imum amplitude of the pulse. This value is smaller than the dynamic

range available from typical implementations of single precision real

numbers (Kunz and Luebbers, 1993).

The complete expression of the monopolar Gaussian source pulse

used in the RT modelling code is

Ez
∣

∣

n

is
=

1
4z

e−[1.667 fmax(n4t−3/ fmax)]2 . (4.70)
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The amplitude of the electric field is fixed to a maximum of 1 V/m.

For modelling conductive materials, it is useful to use a source

pulse that has no energy at DC because the velocity of propagation of

a pulse, v is given by

v =
2

µε

[(

√

1 + σ2

ω2ε2 + 1
)]1/2

. (4.71)

If there is any conductivity at low frequencies, the term containing

the conductivity increases rapidly as ω → 0 leading to a decreas-

ing propagation velocity. In practice, a pulse develops a long tail

as it propagates across the modelling space. The pulse cannot be

transformed into the frequency domain until the tail has settled, so

modelling has to continue for a large number of steps. If the low

frequencies are removed from the source pulse, the tail settles more

quickly and modelling can be terminated after fewer steps.

The source pulse used in the RT modelling software is the time

derivative of Equation 4.70, scaled to have a peak amplitude of

1 V/m. In this thesis, it is called a bipolar Gaussian. It is defined

in the modelling code as

Ez
∣

∣

n

is
= −3.886 fmax

4z
(n4t− 3/ fmax)e−[1.667 fmax(n4t−3/ fmax)]2 .

(4.72)

The monopolar and bipolar Gaussian source waveforms are illus-

trated in Figure 4.6.

4.7 SUBCELL EXTENSIONS

Earlier, in the introduction to the FDTD method, I mentioned that

it is not possible to construct a grid of arbitrary size and suggested

that grids of between λ/10 and λ/20 offer acceptable results. In

fact, in order to model physically small features, the grid must be

sufficiently fine to resolve the features of interest, in addition to being

small compared to the wavelength. There is no point in using a 1.0 m

grid if the antenna being modelled is 0.5 m high, even if the grid can

resolve the wavelength being used.
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Figure 4.7: A slice through the rectangular FDTD grid at j− 1/2
plane showing the locations of field components. The shaded cells

are modified using the special cell update equations. From Maloney

and Smith (1992).

The need to reduce grid size to model fine features can be over-

come by introducing subcell extensions — modified update equations

in cells that contain features smaller than the grid size. Several exten-

sions have been introduced (Taflove, 1995), but two are of particular

interest to RT modelling: thin layers and thin wires. Antennas for use

in RT are always thin compared to the wavelength and may be coated

in a thin layer of insulation.

4.7.1 The thin layer

Maloney and Smith (1992) proposed a thin layer approximation for

layers thinner than a cell. The geometry is illustrated in Figure 4.7. In

cells containing the thin layer, the Ex component is divided into two,

a component within the layer, Ex,in and a component in the existing

cell, Ex,out. Maxwell’s equations in integral form are applied around
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the boundary of the cell to derive the update equations. Ex,in and

Ex,out are updated in the conventional way, as is Hx. At the Ez and

Ey field nodes the integration creates an effective conductivity and

permittivity equal to the average of those of the background and the

thin layer. The H fields tangential to the thin layer, Hy and Hz are

updated taking both Ex,in and Ex,out into account.

Maloney and Smith assume that the E field in the thin layer is

constant, which implies that the thickness of the thin layer is small

compared to the skin depth of material comprising the layer. Van

Den Berghe et al. (1998) model the thin layer including the skin

depth.

4.7.2 The thin wire

The earliest thin wire extension was accomplished by introducing the

current and charge on the wire as separate parameters into the FDTD

update equations, coupled to the fields around the wire (Holland and

Simpson, 1981). The approach is accurate but computationally com-

plex to apply (Douglas et al., 1999).

The general approach of using Maxwell’s equations in integ-

ral form can incorporate near field physics to yield special purpose

time stepping expressions that are not obvious from the pure finite-

difference perspective (Taflove, 1995). A good example is the thin-

wire subcell extension introduced in Umashankar et al. (1987). The

geometry of the thin-wire subcell is shown in Figure 4.8. The ap-

proximation is based on the near field assumptions that the circum-

ferential magnetic field and the radial electric field vary as 1/r near

the wire, where r is the distance from the centre of the wire. In 3D

rectangular coordinates,

Ex(r) =
4
2r

Ex(4/2), (4.73)

Hy(r) =
4
2r

Hy(4/2). (4.74)

There is no variation of any of the other properties across the cell.

There is also no variation in Ex and Hy as z varies across one cell.

Faraday’s law can now be applied around contour C. The 1/x vari-

ations yield natural logarithms. The following expression relates the
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Figure 4.8: Faraday’s law contour path for a thin wire model. From

Umashankar et al. (1987)

two components:

Hy
∣

∣

n+1/2

4/2,z0
− Hy

∣

∣

n−1/2

4/2,z0

4t

'
Ex
∣

∣

n

4/2,z0−4/2
− Ex

∣

∣

n

4/2,z0+4/2
· 1

2 ln
(

4
r0

)

+ Ez
∣

∣

n

4,z0

µ0
4
2 ln

(

4
r0

) . (4.75)

In Equation 4.75, r0 is the wire radius, and it is assumed to be less

than half the cell size, 4. Isolating Hy
∣

∣

n+1/2

4/2,z0
on the left hand side,

yields the required modified time stepping relation. The equation can

be generalized to obtain time stepping relations for the other circum-

ferential magnetic field components adjacent to the wire. Note that

no other update equations need to be modified to use the thin-wire

subcell extension.

The methods of Umashankar et al. (1987) or Holland and Simpson
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Figure 4.9: The Faraday’s law contour path for a generalized thin

wire model, including a lossy dispersive coating.

(1981) improve the performance of thin wires in free space by modi-

fying the circumferential magnetic fields adjacent to the conductor.

The FDTD assumption of constant fields across each cell is also inac-

curate in the volume at the end of the antenna. Douglas et al. (1999)

assume a particular charge density distribution at the end of the an-

tenna to revise the update equations for the axial electric field from

the end of the antenna and the circumferential magnetic field sur-

rounding it. They claim improvement in accuracy particularly in de-

termining the input impedance.

4.7.3 The coated thin wire

The thin-wire and the thin layer subcell extensions are useful addi-

tions to the FDTD technique. To model an RT antenna, a subcell ex-

tension is required that can model a thin wire coated with a thin layer
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and do so accurately when the coated wire is enclosed in a dispersive

lossy medium. Boonzaaier and Pistorius (1992) reported a thin-wire

subcell extension for wires coated with non-dispersive dielectrics.

They developed the technique further to incorporate lossy coatings,

but neither the coating nor the medium can be dispersive (Boonzaaier

and Pistorius, 1994).

A novel coated thin-wire subcell extension has been developed

specifically for RT and its derivation is now presented. It incorpor-

ates both the thin-wire and thin layer techniques discussed above.

The combination is simplified because both of those techniques are

derived from the integral form of Maxwell’s equations, applied to the

boundaries of the cell. The cell geometry is defined in Figure 4.9. As

the subcell extension is designed to fit into the BOR FDTD code, it is

expressed in the coordinate system of that code.

The radial E field at the surface of the antenna is split into two:

Erin within the insulation and Ero outside the insulation. Both the

radial E field and the circumferential H field are assumed to vary as

1/r, according to the quasi-static approximation:

Erin
∣

∣

n

r, j
= Erin

∣

∣

n

(ra+r0)/2, j

ra + r0

2r
, (4.76)

Ero
∣

∣

n

r, j
= Ero

∣

∣

n

1/2, j

4r
2r

, (4.77)

Hφ

∣

∣

n

r, j
= Hφ

∣

∣

n

1/2, j

4r
2r

. (4.78)

Note that in each case, the position of the vector has the continuous

index r, rather than the discrete index i.
I modelled this geometry in two ways. The first is described in

Vogt et al. (1999) and relies on continuity of the electric flux dens-

ity across the boundary between the insulation and the surrounding

medium,

Dri
∣

∣

r−0 , j
= Dro

∣

∣

r+0 , j
(4.79)

where

Dr = ε∞Er + Pr. (4.80)
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Figure 4.10: One process for deriving the subcell extension of a

coated thin wire.

The Hφ component can be determined by applying Faraday’s law

around the boundary of the cell illustrated in Figure 4.9, but Ero and

Erin are required to perform the necessary integrations.

Following Vogt et al. (1999), Ero and Pro are known, because

they are available from the FDTD grid. Dro follows from Ero, by

equation 4.80. From the 1/r dependence, Dro
∣

∣

r+0 , j
just outside the

boundary of the insulation can be determined. By continuity Drin
∣

∣

r−0 , j

follows. Erin at the boundary can be determined by applying equa-

tion 4.80 again. Both the Er vectors are now known so E fields can be

integrated around the contour. The process is illustrated graphically

in Figure 4.10. Prin has to be determined and stored between steps to

update Erin.

The method works well if the two materials do not have large

polarization contributions. It has been verified in Vogt et al. (1999).

However, when the polarization contributions are large, the time off-

set between Prin and Pro leads to inaccuracies. A different, simpler

extension is now proposed:

To determine Erin just inside the insulation/background bound-

ary, make use of the fact that Hφ varies as 1/r in the radial direction

and does not vary over the cell in the z direction. Calculate the value

of Hφ at the desired radius by

Hφ

∣

∣

n

ra , j
= Hφ

∣

∣

n

1/2, j

4r
2ra

. (4.81)
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Use the new value of Hφ to update Erin. Ero is updated normally as

part of the FDTD algorithm. Hφ can now be updated using the two

values from Erin and Ero. The update for Erin follows that given in

equation 4.32 for Er, altered to take account of equation 4.81,

Erin
∣

∣

n+1

ra , j+1/2
= c1Erin

∣

∣

n

ra , j+1/2

+
n

∑
i=1

c2iPrin
∣

∣

n+1/2

ra , j+1/2

+ c4
4r
2ra

(

Hφ

∣

∣

n+1/2

1/2, j+1/2
− Hφ

∣

∣

n+1/2

1/2, j−1/2

)

(4.82)

where the coefficients c1, c2i and c4 are as before (Equations 4.33,

4.34 and 4.36), except that they are calculated using the electrical

properties of the insulation rather than those of the surrounding me-

dium.

The update equation for Ero does not change, it is simply that for

Er
∣

∣

1/2, j
. The update equation for Hφ can be derived by integrating

Faraday’s law,

∮

C
E · dl = − ∂

∂t

∫∫

S
B · dS (4.83)

around the contour shown in Figure 4.9 giving

−µ0
∂
∂t

4r
∫

r0

j+1
∫

j

Hφ

∣

∣

1/2, j+1/2

4r
2r

∂z∂r

=

j+1
∫

j

Ez
∣

∣

0, j+1/2
dz +

j
∫

j+1

Ez
∣

∣

1, j+1/2
dz

+

ra
∫

r0

Erin
∣

∣

j+1

ra

r
dr +

r0
∫

ra

Erin
∣

∣

j

ra

r
dr

+

4r
∫

ra

Er
∣

∣

1/2, j+1

4r
2r

dr +

ra
∫

4r

Er
∣

∣

1/2, j

4r
2r

dr.

(4.84)
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Evaluating the integrals,

−µ04z
4r
2

ln
[4r

r0

]

∂
∂t

Hφ

∣

∣

1/2, j+1/2

= −4zEz
∣

∣

1, j+1/2

+ ra ln
[

ra

r0

]

(

Erin
∣

∣

j+1
− Erin

∣

∣

j

)

+
4r
2

ln
[4r

ra

]

(

Er
∣

∣

1/2, j+1
− Er

∣

∣

1/2, j

)

(4.85)

which leads directly to the update equation

Hφ

∣

∣

n+1/2

1/2, j+1/2
=Hφ

∣

∣

n−1/2

1/2, j+1/2

+ m3 Ez
∣

∣

n

1, j+1/2

+ m4

(

Er
∣

∣

n

1/2, j
− Er

∣

∣

n

1/2, j+1

)

+ m5

(

Erin
∣

∣

n

j
− Erin

∣

∣

n

j+1

)

(4.86)

where

m3 =
24t

µ04r ln
[

4r
r0

] , (4.87)

m4 =
4t ln

[

4r
ra

]

µ04z ln
[

4r
r0

] , (4.88)

m5 =
2ra4t ln

[

ra
r0

]

µ04z4r ln
[

4r
r0

] . (4.89)

If there is no insulation, then ra = r0, ln(ra/r0) = 0, and equations

4.86–4.89 simplify to those given in Umashankar et al. (1987).

This second formulation for a coated thin wire has been tested

for materials with large polarization. Verification is presented later in

this chapter.

4.8 STABILITY

The generalized Courant stability criterion for a lossless homogen-

ous FDTD grid determines the largest time step that can be used be-

fore the grid is guaranteed to be unstable. The stability criterion



82 THE RT FDTD MODEL

implies that the time step must be less than the time it takes a wave

propagating in the grid to cross a grid cell. For a 2D FDTD grid, if

4x = 4y = 4, then the time step is given by

4t ≤ 4
c
√

2
. (4.90)

However, the general problem of stability in an FDTD model ex-

tends beyond the grid itself. The absorbing boundaries contribute to

the problem of stability, as does the use of lossy dispersive media

in the grid. The BOR algorithm itself also introduces stability prob-

lems (Taflove, 1995). In general, a properly chosen time step allows

models to be stable for many thousands of steps, if not indefinitely

(Taflove, 1995), but very small time steps lead to very long run times.

4.8.1 The BOR algorithm

Taflove (1995), gives an empirical stability criterion for a BOR FDTD

code:

4t ≤ 4x/
√

2c (4.91)

but also notes “It has been observed that the stability of the algorithm

is very sensitive to the way the field components near the axis are

computed”.

4.8.2 Absorbing boundary conditions

Giannopoulos (1997) investigated ABCs for lossy media in both FDTD

and TLM and discussed their stability. At zero frequency, both the

Higdon and Liao ABCs have a marginally stable pole located on the

unit circle |R| = 1 irrespective of the angle of incidence. Instabilit-

ies arise from the unavoidable use of finite precision arithmetic in the

numerical algorithms.

One way to make the ABCs stable is to include loss into their

formulation. Higdon (1987) recommends the addition of a small loss

term. As discussed in Section 4.5.2, the Liao ABC can be made stable

by using double precision arithmetic, or by adding a small loss term.

Both ABCs that can be used with the RT modelling code are stable

when the model itself is stable.
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Table 4.1: The Debye model of a dolomite sample.

σ0 = 0 ε∞ = 10.15

εw1 = 0.34 τ1 = 7.3× 10−12

εw2 = 0.37 τ2 = 2.20× 10−9

εw3 = 0.27 τ3 = 1.88× 10−8

εw4 = 0.35 τ4 = 1.51× 10−7

εw5 = 0.34 τ5 = 5.11× 10−12

εw6 = 0.34 τ6 = 0.0027
εw7 = 0.34 τ7 = 0.139

4.8.3 Lossy media

Pereda et al. (1998) show that the time–average scheme used in this

thesis has the same stability criterion as the standard FDTD algorithm

for lossless media, 4t ≤ 4/
√

2 for a 2D model. They point out

that the time–forward scheme allows larger time steps to be used at

the cost of increased dispersion. They recommend remaining with

time–average, while Schuster et al. (2000) recommend time–forward.

Computer run time has not been a major problem with the RT FDTD

code, so at the moment it remains a time–average code.

4.8.4 Dispersive media

When the FDTD model contains Debye media, the smallest time step

must obey the Courant criterion, but it must also resolve the smal-

lest relaxation time of the medium (Petropoulos, 1994a,b). This is

confirmed here by numerical experiment:

A particular dolomite sample can be approximated by a seven

term Debye medium with the electrical properties listed in Table 4.1.

A bare 0.7 m long monopole, 2 mm in diameter is modelled im-

mersed in a dolomite medium and modelled from DC to 50 MHz.

The modelling space is 50× 50 cells, with each cell 0.1× 0.1 m in

size. The highest velocity in the model leads to a Courant time step

of 0.54 ns. If the model is run including all seven terms of the Debye

model, it is unstable and requires the time step to be reduced to 1/8th

of its original value.
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The only relaxation time faster than 0.54 ns is the first, at 7.3 ps.

If that term is removed from the Debye medium, the model runs

without reducing the time step size. It also runs without instabil-

ity if the 2 mm diameter antenna is insulated with 20 mm of PTFE

insulation. It is reasonable to remove Debye terms with relaxation

times smaller than the FDTD time step because they only influence

the permittivity of the material at frequencies outside the bandwidth

of the model.

4.8.5 Subcell extensions

Douglas et al. (1999) discuss the stability of their thin-wire subcell

extension and propose an experimentally determined stability coeffi-

cient, Smax. Their stability coefficient is proportional to ln(r0), the

log of the radius of the wire being modelled, but also contains other

factors.

Grando et al. (1993) offer a stability analysis for an alternative

thin-wire formulation, based on an introduction of in-cell induct-

ance. Their calculations show that for wires with a radius of less

than 0.06× the cell radius, the system should be stable if it abides by

the general FDTD stability criteria. For wires of larger radius, they

propose an alternative stability criterion. However, their stability cri-

terion is specific to their thin-wire model and does not apply to the

thin-wire model reported here.

4.8.6 The general problem

The basic Courant stability criterion, modifications necessary for the

ABC, and modifications for dispersive media all lead to a figure for

the largest time step before the grid is guaranteed to be unstable.

Under certain circumstances, models with time step sizes set by the

criterion and its modifications may still be unstable, because it is

difficult to determine the stability of algorithms such as the coated

thin wire subcell extension.

In general, the stability criteria give a guideline as to what time

step size can be expected to work, but exact values for 4t may need
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to be determined empirically.

4.9 MODEL VERIFICATION

4.9.1 Introduction

The FDTD model presented here can only be accepted as an accurate

model of the physical processes after it has been verified. The ulti-

mate verification is comparison against a real antenna in a real rock

situation. Unfortunately, rock is not homogeneous, so it is not pos-

sible to build a realistic test site at full scale with a volume of rock

suitable for testing against.

Another option for testing is to compare the numerical model

against a scale model (Smith and Scott, 1989). The scale model is

a real physical environment, so it can be used to verify that aspects

of the numerical model accurately reflect the real situation. I have

tested the numerical model against a model that is physically small,

but a reasonable electrical size compared to the wavelength used. It

is not a scale model, but rather a manageably sized physical model.

The alternative to scale model testing, is to test numerically,

against analytical solutions or against alternative computational mod-

els. It is difficult to test against analytical solutions, because closed

form solutions are not available for most problems of antennas in

rock. Also, there are not many numerical codes that can model thin

wire antennas with a thin layer of insulation, buried in rock, but it is

possible to compare simpler cases and confirm that the FDTD model

accurately represents those cases.

Here, the model will be verified in stages. In the first stage, it

will be compared with an alternative numerical model for thin wire

antennas. The second stage will confirm the dispersive media model

by comparing a single run of a model using Debye dispersion to sev-

eral runs of various models using fixed values of σe and εe . In the

third stage, the thin-layer subcell extension will be modelled within

the FDTD model by comparing it to a thin layer modelled using a very

fine grid. The comparison will confirm that the thin-layer subcell ex-

tension is functioning correctly. Finally, the model will be compared
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with an experimental scale model using salt water at frequencies of

up to 450 MHz to confirm that the whole system is working and can

model real antennas.

4.9.2 Verification against a moment method code

A 6.4 m dipole in air is modelled using the FDTD code and the Nu-

merical Electromagnetics Code, NEC , a well known moment method

code considered to be a benchmark standard. The FDTD antenna is

modelled as a dipole. The modelling space is 120×240 cells, each

0.4 m×0.4 m. The antenna is 15 segments long fed in the centre. The

model uses second order Higdon ABCs and is run for 16384 steps

each of 0.67 ns. The FDTD model is stimulated with a bipolar Gaus-

sian pulse, containing frequency components of up to 50 MHz.

The NEC antenna is 6.4 m long. This is to account for the fact that

FDTD creates an antenna that is effectively 1 segment longer than the

modelled length, unless some correction for the end of the wire is

applied (Douglas et al., 1999). The NEC model is run for frequencies

from 1 MHz to 51 MHz in 0.5 MHz steps. Fields at 40 m are extracted

using the NEC near field card.

The models are run twice, once for antennas 44 mm in diameter,

and once for antennas 2 mm in diameter. All the antennas have no

insulation and are in air. Field strength is measured 40 m away from

the feed point of the antenna in the direction normal to the antenna

axis.

The field strengths predicted by both models at 40 m are plotted

in Figure 4.11. The match is so close that the plots of one technique

obscure those of the other. The input impedance predictions are also

good, as shown in Figure 4.12. If the antenna is reduced from 44 m

to 2 mm in diameter there is a small change in the bandwidth of the

antenna, shown in Figure 4.11, but a marked change in the input im-

pedance, shown in Figure 4.12.

This first stage of verifying the FDTD code confirms that it is

capable of modelling an antenna in air and suggests that the thin-

wire subcell extension is working. The verification implies that the

BOR model, source model and ABCs are working correctly.
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Figure 4.11: NEC vs FDTD: |Ez| fields at 40 m.

Figure 4.12: Input impedance calculated by NEC and FDTD.

4.9.3 Verifying the Debye model

The implementation of the Debye model in the FDTD code is verified

by first running a single model including the Debye estimate for a

material. Then a series of models are run, using different fixed elec-

trical properties, corresponding to the electrical properties predicted

by the Debye model for various frequencies.

The antenna that is modelled here for verification is a 3.4 m long

44 mm diameter bare monopole on a ground plane, embedded in a

dolerite background. The dolerite was chosen because its Debye

model is fourth order. The electrical properties of the sample are
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Figure 4.13: A comparison of field predictions for Debye and fixed

material models.

Figure 4.14: A comparison of input impedance predictions for

Debye and fixed material models.

illustrated in Appendix B. The model consists of 120×120 cells,

each 0.4 m square. It is run for 32768 steps of 3.65 ns. The electric

field is monitored 40 m away from the antenna immediately above

the ground plane. Second order Higdon ABCs are used to terminate

the model on the two open sides. A bipolar Guassian source pulse is

used, with a bandwidth up to 10 MHz.

From the Debye model, the estimated conductivities and per-

mittivities are extracted at approximately 0.5 MHz intervals, from

0.5 MHz to 10 MHz. The exact frequencies are a product of the time

step size and the number of steps. Rather than fix the time step size,
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Table 4.2: Parameters used in small cell and large cell models.

Small cell model Large cell model

(subcell extension)

Cell size 0.025 m 0.25 m

Modelling space 500 × 500 60 × 60

Steps 32768 8192

Time step 0.06 ns 0.6 ns

Frequency resolution 505 kHz 202 kHz

Observation point to 20 cells 12 cells

rmax boundary

Machine Pentium III, Pentium,

750 MHz 166 MHz

Run time 11639 s 222 s

the recommended time step for stability has been used and the fre-

quencies chosen for plotting have been calculated accordingly.

A model is then run for each fixed set of electrical properties and

the response at the chosen frequency is extracted. The model runs

with a fixed material are done using the same time step and number

of steps as the full Debye model, so that the response is available at

exactly the same frequency as the response in the full Debye model.

The results are presented in Figures 4.13 and 4.14. Correspond-

ence in the field at 40 m from the antenna between the Debye model

and the discrete models becomes poorer at higher frequencies. This

is caused by imperfect ABCs, because the correspondence is better

closer to the antenna. In general the comparison between the single

Debye model run and the twenty discrete runs is good, confirming

that the implementation of Debye materials within the FDTD model

is working.

4.9.4 Verifying the thin-layer subcell extension

The thin-layer subcell extension is verified by comparing it to a

model consisting of finer cells. The antenna that is modelled is a

3.25 m long monopole, operating from 1–30 MHz. Fields are ob-

served 12 m away from the antenna immediately above the ground
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plane. The antenna is 2 mm in diameter and is surrounded by 24 mm

of insulation.

Parameters for the two models are listed in Table 4.2. The cells

in the small cell model are 1/10th of the size of those in the subcell

model. In order to reduce the computation time, the run time of the

small cell model is not 10× that of the large cell model. Acceptable

results were achieved within 32768 steps. Both models use second

order Higdon ABCs on the two open sides of the model.

The execution times listed in Table 4.2 should be regarded as

guidelines, as both machines are time-shared, although the models

ran with highest priority in both cases. The small cell model is ex-

pected to take 278 times as long to run as the large cell model.

The results are illustrated in Figure 4.15 for the antenna embed-

ded in peridotite. Correspondence between the two models is fair.

The small cell model results are not as smooth as those for the large

cell, because the small model was not run for the correctly scaled

number of time steps. As a result, the frequency resolution is not as

good in the small cell model.

Inaccuracies in the comparison come about because the fine cell

model is not equivalent to the large cell model with the subcell ex-

tension. In the large cell model, Er and Hφ are assumed to vary as

1/r from the antenna out to 0.25 m. In the fine cell model they only

vary as 1/r out to 0.025 m. The insulation thickness is comparable

between the two models, but fields outside the insulation are slightly

different, and that difference is apparent in the comparison.

If the same set of comparisons are generated for the antenna em-

bedded in granite the correspondence between the fine cell model and

the large cell model with the subcell extension is closer Figure 4.16.

The lower loss tangent of the granite reduces the extent of the dif-

ferences caused by the implementation of the quasi-static approxim-

ation.

Even in the peridotite, the difference in field strength between the

two models is 6 dB at worst. Considering the method of comparison,

the thin-wire, thin-layer subcell method is working correctly.
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Figure 4.15: Comparison of the thin subcell extension and a model

consisting of small cells embedded in peridotite.
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Figure 4.16: The same comparison as that shown in Figure 4.15 for

an antenna embedded in granite.
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Figure 4.17: The configuration of the physical model.

4.9.5 Experimental verification

Modelling philosophy

The physical model described here is meant to confirm that the FDTD

model works correctly. In particular, it is meant to verify the thin-

wire, thin-layer subcell extension. However, it is not a scale model

of a real RT situation. It includes the elements that are to be mod-

elled, but no attempt is made to scale the elements in every respect,

compared to an HF antenna in rock.

Physical model description

The physical model is illustrated in Figure 4.17. It consists of a thin

wire monopole that is mounted pointing vertically downward from a

ground plane, into a tank of water. The tank is approximately 300 mm

wide, 450 mm long and 300 mm deep. The ground plane covers the

top of the tank. The monopole is 50 mm long and 0.5 mm in diameter.

Two monopoles have been constructed: one is a bare wire, the other

is a wire coated with 0.5 mm of PTFE insulation. Only one antenna is

used in a particular model, then comparisons are drawn between the

two antennas.

Five electric field sensors are mounted in a line running away

from the monopole at 50 mm intervals. The electric field sensors are
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SMA connectors, with their central pins and surrounding insulation

cut to protrude 1.6 mm below the ground plane. The ground plane

itself is a brass plate, 2 mm thick.

Experiments were originally undertaken using a double sided

printed circuit board (PCB) instead of a brass plate for the ground

plane. Although PCB can make a good ground plane, in this case

propagation between the two layers of the board severely comprom-

ised the measurements. Even the small amount of propagation that

can occur between the two layers of the PCB is large by comparison

to the small signal propagating through the water.

The tank is filled with salt water. From King and Smith (1981),

the electrical properties of saline solutions are easy to approximate

for low values of salinity. The complex permittivity is given by a

Debye equation with εrs = 80.4, εr∞ = 5.5 and a relaxation time

of τ = 9.5 × 10−12, at 20◦ C. The effective permittivity is then

estimated as

σe = σ0 + ωε′′ (4.92)

where σ0 is the DC conductivity.

The aim of the experiment is to determine the difference in field

strength at each field measurement point for the case of the bare

antenna compared to the insulated antenna. Because the system is

identical for both measurements, it is not necessary to have abso-

lute calibration of the field measurement system. The E-field probes

have very low gain so the experiment cannot be run with high values

of conductivity. In practice, two experiments were undertaken, with

conductivities of 1 S/m and 2 S/m.

Ideally, the experiment would be conducted in an environment

where reflections from the walls of the vessel could be eliminated.

In practice, the reflections were substantially attenuated because of

the high conductivity of the water. The numerical model was also

run with and without absorbing boundaries and there was no notable

difference between the two sets of results.

Measurements on the physical model were undertaken with an

HP8753A network analyser. S21 measurements were taken and cor-

rected for input reflection coefficient, giving a relative field strength
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Figure 4.18: Field fall off observed at five observation points in a

1 S/m salt water medium.

Figure 4.19: Field fall off computed at five observation points in a

1 S/m salt water medium.

at each measurement point. The results for water with a conductivity

of 1S/m, at each of the measurement points are shown in Figure 4.18.

The data is presented as a set of ten graphs, two for each field obser-

vation point. The first measurement is for the bare monopole and the

second is for the insulated monopole.

When the numerical data is presented in a similar form to the

measured data, in Figure 4.19, the correspondence is visible. The

numerical model does not simulate field observation antennas; it

measures the field strength directly. The field observation antennas
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Figure 4.20: Comparison between the differences measured and

those computed at each of the five observation points in a 1 S/m salt

water medium.

in the physical model are relatively insensitive, so the absolute field

strengths in the two graphs are different.

At each observation point, the difference between the fields ra-

diated by the bare antenna and those radiated by the insulated an-

tenna can be measured. If those measurements are plotted on a single

graph, all the difference plots have a very similar shape. The result

is to be expected, as antenna effects are unlikely to vary markedly as

a function of distance. In Figure 4.20 there is good correspondence

between the group of differences measured from the physical model

and the group of differences predicted by the numerical model. Only

results from the first four field measurement points are plotted, be-

cause the signal from the fifth was below the noise floor.

If the water salinity is increased to 2 S/m, the results for measured

and modelled differences are as shown in Figure 4.21. Only the fields

from the first three field measurement points are plotted, as the high

water conductivity in the experimental model results in very little

energy reaching the more distant field probes. Signal strength at the

fourth and fifth probes is below the noise floor and even the third

probe shows some noise. Again, correspondence between measured

and computed fields is good.
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Figure 4.21: Comparison between the differences measured and

those computed at each of the five observation points in a 2 S/m salt

water medium.

4.10 CONCLUSION

In this chapter, a FDTD code that is suitable for modelling RT sys-

tems has been developed and verified. The code uses BOR symmetry

because an RT antenna is rotationally symmetrical. The BOR model

can produce a 3D result in the time of a 2D computation, although it

cannot model geometries that are not symmetrical. The shorter run

time of a 2D is desired because it is hoped to use the model even-

tually as part of an iterative inversion process. During inversion the

model will be run many times, and a short run time is essential.

The frequency dependant electrical properties of the rock are

modelled by a Debye equation with multiple relaxation times. Each

relaxation time corresponds to a separate component of the polariza-

tion vector and is implemented using a separate auxiliary differential

equation.

The FDTD computational space is terminated using either Higdon

or Liao ABCs. Boundaries with higher performance were considered,

but the computational cost is not warranted because the conductive

rock attenuates any unwanted reflections. The antenna is fed directly

by a hard source.

RT antennas are electric dipoles that may have a thin layer of in-

sulation. To efficiently model the fine structure of an RT antenna, the
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published thin-wire and thin-layer subcell extensions have been com-

bined in a novel thin-wire, thin-layer subcell extension. The subcell

extension allows both the insulation layer and the surrounding rock

to be modelled as Debye materials.

The code has been verified using a variety of numerical com-

parisons, and has been compared against a physical scale model. In

every case, the results from the FDTD model are in good agreement

with alternative numerical codes or approaches and are also in good

agreement with comparison to a physical model.



5
Antenna modelling and design

In the previous chapter, the FDTD code used to model RT antennas

was described in detail. In this chapter the code is used to investigate

how RT antennas perform in various environments. The definitions

of input impedance, gain and directivity as they apply to lossy me-

dia are reviewed. The techniques used for extracting performance

figures from the FDTD model results are also discussed. The BOR

FDTD model can only be used to model transmit antennas. To model

receive antennas, plane waves are required, and plane waves violate

BOR symmetry. Can the performance figures from the BOR model be

applied to receive antennas? A comparison with a 3D FDTD model

shows that they can.

The performance of bare antennas is examined in detail to illus-

trate the importance of electrical length. The performance of insu-

lated antennas is then discussed to show how insulation isolates the

antenna from its environment.

Insulated antennas are physically longer than bare antennas that

are resonant at the same frequency, because the relative permittivity

of insulation is typically between 2 and 3, whereas the permittivity of

rock is usually greater than 9. Modelling shows how longer antennas

affect tomographic imaging. The compromise of insulation against

length and practicality is incorporated into a proposal for a new RT

antenna. That proposal is used as the basis for a novel receiver probe,

to replace the existing probe on the Miningtek Pluto-6 RT system.

99
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Figure 5.1: Measuring impedance in the FDTD code.

The design of the new receiver probe is a natural outcome of the

modelling earlier in the chapter.

5.1 BASIC ANTENNA PARAMETERS

5.1.1 Antenna impedance

The impedance of an antenna is a very useful measurement to a sys-

tem designer, because it defines the interface between the antenna

and the equipment connected to it. The impedance of the antenna in

the RT FDTD code is extracted by measuring the E field across the

driven element of the antenna and the H field adjacent to it. The

locations of the specific vectors are shown in Figure 5.1.

The voltage across the antenna is defined by the hard source,

where

V
∣

∣

n
= 4zEz

∣

∣

n

0, j
. (5.1)

The current flowing in the source can be determined by using Faraday’s

law and is

I
∣

∣

n+1/2
= 2π

4r
2

Hφ

∣

∣

n+1/2

1/2, j
. (5.2)

Note that the current is determined half a time step later than the

voltage and 4r/2 away from the position where the voltage is de-

termined. In a rectangular grid, the spatial offset can be compensated
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Figure 5.2: Input impedance of a bare monopole in granite.

for by averaging currents on either side of the voltage (Fang and Xeu,

1995). In a grid with BOR symmetry, averaging is not necessary be-

cause the magnetic field around the axis is assumed to be uniform

and equal to the value at 4r/2.

The offset in time is corrected by averaging currents half a time

step before and after the voltage value:

I
∣

∣

n
= 2π

4r
2

Hφ

∣

∣

n−1/2

1/2, j
+ Hφ

∣

∣

n+1/2

1/2, j

2
. (5.3)

In the BOR FDTD code the average is taken in the time domain, rather

than in the frequency domain as suggested by Fang and Xeu (1995).

Although the time offset is small, if it is not accounted for it can lead

to a non-physical input impedance, with a negative real part. After

correcting for the time offset, the input impedance in the time domain

is

Z
∣

∣

n
=

V
∣

∣

n

I
∣

∣

n , (5.4)

which is converted to the frequency domain by using a Fast Fourier

Transform.

FDTD codes can generally model input impedance accurately,

(Maloney et al., 1990). However, over the very broad band from DC

to triple the operating frequency of an RT antenna, some inaccuracies

can be expected. A typical antenna impedance spiral is shown in

Figure 5.2, which is similar in form to those reported in King and
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Smith (1981, p. 478). The antenna is a monopole, embedded in

granite, which has a loss tangent of 0.06. Imaginary impedance is

large and negative at low frequencies, rises to zero continues to rise

to a maximum between the first resonance at approximately h/λ =

0.25 and the first anti-resonance at h/λ = 0.5. The real part of the

impedance rises with frequency up to the anti-resonance then falls.

The behaviour of the real part of the impedance at very low fre-

quencies is interesting, because it differs from that of an antenna in

free space. In Figure 5.2 the real part of the antenna impedance is

increasing as frequency approaches zero: R → RDC as h/λ → 0,

where RDC is the DC value of the input impedance. This low fre-

quency behaviour only becomes apparent as the surrounding medium

becomes lossy, otherwise RDC = 0.

5.1.2 Gain

Possibly the most useful measurement of the performance of an RT

antenna is its gain. Gain is normally defined as the ratio of radiation

intensity in a particular direction to the uniform radiation intensity

that would exist if the total power supplied to the antenna were radi-

ated isotropically (Ramo et al., 1993):

G =
K(θ,φ)

Pt/4π
(5.5)

where K is the radiation intensity and Pt is the power transmitted by

the antenna.

For antennas embedded in rock, radiation intensity is not a good

measure of performance, because the radiation intensity decreases

with distance from the antenna, as the signal is attenuated. Gain in a

particular direction is defined in this thesis after Moore (1963) as the

ratio of the power density at a distance R, to the power density that

would exist at that distance if the total power supplied to the antenna

were radiated isotropically. If no direction is specified, the gain is

assumed to be in the normal, or boresight direction. Then

G =
W(θ,φ, R)

Pte−2αR/4πR2 (5.6)



5.1 BASIC ANTENNA PARAMETERS 103

where W is the power density.

The power density at a distance R is the real part of the radial

component of the Poynting Vector. For the BOR FDTD code, the

power density in the boresight direction depends only on the Ez and

Hφ vectors. The power density is

Wobs = <(EzH∗
φ) (5.7)

where H∗
φ is the complex conjugate of the magnetic field. The gain

in Equation 5.6 can now be expressed as

G =
<(EzH∗

φ)4πR2

Pte−2αR . (5.8)

Gain is dimensionless and lends itself to expression in decibels.

5.1.3 Directivity

Directivity is defined as the ratio of the radiation intensity from the

antenna in a given direction to the uniform radiation intensity from

an isotropic radiator with the same total radiation power (Ramo et al.,

1993). If a direction is not specified, the direction normal to the

antenna is assumed:

D =
K(θ,φ, R)

(P/4π)
, (5.9)

where P is the total power by the antenna, rather than the power fed

to the antenna. The relationship between gain and directivity is

G = ηD (5.10)

where η is the efficiency of the antenna.

Again, for an antenna in rock, the definition of directivity is mod-

ified to introduce a distance from the antenna. Consider the antenna

to be surrounded at a distance, R, by a sphere, S, centred on the feed

point of the antenna. The total power crossing the sphere is then

Ptot =
∮

S
W(R,θ,φ) dS (5.11)

and the average power density is

Wave =
1

4πR2

∮

S
W(R,θ,φ) dS. (5.12)
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Figure 5.3: Geometry for calculating directivity in the 2D BOR

model.

The directivity in the boresight direction is then

D(0, 0) =
4πR2W(R, 0, 0)
∮

S W(R,θ,φ) dS
. (5.13)

Equation 5.13 is implemented numerically by observing the field

in an arc around the antenna using the geometry shown in Figure 5.3.

At each observation point the Hφ, Ez and Er fields are observed. The

power density in the direction radial to the feed point of the antenna

is calculated as E × H∗. It is combined in a weighted sum over

the surface of the sphere to determine the total radiated power and

hence average power density. The directivity is the ratio of the power

density in the boresight direction to the average power density.

Figure 5.4 shows computed numerical results for the directivity

and gain of a 3.2 m monopole antenna in air. The directivity is cal-

culated on an arc 40 m from the antenna. Directivity and gain are

measured in the boresight direction. For a perfectly conducting an-
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Figure 5.4: Directivity and gain of a perfectly conducting monopole

antenna in air.

Figure 5.5: An example of the difference between directivity and

gain: a wire antenna embedded in dolerite.

tenna in a lossless medium, gain and directivity should be equivalent.

The correspondence in Figure 5.4 is good, confirming the calcula-

tions used to extract both parameters. However, the correspondence

is not perfect, because there are computational inaccuracies, both in

the FDTD model and in the techniques used to extract gain and dir-

ectivity. From analytical calculations, the gain of the antenna should

be 1.76 dB at low frequencies. The sharp rise in directivity and gain

as ω → 0 and the ripple in the directivity and gain plots are both

artifacts of the FDTD model.
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Figure 5.6: Gain of a bare antenna for a variety of rock types.

Figure 5.5 shows how a surrounding rock affects the gain. In this

example, the antenna is embedded in dolerite. The antenna is still

assumed to be perfectly conducting. The directivity is similar to that

for the antenna in free space, but the gain is considerably reduced by

losses in the surrounding rock. Directivity is calculated using an arc

40 m from the antenna. Directivity and gain are both measured in the

boresight direction. The gain is expected to drop because rock in the

vicinity of the antenna reduces the efficiency of the antenna.

5.2 A BARE ANTENNA IN ROCK

RT is conducted in boreholes with a minimum diameter of 48 mm, so

the maximum diameter of a practical antenna is 44 mm. This figure

constrains the size of the bare and the insulated antennas. The bare

antenna considered here is modelled as a monopole and is 44 mm in

diameter.

5.2.1 Gain

In Figure 5.6 gain is plotted for a bare wire antenna embedded in a

selection of different rock types. In each case the antenna is a 3.2 m

monopole. The model consists of 120×120 cells, each 0.4 m square.

The runs normally take 16384 time steps, of 4t = 4/4c, where c
is the maximum speed in the model. The time step is half the normal
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Figure 5.7: Gain of a bare antenna measured at 40 m for a variety of

rock types and normalized for electrical length in the host rock.

time step to ensure stability.

The gain is measured at 40 m for the quartzite, granite, dolerite

and peridotite and at 20 m for the remaining rocks. All of the rocks

fill the whole modelling space. Each rock is modelled using a suit-

able Debye model, as detailed in Appendix B, with between 1 and 4

Debye terms. In every case, the source is a bipolar Gaussian pulse

and second order Higdon ABCs are used to terminate the two open

sides of the model.

All of the results follow the same general pattern: gain increases

with increasing frequency, maintains a constant value, then falls

gently. The maximum corresponds to the resonant length of the an-

tenna. The results in Figure 5.6 become more uniform when they are

normalized to the electrical length of the antenna in the background

rock.

Normalized results are plotted in Figure 5.7 and show that all the

antennas have gains within a few decibels of one another when at

λ/4. Generally, the higher the loss tangent, the poorer the gain.

5.2.2 Directivity

The directivity in absolute figures, plotted in Figure 5.8, is less influ-

enced by rock type, indicating that rock type affects the shape of the

antenna pattern less than it does the efficiency of the antenna.
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Figure 5.8: Directivity of a bare antenna in a variety of rock types.

Figure 5.9: Normalized current distribution on the bare antenna.

5.2.3 Antenna currents

In Figure 5.9, the current distribution on the bare antenna is plot-

ted for the antenna embedded in six different rock types. In each

rock, the current distribution is plotted for the frequency at which

the monopole is a quarter of a wavelength long in the surrounding

medium. The current is normalized to 1 A at the feed point.

The current distribution explains the changes in directivity as a

function of rock type: as the loss tangent of the rock increases, the

current distribution at resonance becomes less sinusoidal, which af-

fects the pattern and the directivity of the antenna in the boresight
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direction.

5.2.4 Antenna impedance

The surrounding rock has a marked influence on the input imped-

ance of a bare antenna. Plots of the antenna input impedance in six

rocks are shown in Figure 5.10. The impedance is plotted against the

electrical length of the antenna in the host rock. Both the real and

imaginary part of the input impedance decrease as the loss tangent of

the surrounding rock increases. In the case of the highly conductive

pyrite, both the real and imaginary parts are no more than one or two

ohms.

The rise in the real impedance of the antenna at low frequencies

is unusual, compared to a typical antenna in air. Unlike the earlier

plot of directivity and gain of an antenna in air on Page 105, the rise

illustrated in Figure 5.10 is not a modelling artifact. It is confirmed

by both King and Smith (1981) and by Burke et al. (1983).

5.2.5 Pattern

The antenna pattern for a bare antenna in granite is shown in Fig-

ure 5.11. The pattern is typical of a dipole antenna: at frequencies

below resonance there is a single main lobe in the boresight direc-

tion. As the frequency passes resonance (about 11 MHz for a 3.2 m

monopole in granite), a lobe starts to develop at a large angle away

from boresight. With increasing frequency the lobe develops further

and starts to move towards the boresight direction. Although it is not

shown on the plot, when the monopole antenna length is 3/4λ, there

is a single lobe at about 45°to boresight and a null in the boresight

direction.

The pattern of an antenna embedded in a lossy medium often

depends on the geometry of material structures around the antenna

and is examined in more detail in the next chapter.
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Figure 5.10: Input impedance of a bare monopole in six different

rock types.

5.2.6 Discussion

The electrical characteristics of a bare antenna change considerably

from rock to rock. For example, a 6.4 m dipole, operating at reson-

ance at 0.4 MHz in pyrite will have a gain of approximately -10 dB.

Its gain will drop to less than -30 dB in quartzite at the same fre-

quency. At the same time, the impedance will change from small and

almost purely resistive in the pyrite to large and almost purely capa-

citive in the quartzite, leading to problems matching both transmitter

and receiver.

Bare antennas have to be considered as broadband: they cannot

be optimized for a specific frequency across a wide range of rock



5.3 AN INSULATED ANTENNA IN ROCK 111

Figure 5.11: The directivity of a bare monopole antenna embedded

in granite as a function of frequency.

types. If a bare antenna is considered as a poor, but broadband an-

tenna, it can be used at frequencies that are different from its design

frequency. In an RT survey, a frequency will be chosen based on es-

timates of rock properties and geology. The choice of frequency can-

not be confirmed until the survey has begun. If penetration cannot be

achieved at the chosen frequency, the operator will attempt to use a

lower frequency. If the same antennas are used, gain is likely to fall.

If there is a mechanism to correct for antenna parameters in different

rock types, the survey can continue and the operator can correct the

measured data afterwards. Such a correction mechanism is essential

to any application of bare antennas in RT and can be provided by the

FDTD model presented in this thesis. An example of such a correction

is presented in the next chapter.

5.3 AN INSULATED ANTENNA IN ROCK

As discussed in the introduction to the previous section, RT antennas

are constrained to fit into a borehole with a diameter of 48 mm, so
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Figure 5.12: Gain of an insulated antenna for a variety of rock

types.

must be 44 mm in diameter or less. In this section, an insulated an-

tenna is discussed. The insulated antenna consists of a 4 mm diameter

conductor surrounded by a layer of insulation 20 mm thick. The insu-

lated antenna has the greatest ratio of conductor radius to insulation

thickness that is practical within a 44 mm diameter. The insulation

assumed in the models is lossless with a permittivity of 2.1, the same

as that of PTFE.

The bare antenna of the previous section and the insulated an-

tenna of this section can be considered as the two ends of a con-

tinuum. The electrical properties of antennas with different thick-

nesses of insulation will lie somewhere between the limits of the two

example antennas.

5.3.1 Gain

A 3.2 m monopole antenna, 4 mm thick, surrounded by a 20 mm

thickness of PVC insulation is modelled using the FDTD code. The

model has 120×120 cells, each 0.4 m square. The runs normally take

16384 time steps, of 4t = 4/4c, where c is the highest velocity of

propagation in the model.

The gain is measured at 40 m for the quartzite, granite, dolerite

and peridotite and at 20 m for the remaining rocks. All of the rocks

fill the whole modelling space. Each rock is modelled using a suit-
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Figure 5.13: Directivity of an insulated antenna measured at 40 m

for a variety of rock types.

able Debye model, as detailed in Appendix B, with between 1 and 4

Debye terms. In every case, the source is a bipolar Gaussian pulse

and second order Higdon ABCs are used to terminate the two open

sides of the model.

The results are presented in Figure 5.12 as a function of fre-

quency. Note that compared to the bare antenna, the insulated an-

tenna has roughly the same electrical length in all of the five rock

types plotted. The overall gain is slightly higher than that of the bare

antenna. All of the gains apart from that of cassiterite follow the

same form. Cassiterite is discussed in more detail in the next section.

5.3.2 Directivity

The directivity of an insulated antenna as a function of rock type

shown in Figure 5.13 is consistent as rock type changes, except for

the directivity of the cassiterite. The directivity of the cassiterite is

not comparable to the directivity of the other rocks because of the

conceptual difficulty in defining the directivity of an antenna in lossy

media. The results calculated here for cassiterite are a perfect ex-

ample of the breakdown of the classic concepts of directivity and

gain for antennas in conductive materials (Moore, 1963).

Directivity was defined earlier as the ratio of power density in

one direction to the average power density crossing a sphere of ra-
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Figure 5.14: Calculating directivity in high loss rocks.

dius R from the antenna. A difficulty arises in rocks with a high loss

tangent: the sphere cannot be made large relative to the length of the

antenna because the power density will fall to below the noise level at

the surface of the sphere. If the sphere is made smaller, then the min-

imum distance between the antenna and the sphere in the boresight

direction is substantially larger than the minimum distance between

the antenna and the sphere along the antenna axis.

The situation is illustrated with some exaggeration in Figure 5.14.

Because the conductive rock attenuates signals so rapidly, the shorter

path, r1, leads to higher power density at the surface of the sphere

than the longer path, r2. The distortion is worse in insulated antennas

than in bare antennas because the antenna current in insulated anten-

nas is higher near the end of the antenna relative to the feed point

than in a bare antenna.

5.3.3 Antenna currents

In Figure 5.15, the current distribution on the insulated antenna is

plotted, with the antenna embedded in five different rock types. In

each rock, the result is shown at the frequency that corresponds to a

quarter wave monopole in the insulation. The current is normalized

to 1 A at the feed point.
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Figure 5.15: Normalized current distribution on an insulated

antenna.

The resonant frequency of the antenna is determined using the

King and Smith approximation for the wave number in the insulation

of an insulated antenna, Equation 3.5 in Chapter 3.

The current on an insulated antenna is different to that of the bare

antenna in two respects, both directly a consequence of the insulation.

Firstly, there is less difference between the current distributions in the

most and least conductive rocks. Secondly, the frequency at which

the antenna is resonant shows far less variation as a function of rock

type.

If an insulated antenna is viewed as a coaxial transmission line,

then the results are as expected: the insulation becomes the medium

for carrying the fields, so the current does not change as the ex-

ternal medium changes. The electrical length of the antenna does

not change as the external medium changes because the velocity of

propagation along the antenna is very close to that of the insulation

medium.

5.3.4 Antenna impedance

While the only form of the impedance function is similar for a bare

wire antenna in various media, for insulated antennas the actual im-

pedance is very similar, as shown in Figure 5.16. Once again, the

impedance of the coaxial line made up of the antenna conductor, the
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Figure 5.16: Input impedance of an insulated antenna in six

different rock types.

insulation and the surrounding conducting rock dominates the an-

tenna impedance, hence the impedance for all five rocks shown here

is approximately the same at the design frequency of 10 MHz.

5.3.5 Antenna pattern

The pattern for an insulated antenna in granite is shown in Figure 5.17

and reflects the same general characteristics as the bare dipole. How-

ever, the 6 m antenna is now electrically shorter, so the main lobe has

not broken into two by the time the highest frequency on the plot is

reached.
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Figure 5.17: How the directivity of an insulated monopole antenna

embedded in granite changes as a function of frequency and angle.

5.3.6 Discussion

A 4 mm diameter antenna insulated by 20 mm of PVC is effectively

isolated from the surrounding rock. It has almost the same gain,

antenna current and antenna impedance regardless of the surround-

ing rock. However it must be considered as a narrowband antenna.

Whereas the operational frequency of a bare antenna can be changed

to achieve performance advantages in particular rocks, using an in-

sulated antenna at any frequency other than its design frequency be-

stows no such advantage.

The insulated antenna is theoretically ideal for RT because of its

reasonable gain and excellent isolation from the surrounding rock. In

practice, the operator may not be prepared to compromise on the in-

ability to use the antenna at any frequency for which it is not designed

as well as its long physical length.

5.4 ANTENNA COMPARISONS
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Figure 5.18: The effect of physical length on the pattern of two

antennas resonant at 3.9 MHz in dolerite.

5.4.1 Noise

The real part of the antenna impedance increases at very low frequen-

cies in both the insulated and bare antennas, in contrast to an antenna

in air which is purely capacitive at low frequencies. The minimum

resistance is then typically achieved when the monopole antenna is

between 0.10 and 0.25 of a wavelength in length. As the frequency

increases above this, the resistance also increases. Since noise is re-

lated to the resistance of the antenna, the lowest system noise can be

achieved in the range already mentioned.

5.4.2 Physical length

Figure 5.18 is a plot of the directivity for two antennas, both op-

erating in dolerite at 3.9 MHz. The bare antenna is a 6.4 m dipole,

which is resonant at 3.9 MHz. The insulated antenna has a 4 mm

diameter conductor surrounded by 20 mm of insulation. Because the

velocity of propagation in the insulation is so much higher than in

the surrounding rock, the insulated antenna must be much longer to
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Figure 5.19: The effect of physical length on the gain of two

antennas resonant at 3.9 MHz in dolerite.

be resonant at the same frequency. The resultant antenna is 16.8 m

long. Both antennas are electrically a quarter of a wavelength long

and both are operating in the same rock, yet the physically longer

antenna has a more directive pattern.

The physically longer insulated antenna also has higher gain, il-

lustrated in Figure 5.19. The higher gain and directivity are expected,

because the physically longer antenna has a larger aperture and the

low loss insulation surrounding the antenna isolates it from the sur-

rounding rock.

5.5 TOMOGRAPHIC RESOLUTION

Insulated antennas are physically longer than bare antennas operat-

ing at the same wavelength in the rock. Does this extra length affect

imaging resolution? Van Schoor et al. (1997) report that the resol-

ution of the RT imaging process is between a quarter and half of a

wavelength, but the experiments leading to this conclusion used a 2D

modelling code (Howard and Kretzschmar, 1986) and did not include

antenna effects. Here, I use the FDTD code to create two full tomo-

graphic models. In one, the transmit antenna is bare, in the other it is

insulated.

The two models consist of 290×170 cells, each 0.4 m square.

The background rock is dolerite and the target is a 20 m×20 m area
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Figure 5.20: The geometry for creating tomographic forward

models.

with fixed electrical properties of σ = 2.5 mS/m and εr = 25. The

geometry is illustrated in Figure 5.20. Each antenna model is run

50 times, once for the transmit antenna at each source position. For

each run, the Ez at each of the 51 receiver positions is extracted, at

a frequency of 3.9 MHz. The field is simply measured: there is no

attempt to simulate a receive antenna, because the two models will

be directly compared.

In the first model, the antenna is 22 mm diameter bare wire, 6.4 m

long. It resonates at 3.9 MHz in the dolerite. In the second model,

an insulated antenna is used, with a conductor diameter of 4 mm,

surrounded by 20 mm of insulation. In order to resonate the insulated

antenna at the same frequency, it is 16.8 m long.

After the fifty runs of each model are completed, all the received

data at 3.9 MHz is converted into a form suitable for tomographic

inversion. The data is inverted using the same Maximum Entropy
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Figure 5.21: RT images of two synthetic data sets created for a

σ = 2.5 mS/m, εr = 25 target in a dolerite background. The image

on the left is created using a bare antenna. The image on the right is

created using an insulated antenna.

code and inversion parameters used by Van Schoor et al. (1997). The

images produced for each model are compared in Figure 5.21. The

data is corrected for the different gain of the two antennas.

The insulated antenna has slightly degraded resolution, particu-

larly in the horizontal direction, because of the longer antenna length.

There is also a distinct shift of the image to the right for the insulated

antenna, caused by the geometry of the physically longer antenna

and the point receivers. Comparison of the two images highlights

one disadvantage of using a longer antenna for RT data collection.

The slight loss in resolution has to be balanced against the increased

gain and isolation from the surrounding rock. The images were pro-

duced modelling only the transmit antenna. If the receive antenna

was also modelled, a more emphatic result would be expected.

5.6 EFFECTIVE APERTURE AND GAIN

The 2D BOR RT model can only model an antenna in transmitting

mode, because the symmetry of the system limits it to radially sym-

metrical fields. To model a receiving antenna, a 3D model is required

to implement a plane wave impinging on the receiving antenna. In
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Figure 5.22: Geometry used in reciprocity experiments.

Dimensions are given in cells.

this section I show that reciprocity allows measurements made on

the 2D transmission model to be used to predict performance of the

antenna as a receive antenna. A basic 3D FDTD code is used to pro-

duce the results shown here. It includes Debye media and a thin-wire

subcell extension, but does not include a thin-layer subcell extension.

The geometry of the 3D model is illustrated in Figure 5.22. The

modelling space has 90×80×40 cells, each 0.4 m cubed. The an-

tenna is a monopole over the ground plane and is 8 cells long includ-

ing the driving element. All boundaries apart from the PEC ground

plane are calculated using second order Higdon ABCs. The system

can be used to model receiving antennas by including plane wave ex-

citation, as shown in the figure. Alternatively, the antenna can func-

tion as a transmitter, driven by a hard source at the element directly

above the ground plane. It is then possible to compare the same an-

tenna functioning either as a transmit or receive antenna.

The antenna input impedance can be determined from the model

of the antenna as a transmitter. Transmitter characteristics such as

gain and directivity can also be measured, in the same way as they are
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measured using the 2D BOR model. In receive mode the antenna is

modelled as being short circuited to ground and the current in the feed

element is determined by measuring the radial magnetic field around

the wire. Physically, a transmit antenna driven by a hard voltage

source becomes short circuited when the transmit pulse has ended.

The short circuited receive antenna is a good physical analogue of

the transmit antenna and also performs well numerically.

The effective length is used here as the indicator of antenna per-

formance. The effective length is defined as

Voc = ELe (5.14)

where Le is the effective length and Voc is the open circuit voltage

across the terminals of the antenna when the antenna is illuminated

by a uniform field of E.

The open circuit voltage is related to the short circuit current by

the antenna impedance. The effective length for the receiving model

is

Le,Rx =

∣

∣

∣

∣

IscZ
Ei

∣

∣

∣

∣

(5.15)

where Ei is the incident field in the absence of the antenna. Ei is

measured by running a model without an antenna present.

Deriving the effective length from the transmitting antenna is

somewhat more involved. The effective aperture of an antenna is

related to the gain by

Ae = G
λ2

4π
. (5.16)

Equation 5.16 is only valid when the antenna is feeding a conjugate

matched load. If a 1 V/m incident field is assumed the power density

of the incident field is

Wi =
E2

i
ζ

=
1
ζ

, (5.17)

where η is the impedance of the background material in the model.

The power received by a conjugate matched load is then given by

Pr = AeWi (5.18)
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Figure 5.23: The effective length of a bare antenna measured

directly from a 3D receive antenna model compared to that

calculated from the gain measured in a 3D transmit antenna model.

and the open circuit voltage for that received power is

Voc =
√

Pr<(Z). (5.19)

The effective length is equal to the open circuit voltage, because the

incident field strength is 1 V/m.

The various elements of the effective length calculation can be

combined to give

Le,Tx =

√

1
ζ

G
λ2

4π
<(Z). (5.20)

Results for antennas embedded in two rock types are presented

in Figure 5.23. Correspondence between the two methods of determ-
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ining effective length is good, with only slight errors at low and high

frequencies. Reciprocity does apply for antennas within the earth

modelled using FDTD, as expected, so the 2D BOR model can be

used to derive receive antenna parameters.

5.7 ANTENNA DESIGN

5.7.1 Requirements for an RT antenna system

Unity gain or better at the operating frequency

The various graphs show that almost all the antennas modelled have

approximately unity gain from the frequency at which the dipole an-

tenna is electrically half a wavelength long. Lower frequencies lead

to poor gain as do specific higher frequencies. This requirement is

not difficult to achieve.

Gain does not change with rock type

For a bare antenna the gain at a given frequency changes with rock

type and the change cannot be avoided. As insulation is added, the

electrical length of the antenna becomes determined by the insula-

tion rather than the surrounding rock, creating an antenna that has

constant gain with rock type.

Real part of antenna impedance as low as possible

The noise of an antenna functioning as a receiver is determined by

its impedance. A low impedance is preferred for better noise per-

formance. In the transmitter, the desired impedance is a comprom-

ise between high current with on low impedance antenna and high

voltage on a high impedance antenna. In general, a lower impedance

is preferred.

Imaginary part of antenna impedance near zero

If the transmitter is required to deliver power into a highly reactive

antenna, then it must be designed to run at a higher voltage than oth-

erwise necessary. For example, consider an antenna of 10 + j100 Ω.
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Without a matching network, an amplifier must supply 31.6 V at a

current of 316 mA to achieve a real power output of 1 W. If the load

is now reduced to 10 + j10 Ω a voltage of only 4.46 V is required

to achieve an output power of 1 W. An amplifier capable of deliver-

ing 1 W into both loads must be able to supply 31.6 V. When it is

feeding the load with the smaller imaginary part, it still has to supply

316 mA and its efficiency drops from 100 % to approximately 14 %.

The problem is exacerbated if the imaginary part of the impedance is

even larger.

Physically short

The antenna needs to be as short as possible for two reasons: the

RT inversion algorithm assumes a point source and is not as accurate

with a long antenna; and the boreholes used for RT must be drilled

past the target by about half the borehole spacing plus half the an-

tenna length. If the antenna is very long, the additional drilling cost

may be considerable.

The effect of antenna length on RT image quality is has been dis-

cussed and illustrated in Section 5.5 on page 119.

5.7.2 Proposed implementation

In Figures 5.24 and 5.25, the design requirements are superimposed

on a series of graphs of bare and insulated antennas in various rock

types. Gain is required to be greater than -10 dB. The input imped-

ance must have a magnitude of less than 140 Ω and a phase of less

than ±45°. For each parameter, the graph is thicker where the para-

meter falls within the desired range.

In Figure 5.24, gain is not defined for the more conductive mater-

ials at the higher frequencies, because there isn’t penetration at those

frequencies.

From Figure 5.24 the bare antenna can only meet the require-

ments for gain and input impedance for a limited frequency range in

each rock type. In general, the frequency ranges do not overlap for

different rock types. The bare antenna operates optimally if the fre-

quency of operation is changed as the antenna moves through various
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Figure 5.24: Gain and input impedance for bare antennas in a

variety of rock types. The thicker lines are explained in the text.
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Figure 5.25: Gain and input impedance for insulated antennas in a

variety of rock types. The thicker lines are explained in the text.
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rock types. It is feasible as an RT antenna if performance changes in

various rock types can be accounted for in the inversion. An example

of such a correction is presented in the next chapter.

From Figure 5.25 an antenna with 20 mm of insulation can match

all the requirements in all six rock types simultaneously. It meets

all the requirements for a perfect RT antenna apart from physical

length. The 6 m antenna illustrated would operate at 10 MHz and

could be matched with reasonable efficiency in any of the six rock

types. For operation at lower frequencies, a proportionally longer

antenna would be required.

Note that 20 mm or more of insulation is required. A similar set

of results for a conductor diameter of 14 mm and 15 mm of insula-

tion would not match all the design requirements in all six rock types.

From experiment, the insulated antenna requires a ratio of conductor

radius to insulation thickness of at least 1:10. The requirement for

thick insulation leads to a practical problem: if the probe electronics

are housed within the antenna, the conductor has a minimum radius

defined by the batteries used. If C-sized cells are used, the minimum

radius of the conductor is 13 mm, allowing for only 9 mm of insula-

tion.

To overcome the two disadvantages of a thickly insulated an-

tenna, namely physical length and space for electronics, a hybrid an-

tenna is proposed. The antenna is insulated over its centre section,

but bare for a length at each end. The bare sections act electrically

as end loads to the antenna and also provide two volumes for elec-

tronics and batteries. The bare sections are each 0.8 m long, leaving

4.4 m of insulated section. The insulated section is left as thick as

possible. Other configurations of antenna were not considered due to

the limited space available in the borehole.

The antenna is modelled as a monopole and its input impedance

is presented in Figure 5.26. The input impedance is still largely char-

acterized by the insulated section of the antenna. Resonance occurs

at a slightly lower frequency than in the pure insulated antenna. Gain

is plotted in Figure 5.27 and is very similar to that of the insulated

antenna.

Adding bare sections to the ends of the insulated antenna has not
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Figure 5.26: The input impedance of a novel antenna in six

different rock types.

Figure 5.27: Gain of proposed novel antenna.
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Figure 5.28: Receiver system diagram.

altered the impedance characteristics substantially but it has electric-

ally lengthened the antenna. If further electrical length is required,

the insulation can be made thinner at the cost of poorer electrical

characteristics. The new configuration promises to perform well and

is physically realizable within a working RT system.

5.8 ENHANCEMENTS TO THE PLUTO-6 RT SYSTEM RECEIVER

In Chapter 2, the Miningtek Pluto-6 RT system was described as part

of the background to the modelling work that has been undertaken in

this thesis. There are performance problems with the receiver probe

of the Pluto system. With the benefit of modelling and improved

understanding of the characteristics of an RT antenna, the probe has

been redesigned.

5.8.1 Electronic design

It was determined by experiment that the poor noise performance of

the existing probe is largely due to the noise associated with gen-

erating the local oscillator. A new circuit configuration is proposed

where the local oscillator is moved to surface and the frequency that

it generates is sent down the optical fibre link. The system design is

illustrated in Figure 5.28. The probe contains a mixer, amplifiers and

filters, a detector, an ADC and a microcontroller that continuously
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Figure 5.29: High impedance front-end amplifier.

streams the measured signal strength to surface. On surface, the re-

ceiver controller controls the LO generation, processes measurements

from the down hole receiver and interfaces with the control computer.

A front-end with a fixed low impedance would unnecessarily

limit the antenna design. While insulated antennas can be designed

to match a fixed impedance, any bare antennas that are used with the

system cannot be matched to a single impedance. If perfect matching

cannot be achieved, a high impedance input is a good alternative and

has been chosen here for that reason. The front-end amplifier is based

around a dual-gate MOSFET and delivers sufficient gain to overcome

its own noise contribution while providing a response that is flat as a

function of frequency. The circuit is shown in Figure 5.29.

5.8.2 Mechanical design

Earlier in this chapter, it was shown that there are only slight differ-

ences in gain between bare and insulated antennas in rock. In the

previous section, a hybrid insulated/bare antenna is proposed as a

compromise between predictable electrical characteristics and prac-

tical mechanical considerations.

A new receiver probe design has been built, following the gen-

eral principles of the proposal in the previous section. For practical

reasons, it was not possible to implement a central section with thick
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Figure 5.30: Mechanical configuration of the receiver probe.

insulation. A section with thinner insulation was tested to prove the

general concept of a hybrid antenna.

The antenna design is illustrated in Figure 5.30. The antenna is a

dipole, with the two arms meeting in the center coupling. From the

feed point outwards, each arm consists of a length of insulated ma-

terial, followed by a section of bare metal. The upper metal section is

the container for the electronics and the battery, while the lower sec-

tion is inert and is used as a weight to ensure that the wire elements of

the antenna are pulled down the borehole. The receiver front end is

at the center of the antenna, separated from the rest of the electronics

to lower its susceptibility to noise.

Electrically, the antenna is a sleeve dipole (Milligan, 1985), driven

from within one arm. A schematic of the structure is illustrated in

Figure 5.31a. The configuration shown is for a transmitter, but the

principles apply equally for a receiver. The current flow is illustrated

in Figure 5.31b. Because the the two currents I+ and I− must be

equal at the feed point of the antenna, it is automatically balanced.

Any unbalanced current running on the outside of the feed coax, Iu,

is forced to return along the inside of the sleeve cancelling any radi-

ation that would otherwise have resulted.
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Figure 5.31: The sleeve dipole.

5.8.3 Tests

Unfortunately, during initial testing of the antenna the connection

between the center section and the lower coaxial cable and dummy

probe section failed mechanically and the dummy probe was lost

down a borehole. To continue the tests within the time available, a

new lower dipole section was made up from a single piece of RG213

coaxial cable. The bare inert probe section was simulated by remov-

ing the insulation from the coax for a distance from its end.

The tests were carried out in boreholes drilled in the car park at

Miningtek in Johannesburg, illustrated on Page 11. Geologically, the

site lies in the lower part of the Parktown Shales, within the Central

Rand Group and Witwatersrand Supergroup. The shales are conduct-

ive in general, but contain bands of resistive quartzites (Kent, 1980;

Maré and Oosthuizen, 1999). From RT measurement, the site has

high conductivity zones near the top and bottom of the boreholes,

with a lower conductivity zone in between.

Noise floor

The noise floor of the new receiver was determined by measuring

the received signal without a transmitter present. It is difficult to

determine the noise floor in a laboratory, because the measurement

depends on a good quality screened room at low frequencies. Placing

the receiver probe down a borehole ensures that no external noise
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Figure 5.32: Noise floor of new RT receiver down a borehole.

Figure 5.33: Comparison of the signal strength received by three

antennas at the same position in the borehole, as a function of

frequency.

reaches the receiver. At a depth of 18 m, two frequency scans were

undertaken, with results plotted in Figure 5.32. The measured results

are excellent, with a noise floor of better than -40 dBµV across the

frequency band from 1 MHz to 30 MHz.

Functional comparison

The signal strength received by three antennas is compared in Fig-

ure 5.33. In each case, the receiver and transmitter are both at 24 m
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in their respective boreholes. The first antenna is a sleeve dipole feed-

ing a coaxial cable to the surface where the signal is measured using

a Rhode & Schwartz ESHS10 test receiver. The second and third an-

tennas are the two antennas described above: the new receiver with a

lower arm that is insulated and with a bare lower arm. The two novel

antennas agree well, but are some decibels below the sleeve dipole.

The sleeve dipole is different in several respects from the new re-

ceiver probe: it is heavily insulated, it is a different length and it is

suspended on a coaxial cable. All three factors contribute towards the

discrepancies seen in Figure 5.33. The plot is more remarkable for

the similarity between the graphs: the new receivers perform com-

parably with the coaxial antenna.

It was not possible to test the high-impedance front end to the

receiver, because a failure in the seal around the unit caused it to

be flooded. Subsequent electrolytic damage could not be repaired

within the time available. Bench tests of the front end on its own

showed excellent gain characteristics against frequency. Gain was

flat to within 0.1 dB from 1 MHz to 30 MHz.

5.8.4 Conclusion

The receiver probe that has been described has good electronic per-

formance and it has been used to test the concept of using a hybrid

insulated/bare antenna. Although it has not been adequately assessed,

due to mechanical problems and time constraints during the test pro-

gram, initial results are promising.

5.9 CONCLUSION

In this chapter, the FDTD modelling code developed in the previous

chapter has been applied to model RT antennas, both bare and insu-

lated in a range of rock types. The results show that antenna beha-

viour is relatively predictable for both antenna types. Behaviour is

dominated by the electrical length of the antenna. For RT, bare an-

tennas should be used only in conjunction with antenna corrections

although they can be used across a range of frequencies, albeit inef-
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ficiently. Antennas with sufficient insulation are more efficient and

are effectively isolated from the surrounding rock, but they can only

be used at a single frequency.

It has been shown that tomographic resolution is dependent on

antenna length, but that the image is not degraded substantially by us-

ing a physically longer insulated antenna. It has also been confirmed

that the BOR FDTD code can be used to determine the parameters that

characterize both transmit and receive antennas.

A novel antenna has been proposed which takes advantage of in-

sulation, while allowing for bare sections at each end to contain the

required electronics. The antenna is a compromise between the con-

flicting requirements of a physically short antenna and one that does

not vary with surrounding rock type. The concept of a hybrid insu-

lated/bare antenna has been tested in a new receiver probe. Although

the tests were marred by mechanical problems the initial results are

promising.





6
RT case studies

In the previous chapters, an FDTD model of an RT system was de-

veloped and typical results were presented. In this chapter, the mod-

elling code is applied to problems of significance to an RT operator,

to develop understanding of how the antenna interacts with the rock

around it.

6.1 TWO ANTENNAS IN ONE BOREHOLE

6.1.1 Analysis

The time taken to collect RT data could be reduced if more than one

receive antenna could be placed in a single borehole, in the same way

that seismic surveys usually use one source but an array of receiver

geophones (Waters, 1978). However, closely spaced antennas will

interact with one another. Arrays of antennas will not be viable unless

that interaction is sufficiently small.

In a system with two antennas, the relationship between the

voltage on the terminals of one antenna and the current in both an-

tennas, is

V1 = Z11 I1 + Z12 I2. (6.1)

Z12 is the mutual impedance between antennas 1 and 2 and is given

139
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Figure 6.1: Determining the permissible coupling between two

antennas in a single borehole.

by

Z12 =
(V1)oc

I2(0)
, (6.2)

the ratio of the open circuit voltage across antenna 1, to the terminal

current flowing in antenna 2 (Balanis, 1982).

If the two antennas are identical, coplanar and illuminated by a

normally incident plane wave, I1 = I2 and the second antenna acts

to affect the voltage measured across the first because

V1 = (Z11 + Z12)I. (6.3)

The input impedance of one antenna is then

Zi = Z11 + Z12. (6.4)

In an RT system, the change in measured voltage caused by the

presence of the second antenna is tolerable if it is below a certain

level. If Z12 is allowed to alter the measured voltage by an amount C
in dBs, then the ratio of Z12 to Z11 is given by

Z12

Z11
= 20 log10(10C/20 − 1). (6.5)

The relationship described by Equation 6.5 is illustrated in Figure 6.1

and two significant interference levels are plotted. If a change in

measured voltage of 1 dB is permissible, then the mutual impedance
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Figure 6.2: Modelling geometries to investigate the interaction of

two antennas in one borehole and to investigate the interaction

between an antenna and its support wire.

between the antennas should be more than 20 dB below the self im-

pedance of the antenna. For a change in measured voltage of 0.1 dB,

the mutual impedance must be at least 40 dB below the self imped-

ance.

6.1.2 Modelling

The problem is investigated by creating a model with two antennas.

One is driven and the second is left open circuited, at various dis-

tances from the first, as illustrated in Figure 6.2a. The parasite an-

tenna corresponds to antenna 1 in the previous section. It is left open

circuit to determine Z21 from Equation 6.2. Both antennas are 6.4 m

long. The self and mutual impedances are determined from the model

and the ratio is calculated.

An example set of results is plotted in Figure 6.3. The ratio of
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Figure 6.3: The effect of antenna spacing on measured signal in

quartzite.

Figure 6.4: The effect of antenna spacing on maximum coupling

ratio for two different types of antenna in two different rocks.

mutual to self impedance is calculated for a pair of bare antennas

embedded in quartzite, as a function of frequency. Five graphs are

plotted for increased spacings from 0.4 m to 6.4 m. Coupling de-

creases with increased spacing and the maximum coupling occurs

roughly at the resonant frequency of the antenna.

In Figure 6.4, the maximum coupling is plotted as a function of

antenna spacing for two antennas in two different environments. The

two antennas are a bare wire, 44 mm in diameter, and a 4 mm dia-

meter wire coated with 20 mm of insulation. The two rocks are highly
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Figure 6.5: The gain variation of a 6 m bare wire antenna embedded

in quartzite, suspended from a bare wire cable with various lengths

of damped gap.

resistive quartzite, with a loss tangent of 0.02 and moderately lossy

dolerite, with a loss tangent of 0.24. Coupling decreases as spacing

increases, as expected and coupling is lower in more conductive rock.

Insulating the antenna reduces coupling.

Coupling can be kept below -20 dB by leaving a space between

the antennas that is at least long as the antennas themselves. To

decrease coupling further, considerably larger spacings may be re-

quired, especially if the host rock has a low loss tangent.

6.2 SUSPENDING AN ANTENNA ON A WIRE

A pure dipole antenna in a borehole can be created by suspending

the antenna using optical fibre and placing the electronics within the

antenna. It is cheaper to suspend the antenna on coaxial cable and

place the receiver on surface but the cable becomes a parasitic ele-

ment, distorting both gain and pattern.

In this case study, the coaxial cable is approximated by a wire that

is separated from the antenna by a gap in which no surface current

flows on the wire. In practice, the gap would be achieved by placing

ferrite beads around the wire (Grubb et al., 1976). Surface current

can be caused by a poor balun within the antenna, or by coupling to

the cable outside of the antenna. It causes radiation that alters the
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Figure 6.6: The gain variation of a 6 m insulated antenna embedded

in dolerite, suspended from an insulated wire cable with various

lengths of damped gap.

overall performance of the antenna.

The geometry for the study is very similar to that used for antenna

arrays and is shown in Figure 6.2b. Two results are plotted in detail

in Figures 6.5 and 6.6: a bare antenna embedded in quartzite with a

loss tangent of 0.02 and an insulated antenna embedded in dolerite

with a loss tangent of 0.24. The gain of antennas suspended below

wire with varying gaps is compared to the gain of a free antenna. The

gain is measured 40 m away from the 6 m dipole and is plotted as a

function of frequency.

In common with the results for an antenna array, a gap of the

same length as the antenna leads to almost negligible change in the

gain at the designed operating frequency. The peak coupling is not

at the antenna resonance frequency but is at low frequencies. Low

frequency coupling can be very large because the wire acts as an

excellent radiator for low frequencies, better than the antenna itself.

Rock conductivity does not affect the coupling to the same extent as

it did in the case of two antennas in one borehole.

The results also show how the insulated antenna supported on

the insulated wire creates a series of gain peaks and troughs caused

by standing waves on the insulated suspension wire. If the insulated

antenna is suspended from a bare wire, the peaks and troughs are not

present.
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Figure 6.7: Geometry to test the effect of a suspension wire under

RT data acquisition conditions.

6.2.1 Real geometry

For RT, the real concern about antennas suspended on wire is not a

systematic change in the pattern as a function of rock type. Such a

change can be removed in processing. The real concern is the effect

of the suspension wire on the straight raypath approximation.

Two models have been constructed as illustrated in Figure 6.7.

Tomographic data is collected between two boreholes with the trans-

mitter antenna placed just below a layer of conductive material. In

practice, the receive antenna is profiled in a parallel borehole. In the

numerical model, the vertical electric field, Ez, is observed at 2 m

intervals along a vertical line 40 m from the transmit antenna.

The model presented here consists of a moderately conductive

dolerite background, with a loss tangent of 0.24 and a more conduct-

ive peridotite target with a loss tangent of 0.76. The data is collected

at a frequency of 4 MHz, close to the resonance of the 6 m dipole an-
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Figure 6.8: Field strength at 40 m due to an insulated dipole antenna

below a continuous conductive block. Results are plotted for 4 MHz.

tenna in the dolerite host. The antenna is suspended on a wire, with

a gap of 0.4 m between the antenna and the wire.

Figure 6.8 illustrates that in homogenous rock, wire suspension

does not affect measured fields. The depth of the received field

strength measurement point is presented on the vertical axis, match-

ing the geometry of the system. The measured field strength is

presented on the horizontal axis. For both antennas, starting at the

bottom of the receiver borehole, the signal strength increases as the

receiver positions approach the transmit antenna. The signal then de-

cays dramatically through the peridotite layer. There is only a slight

difference between the free and suspended antennas.

If the conductive layer does not intersect the boreholes, as shown

in Figure 6.7b, the effect of a suspension wire is more pronounced.

Figure 6.9 compares results for bare and insulated antennas with and

without wire suspension. There are differences between the free an-

tenna and the suspended antenna for both types of antenna, espe-

cially for receiver positions above the conductive layer. The absolute

magnitudes of field strength are different for the two antenna types

because both antennas are excited by 1 V sources but have different

input impedances.

Numerical results not plotted show that the nature of the wire is

immaterial: insulated and bare suspension wires have the same effect

on performance. For both geometries, the wire acts as a guide for
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Figure 6.9: Field strength at 40 m for two antennas suspended

freely or below a wire, for the geometry shown in Figure 6.7b.

Results are plotted for 4 MHz.

energy to travel through the more conductive layer. When the layer

doesn’t intersect the wire, more energy can be guided past the layer.

The case study shows that wire suspension causes a breakdown

in the straight raypath approximation. It may still be possible to use

the FDTD code to incorporate the effects of wire suspension within

the RT inversion but in the short term, wire suspension should not be

used because it provides a guide for radio energy around conductive

bodies and distorts the resultant RT images.

6.3 WATER FILLED BOREHOLES

The modelling presented thus far has concentrated exclusively on an-

tennas embedded directly in the host rock. In fact, RT antennas are

always in boreholes, which are usually filled with water. In the un-

usual case where the borehole is dry, the air in the borehole can be

thought of as adding to the antenna insulation.

Here, I model a series of antennas surrounded by a layer of wa-

ter, to determine how water influences the performance of a dipole

antenna in rock. The real problem is more complicated because the

antenna is almost always in contact with the rock on one side of the

borehole, with a varying thickness of water between the antenna and

the borehole in other directions.
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a) Bare antenna

b) Insulated antenna

Figure 6.10: The effect of borehole water on the gain of 3.2 m

monopole antennas in peridotite.

In a perfectly vertical borehole the horizontal antenna position in

the borehole may be random and can change as the antenna swings

like a pendulum. In practice, boreholes are very rarely vertical and

even in vertical boreholes, the antenna is normally suspended against

one wall. The performance of the antenna is fixed for a fixed position

in the borehole and lies somewhere between the predicted perform-

ance of the antenna embedded in the rock and the antenna embedded

in a symmetrical water filled borehole.

Figure 6.10 illustrates the effect of water surrounding two anten-

nas in peridotite, with a loss tangent of 0.76. The water is assumed to
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be non-dispersive in the frequency range of interest, with a conduct-

ivity of 0 S/m and a relative permittivity of 81. The bare 3.2 m mono-

pole antenna is expected to be resonant at approximately 3.3 MHz.

The model has 820×220 cells and each cell is 0.05 m square.

Water does increase the gain of both antennas slightly, but at real-

istic borehole diameters of 45–70 mm it does not alter the gain suffi-

ciently to be a concern. The performance of the insulated antenna is

affected less than that of the bare antenna. If the operator wishes to

ensure that the effect of water is constant at all points in the borehole,

she will have to ensure that the antenna remains centralized by using

a fin or spring mechanism.

Water does not have the same effect as lossless insulation – it

does not provide a coaxial structure for wave propagation. King and

Smith (1981) limit their coaxial approximation to the general condi-

tion that

|k2
4| = |ω2µ(εe4 + jσe4/ω)| � |k2

2| = |ω2µ(εe2 + jσe2/ω)|
(6.6)

where k4 is the wave number in the surrounding medium and k2 is the

wave number in the insulation. In effect, the ambient region 4 must

be electrically relatively dense compared to the insulating region 2.

Normally, the surrounding region is more dense than the insulation

because it is more conductive. In this instance the water, acting as

the insulation, is more dense than the surrounding region due to its

high dielectric constant.

In Figure 6.11, a bare monopole antenna is modelled embedded

in granite surrounded by a varying thickness of water. Superficially,

there is a larger change in gain than in the peridotite example shown

earlier. In fact, the magnitude of the gain remains similar as a func-

tion of electrical length but the frequency of maximum gain becomes

lower as the thickness of the layer of water surrounding the antenna

increases.

The decrease in the frequency of unity gain in the granite is

caused by the high permittivity of water compared to the permittivity

of the granite, which is about 9. It is not as evident in the peridotite

example, because peridotite has a higher permittivity, about 57 at
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Figure 6.11: The effect of borehole water on the gain of a 3 m bare

monopole antenna in granite.

4 MHz. The increase in gain in the peridotite is caused by highly res-

istive water around the antenna allowing larger antenna currents to

flow.

The two examples show how water can be thought of as another

medium surrounding the antenna, rather than as a special medium,

like lossless insulation. In a real situation the water is likely to be

made more conductive by dissolved salts, becoming even less like

lossless insulation. The examples show that in narrow exploration

boreholes, where the thickness of the water layer is a very small frac-

tion of a wavelength, water does not appear to affect the performance

of RT antennas. In large diameter boreholes the FDTD model can be

used to investigate the effect of water on the antenna.

6.4 UNBALANCED ANTENNAS

The operator and the designer of an RT system both have an interest

in the performance of antennas that are not fed in the center. The op-

erator wishes to determine whether a break has occurred in an arm of

the antenna by looking at parameters that he is recording, especially

antenna impedance and signal strength. He also wants to know if a

given failure is critical to system performance. The designer wants to

ascertain if some performance advantage is available by moving the

feed point.
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Figure 6.12: The variation in the gain of a dipole antenna that is

broken at different points.

6.4.1 Detecting broken antennas

Will a broken antenna influence the final RT image? Can an operator

detect a broken antenna? In Figures 6.12 – 6.14 a break has been

introduced into one arm of a dipole antenna. The dipole is modelled

in a space consisting of 220×440 pixels, each 0.2 m square. The

dipole itself is bare, center fed and 31 segments long. The antenna is

embedded in dolerite, and is expected to resonate at about 4 MHz.

A break is introduced into the antenna by removing a segment

from one arm of the dipole antenna to simulate a bad contact between

one part of the dipole antenna and another. The break is moved from

0.4 m from the feed point to 2 m from the feed point.

At the operating frequency, the effect of the break on gain is evid-

ent, but it is also small. The worst difference in gain occurs when the

break is close to the feed point. Gain becomes approximately equal

to the gain of the unbroken antenna as the break moves closer to the

end of the antenna.

The effect on pattern is illustrated in Figure 6.13. At the oper-

ating frequency, the pattern does not vary significantly as the break

is moved away from the feed. At double the operating frequency,

8 MHz, the effect of the break is marked. The unbroken antenna has

a vertically symmetrical pattern, but all of the antennas with missing

segments have a main lobe directed downwards by about 15°.
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Figure 6.13: The variation in the pattern of a dipole antenna that is

broken at different points. Results are presented for 4 MHz and

8 MHz.

The performance figures illustrate that an operator probably can

live with a broken antenna as long as she is working with the an-

tenna at its resonant frequency. Away from the resonant frequency,

performance may not be as predictable.

From Figure 6.14 the operator will have no difficulty in detect-

ing a break that occurs during a survey. Although the real part of

the antenna impedance hardly changes at 4 MHz, the antenna goes

from being resonant to being capacitive. If the antenna impedance

is monitored during a survey, the operator will notice the change in

impedance when a break occurs in the antenna. If the breakage is

recorded, the FDTD model can be used to subsequently correct the

effect of the broken antenna on the data.

6.4.2 Designing with unbalanced antennas

In Figures 6.16 – 6.17 the effect of changing the feed point on one

antenna in one rock type can be seen. The antenna is a bare 6.4 m

dipole, embedded in dolerite. It is modelled in a space 120×240
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Figure 6.14: The variation in the input impedance of a dipole

antenna that is broken at different points.

cells, with each cell 0.4 m square. The 6.4 m antenna is 15 cells long.

In the symmetrical case, the antenna consists of 7 cells either side

of the Ez hard source. The source is then offset by 3 cells, so that

the source is 4 cells from one end. Finally, the antenna is offset by 5

cells, with the source 2 cells from one end. The design frequency of

a 6.4 m long bare dipole in dolerite is approximately 4.2 MHz.

At the design frequency, all three antennas have very similar char-

acteristics. The gain, illustrated in Figure 6.15 remains unchanged up

to the operating frequency, but does suffer at higher frequencies.

The effect of offset feed on pattern, illustrated in Figure 6.16, is

not as dramatic as a break in one arm of the dipole . Offset feed

leads to a slight offset in pattern both at the design frequency and at a
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Figure 6.15: Gain of a bare dipole antenna in dolerite for three

different feed points.

higher frequency of 8 MHz, but the amplitude of the offset is almost

negligible.

The most notable change in antenna characteristics is in the input

impedance, illustrated in Figure 6.17. At the operating frequency,

the antenna becomes capacitive, and the real part of the impedance

increases. From the point of view of the designer, neither change is

desirable. However, if an antenna must be driven in an offset manner

for practical reasons, performance is acceptable for small offsets.

6.5 SYSTEM PERFORMANCE ESTIMATION

In Chapter 2, the RT equation was introduced in Equation 2.12:

∫ R

0
α∗. dr = 126

+ PtdBW

+ 10 log10

(

1
4πR2

)

+ 10 log10

(

RrGtGrλ
2

4π

)

− VrdBµV . (6.7)

The antenna parameters vary as a function of the rock surrounding

the antenna. With the assistance of the FDTD model, it is possible to
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Figure 6.16: Pattern of a bare dipole antenna in dolerite for three

different feed points.

determine all the parameters in the equation that apply to the trans-

mitter and receiver antennas.

To calculate the parameters for an antenna in a single rock type,

a model is created containing an accurate representation of the phys-

ical antenna, surrounded by the rock. The antenna resistance can be

obtained directly from the model. The wavelength can be determined

from the electrical properties of the rock. The gain can be calculated

using both the electrical properties and the model results. The trans-

mitted power and the received voltage are measured.

The RT equation for a particular transmit and receive pair can be

written as

∫ R

0
α∗. dr = PtdBW

+ 10 log10

(

1
4πR2

)

+ 126 + 10 log10 Gt(θ1)

+ 10 log10

(

RrGr(θ2)λ
2

4π

)

− VrdBµV (6.8)
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Figure 6.17: Input impedance of a bare dipole antenna in dolerite

for three different feed points.

separating transmit and receive antenna characteristics. The correct

characteristics can be inserted depending on the rock types at the

transmitter and receiver locations. The transmitter coefficient as a

function of the angle between the normal to the antenna and the

raypath is

CTx = 126 + 10 log10 Gt(θ1). (6.9)

The receiver coefficient is

CRx = 10 log10

(

RrGr(θ2)λ
2

4π

)

. (6.10)

Later in the chapter, modelling results will be applied to correct

field RT data for antenna effects as the rock type changes in the bore-

hole.
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Figure 6.18: Geometry for modelling an antenna embedded in a

massive sulphide body.

6.6 ANTENNAS IN VERY LOSSY ENVIRONMENTS

It is not possible to model the performance of an antenna in a very

lossy rock by completely filling the modelling space with the rock.

The attenuation in the rock is so high that all the transmitted energy is

dissipated before it reaches the measuring point. The high attenuation

rate also means that pattern measurements cannot be interpreted in

the usual manner.

An antenna has been modelled embedded in a cylinder of sulph-

ide, which is in turn embedded in granite, a low loss rock. The geo-

metry of the model is shown in Figure 6.18. In each case, the antenna

is a bare monopole, 3.2 m long and 44 mm in diameter.

The gain of an antenna embedded in sulphide cylinders of five

different lengths is illustrated in Figure 6.19. The gain resembles that

expected for five antennas of different lengths because the sulphide
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Figure 6.19: The effect of sulphide cylinder length on gain.

Figure 6.20: Power density at 3 MHz 40 m from the feedpoint of

the antenna as a function of the length of the sulphide cylinder.
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cylinder supports an antenna-like current distribution.

In Figure 6.20 the pattern for the short sulphide cylinder re-

sembles that expected from a dipole antenna: similar to the cosine

pattern of a dipole antenna in air. From the earlier result for gain, as

the sulphide cylinder is lengthened, its pattern should resemble that

of a longer antenna at the same frequency. Superficially, the patterns

in Figure 6.20 do resemble those of longer antennas but they also

have a lobe developing at a high angle to boresight. The lobe comes

about purely through the proximity to the measurement surface, as

discussed on Page 114.

This case study serves as another warning that as rock becomes

more conductive, the concepts of gain and pattern become less mean-

ingful. For RT inversion, a straight raypath model with correction for

pattern and gain is insufficient. The full FDTD model needs to be in-

corporated into the inversion to completely account for the effects of

highly conductive rock.

6.7 A TOMOGRAPHY EXAMPLE

The RT modelling code can be used to estimate the performance of

antennas used in field surveys. Estimates of gain, pattern and imped-

ance can then be used to enhance the inversion. A field survey re-

ported by Van Schoor and Duvenhage (1999) is processed here with

information added about the performance of the antennas used. I

would like to thank the authors for granting their permission to use

their data here.

An RT survey was conducted at a disseminated sulphide test site

in Mpumalanga Province, South Africa. The geological situation

is illustrated in Figure 6.21. Information from three boreholes was

available. Two of the boreholes are shown with their geological logs

and the major and minor ore intersections are shown on all three. The

geological interpretation is overlaid, based purely on the evidence of

core sampled from the three boreholes.

After the RT data was acquired, it was processed assuming that

the antenna performance of both antennas was constant as a func-

tion of depth and that the antenna pattern was cosinusoidal. The RT
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Figure 6.21: RT survey results as originally processed.

equation applied was

∫ R

0
α∗. dr = 125

+ PtdBW

+ 10 log10

(

1
4πR2

)

+ 10 log10(cos2(θ))

− VrdBµV (6.11)

for each transmitter and receiver position. The resulting data was in-

verted using a maximum entropy algorithm, assuming straight raypath

propagation.

In Figure 6.21 the resultant image is shown, placed under the ori-

ginal geological interpretation. There are clear discrepancies between

the image and the geological interpretation. The proposed interpret-
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Table 6.1: Rock properties of case study at 12.5 MHz.

Rock Conductivity Relative

(mS/m) Permittivity

Diabase 0.5 12

Pyroxenite 1.5 40

Chromitite/Pyroxenite 2.5 15

Chromitite 1.5 25

Quartz 0.25 8

Granite 0.25 8

ation suggests that there is very little ore between boreholes B1 and

B2, while the image suggests a large mineralized zone.

To improve the image, rock dependant antenna parameters can be

calculated using the FDTD model. The antenna parameters were de-

termined by running one numerical model for each rock type in the

survey. Information was only required from the models at the fre-

quency used in the RT survey, 12.5 MHz, so the electrical properties

used in the model were fixed. Electrical properties were estimated

from measurements made in similar rocks in nearby boreholes. The

five rock types present in the borehole logs as well as the electrical

property estimates that were used are summarized in Table 6.2.

The antenna used in the field and modelled here, is an electric

dipole. The dipole is centre fed, with two sections 1.5 m long, 36 mm

in diameter coated with 4 mm of insulation. The lower dipole sec-

tion is extended by 0.5 m with a wire 8 mm in diameter coated with

11 mm of insulation, while the upper dipole section is extended by

2.5 m with a wire 4 mm in diameter coated with 2 mm of insulation.

The dipole is thus asymmetrical, as it has 4 m above the feed point

and 2 m below the feed point. The dipole geometry was chosen for

operational rather than electrical reasons.

The gain, pattern and impedance of the antennas are determined

from the FDTD models. The transmitter and receiver coefficients for

each rock type in the model are tabulated in Table 6.2. Note that the

difference between the most favourable and the least favourable pair

of coefficients is greater than 20 dB.
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Table 6.2: Antenna performance of the various rocks in the case

study at 12.5 MHz.

Rock CTx (dB) CRx (dB)

Diabase 120.2 11.7

Pyroxenite 110.6 -0.9

Chromitite/Pyroxenite 114.4 5.9

Chromitite 111.8 1.4

Quartz & Granite 118.6 11.8

The attenuation calculated at each transmitter and receiver posi-

tion can be adjusted for the antenna pattern in the rock types at those

positions. The data is then inverted again to create a new attenuation

image. In Figure 6.22 the left hand image has been corrected includ-

ing only pattern correction. The right hand image has been correc-

ted only including transmitter and receiver correction without pattern

correction. In Figure 6.23 the two corrections shown in Figure 6.22

are both applied and the image produced is compared to the original

image with no correction.

In this example, in all cases where processing is applied the ef-

fect on the output image is not significant. The final processed image

suggests that the resistive zone between about 120 m and 140 m does

not extend as far towards the left hand borehole as originally sugges-

ted. There are also some detail changes within the main conductive

zone at approximately 105 m depth and the main conductive zone is

slightly better resolved when all corrections have been applied.

In this case, correcting antenna performance for the different

rocks in the boreholes has not lead to a significant change in the res-

ultant tomographic image. Greater improvements are likely to be

seen when the contrast between the conductivity of the target and

that of the host is greater. The case study leaves open the question of

whether RT imaging using the straight raypath approximation and the

maximum entropy inversion can benefit from rock dependent antenna

corrections.
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Figure 6.22: The tomographic image corrected for rock dependant

pattern on the left and for rock dependant gain and impedance on

the right.

6.8 CONCLUSION

In this chapter, the computer model of Chapter 4 and the techniques

of the last chapter are applied to real RT scenarios. Case studies show

that more than one receive antenna can be used in a single borehole,

as long as the spacing between the antennas is at least as great as

the antenna length. The influence of wire on an antenna has been

illustrated, highlighting the potential danger of wire suspension in

particular environments.

The effect of water in the borehole has been investigated and

found not to affect performance significantly, especially if realist-

ically small quantities of water are considered. Unbalanced antennas

are investigated to determine how a break in an antenna would effect

its electrical performance. A break will cause a discernible change in

input impedance. If the position of the break is accurately known, it

should be possible to correct for it using an antenna model from the

FDTD code.

A series of models shows how antennas in very lossy environ-

ments deviate from the straight raypath approximation. The models
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Figure 6.23: The tomographic image with no corrections on the left

and with both corrections applied on the right.

of antennas in a lossy environment show how the environment be-

comes part of the antenna for performance estimation purposes and

therefore limits the correction that can be applied to antenna para-

meters. To take full advantage of the capabilities of the FDTD model,

the model itself must be introduced into the RT inversion, replacing

of the straight raypath model.

An antenna correction can be derived from FDTD modelling and

applied to data as a first order correction for the behaviour of anten-

nas in various rock types. The correction was applied to an example

of field data but did not have a significant effect on the image in

that case. A greater effect is expected when the electrical contrast

between the host and the target rocks is greater.



7
Conclusions and recommendations

7.1 INTRODUCTION

Radio Tomography is a geophysical imaging technique that uses

single frequency HF radio waves to determine the attenuation of the

rock between two boreholes. By conducting measurements between

many different transmitter and receiver positions it is possible to

build up an image of the attenuation between the boreholes. Attenu-

ation corresponds to rock conductivity and hence to geology.

One of the most important problems in RT imaging is the conver-

sion from measured signal strength to attenuation. If the inversion

used for RT data includes the antenna as part of its forward model,

then no explicit conversion is required. If the straight raypath ap-

proximation is used as the forward model, measured data must be

converted to attenuation before inversion. The conversion depends

on accurate figures for the gain and impedance of the antenna as a

function of the surrounding rock type. This thesis describes the de-

velopment, testing and application of a numerical model that can be

used to determine the performance of RT antennas in rock.

7.2 NUMERICAL MODELS

Rock is often modelled in the literature by assuming a constant loss

tangent as a function of frequency across the HF band. The assump-
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tion is tested by examining the electrical properties of 2151 rock

samples and it is found to be a good first approximation. The constant

loss tangent model leads to an equation to estimate the resolution that

can be achieved by an RT system over a given range in a given rock

type. The equation shows that resolution is a proportion of borehole

spacing. Resolution decreases with increasing loss tangent until it

reaches a lower limit beyond which there is no further decrease in

resolution.

The antenna model developed in this thesis is based on the FDTD

technique. It has been implemented assuming rotational symmetry

and models only the TM mode. The model is terminated using second

order Higdon absorbing boundaries. The electric field across the an-

tenna feed point is directly driven.

The constant loss tangent model of rock properties is difficult to

incorporate into a FDTD antenna model. For more accurate numer-

ical modelling, a Debye equation is fitted to individual rock sample

measurements. Modelling can be extended across an arbitrarily large

bandwidth by increasing the number of Debye relaxation times.

To efficiently model insulated RT antennas, published thin-wire

and thin-layer subcell extensions to the FDTD technique have been

combined in a novel thin-wire, thin-layer subcell extension. The sub-

cell extension allows both the insulation layer and the surrounding

rock to be modelled as Debye materials. The novel subcell extension

greatly reduces the size of the model required to accurately charac-

terize an electric dipole antenna with a thin insulating layer.

The code has been verified using a variety of numerical compar-

isons, and has also been compared against a physical scale model. In

every case, the results from the FDTD model are in good agreement

with alternative numerical codes or approaches and with the physical

model.

The combination of the Debye model for material properties with

the thin-wire, thin-layer subcell extension provides a useful tool for

modelling both RT antennas and propagation. A realistic antenna in

a realistic RT environment can be modelled across a broad frequency

band in less than twenty minutes on a 750 MHz Pentium computer.

Modelling time does not increase if the rock geometry becomes more



7.3 ANTENNAS IN ROCK 167

complex, or if another antenna is introduced. Broad band results are

particularly useful because frequency is the easiest variable for an RT

operator to change.

7.3 ANTENNAS IN ROCK

Input impedance, gain and directivity of an antenna can all be ex-

tracted from the FDTD model. Gain and directivity measure how

efficiently the antenna couples energy into the rock. High gain is

desirable to maximize the range that can be achieved in a given rock

type. The antenna impedance controls how efficiently energy it trans-

ferred between the antenna and surrounding electronics. Without a

matching network, a wholly real impedance of tens of ohms is desir-

able as the best compromise between high voltages and high currents

in the transmitter output stage. A low real impedance will also have

the best noise performance in the receiver.

Gain is a simple function of electrical length for all the antennas

modelled. An acceptable gain of close to unity is achieved when the

electric dipole antenna is electrically half a wavelength long. If the

antenna is bare, its electrical length is determined by the wavelength

in the surrounding rock and changes as the rock changes along the

borehole. If the antenna is sufficiently well insulated its electrical

length is entirely determined by the characteristics of the insulation

and becomes independent of the surrounding rock.

In a bare antenna, antenna impedance varies as a function of the

surrounding rock. The antenna can be considered to be broad band

because it can be used at different frequencies to improve perform-

ance in different rocks. For any given frequency, overall performance

in an RT survey will be a compromise: high gain in one rock type may

have to be sacrificed in order to achieve penetration in another rock

type. Changes in performance as a function of rock type can be ac-

counted for in the RT inversion by modelling the antenna in each rock

type using the FDTD code.

Electrically, the insulated antenna is perhaps a perfect RT an-

tenna: its parameters are not affected by the surrounding rock. It is

narrow band because there is no performance advantage to be gained
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from operating the antenna at any frequency other than its design

frequency.

The problems with the insulated antenna are mechanical and op-

erational: it is difficult to manufacture because a thick layer of insu-

lation limits the space available within the conductor for electronics;

it is physically long, making it difficult to handle in the field; it re-

quires longer boreholes; it reduces tomographic resolution slightly;

if a different frequency is required the antenna must be changed.

A hybrid insulated/bare antenna solves some of the practical

problems of an insulated antenna. Modelling results show that it

is possible to design a practical antenna having bare end sections

without losing the benefits of insulation. Hardware has been de-

veloped to test the hybrid antenna approach. Preliminary results in-

dicate that the technique is viable.

7.4 ANTENNA CASE STUDIES

RT data acquisition could be considerably speeded up if there were

more than one receive antenna in the receive borehole. The presence

of a second antenna in the same borehole as the receive antenna will

cause a change in received signal of less than 1 dB if the spacing

between antennas is larger than the length of the antennas themselves.

Much larger spacings may be necessary if more isolation is required.

Mechanically, it would be convenient to suspend an RT antenna

on a wire rather than on an optical cable. The wire will not influ-

ence the antenna characteristics if a sufficient gap can be interposed

between the antenna and the wire. The gap could be implemented

in practice using ferrite beads. There is a danger in using wire sus-

pension: it offers a route to guide radio waves around conductive

obstacles. The guiding effect breaks the straight raypath approxima-

tion used in inversion leading to artifacts in the final image.

Real boreholes are usually filled with water. For narrow bore-

holes the water has a negligible effect on the antenna parameters. If

the boreholes are greater than 200 mm in diameter, water can be con-

sidered as a lossy dielectric material, in the same way as rock. It is

not analogous to insulation because of its high dielectric constant.
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RT antennas can become unbalanced if there is mechanical fail-

ure of electrical contacts. The change in antenna performance is

small at the design frequency but can be become larger at other fre-

quencies. The input impedance offers a clear diagnostic: in the event

of a break the input impedance becomes more capacitive. The de-

signer of an RT antenna may be forced to used an unbalanced dipole

for practical reasons. Performance is similar to a balanced dipole of

the same length at the design frequency. The pattern is only slightly

skewed. Both the real and imaginary parts of the antenna impedance

are increased, which is undesirable.

7.5 ANTENNAS AND IMAGING

RT will not work where the rock is uniformly very conductive, as en-

ergy will not propagate from one borehole to another. Where smaller

volumes of very conductive rock are interspersed within more resist-

ive rock, RT may work, depending on the geometry of the situation.

Where small volumes of conductive rock are close to, or surrounding,

the antenna, it ceases to act as a simple antenna and becomes a com-

pound structure, including the nearby conductive rock. The straight

raypath approximation is violated.

Antenna parameters derived from the FDTD model can be substi-

tuted into the RT equation to correct field data for changes in antenna

parameters as the rock surrounding the antennas changes. The rock

immediately surrounding the borehole is known from drilling. The

technique has been applied to a case study of a massive sulphide

orebody hosted in diabase, quartzite and granite. The calculated RT

correction coefficients have a variation of more than 20 dB between

different rock types. In the case study, applying the corrections did

not alter the RT image significantly. It is not known whether the result

is general to all RT applications.

7.6 RECOMMENDATIONS FOR FURTHER WORK

1 The numerical model developed here is only quasi-3D: it delivers a

3D solution using a 2D model for the specific case of rotational sym-
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metry. For problems with a more general geometry, the model has to

be extended to 3D. The main area of research that will be necessary

is the implementation of an efficient thin-wire thin-layer subcell ex-

tension in 3D. Two specific problem requiring 3D modelling are the

effect of out of plane conductors on the RT image and the effect of

asymmetrical conducting bodies on the antenna performance.

2 It is not clear from the single case study whether an RT inversion can

be improved by incorporating a model of the antenna performance

as a function of rock type. Further work is necessary to determine

whether antenna corrections can improve the quality of RT images.

It is possible that alternative approaches to improved image quality,

including different inversion techniques, may offer greater benefits.

3 Application of the FDTD to several problems has shown that the

straight raypath approximation used in the forward model of the

tomographic inversion can be violated. In environments that contain

rocks with contrasting conductivity, the geometry of the conductive

rocks plays an important part in how the energy propagates from one

borehole to the other. If there is a wire in the borehole above the

antenna, that wire can act as a guide for radio waves.

One way to account for the interrelationship between the antenna

and the structure of the rock around it is to incorporate the antenna

model into the inversion. The FDTD code can be used as the for-

ward model in preference to a straight raypath model. The concept

will become particularly attractive as computing power becomes ever

more affordable and forward models can be run in seconds rather than

minutes or hours.

4 Although data has been obtained using hardware developed from the

modelling results, there is still considerable scope for improvement in

the probe design. Mechanical improvements are necessary to make

the probes more reliable. Electrically, the performance of a com-

pletely insulated antenna should be confirmed in a borehole.

5 There is also scope for developing a methodology for survey design

using results obtained in this thesis. The methodology should guide

an operator in antenna selection and frequency selection. The nu-

merical model provides an excellent tool for testing a survey design

before attempting to apply it in the field.



A
Derivation of update equations

In this appendix, the complete derivation of the update equations for

the basic BOR FDTD algorithm are presented. The equations contain

elements from a variety of sources and the derivations are presented

here as a single reference.

A.1 THE Ez PATCH

Given Ampère’s Law
∮

C
H · dl =

∫ ∫

S
σE · dS +

∂
∂t

∫ ∫

S
σD · dS, (A.1)

and integrating around the Ez patch illustrated in Figure A.1, we get

∂
∂t

φ2
∫

φ1

r2
∫

r1

Dzr dr dφ + σ

φ2
∫

φ1

r2
∫

r1

Ezr dr dφ

=

r2
∫

r1

Hr dr +

φ2
∫

φ1

Hφ r dφ

+

r1
∫

r2

Hr dr +

φ1
∫

φ2

Hφ r dφ. (A.2)

Evaluating the integrals gives:

1
2

(

r2
2 − r2

1

)

4φ (D +σEz) = 4rHr(φ2) + r24φHφ(r2)

−4rHr(φ1)− r14φHφ(r1)
(A.3)
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Figure A.1: The Ez patch.

Because there is no dependence on φ, Hr(φ2) = Hr(φ1). Remem-

ber that D = ε∞E + P. Then

ε∞
∂
∂t

Ez +
∂
∂t

Pz +σEz =
2

r2
2 − r2

1
[r2Hφ(r2)− r1Hφ(r1)] .

(A.4)

But from Equation 4.24, P = ∑ Pi, so

∂P
∂t

=
n

∑
i=1

∂Pi

∂t
(A.5)

Substituting in Equation A.4 and expanding the time derivatives of

Pzi,

ε∞
∂
∂t

Ez+
n

∑
i=1

1
τi

[εwiEz − Pzi] +σEz =

2
r2

2 − r2
1

[r2Hφ(r2)− r1Hφ(r1)] .
(A.6)
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and rearranging gives

[

n

∑
i=1

εwi

τi
+σ

]

Ez +ε∞
∂
∂t

Ez

=
n

∑
i=1

1
τi

Pzi

+
2

(r1 +4r)2 − r2
1

[r2Hφ(r2)− r1Hφ(r1)] .

(A.7)

The differential equation can now be discretized,

E|n+1
rr, j − E|nrr, j

4t
+

E|n+1
rr, j + E|nrr, j

2
1

ε∞

[

n

∑
i=1

εwi

τi
+σ

]

=
1

ε∞

n

∑
i=1

1
τi

Pzi

+
2

ε∞4r(2r1 +4r)
[r2Hφ(r2)− r1Hφ(r1)] .

(A.8)

If Equation A.8 is rearranged, then for the chosen grid, r1 = 4r(i−
0.5) and r2 = 4r(i + 0.5)

Ez|n+1
rr,z

[

2ε∞ +4t
n

∑
i=0

εwi

τi
+σ4t

]

= Ez|nrr,z

[

2ε∞ −4t
n

∑
i=0

εwi

τi
−σ4t

]

+ 24t
n

∑
i=1

1
τi

Pz

+
44t

4r2(r1 +4r/2)
[r2Hφ(r2)− r1Hφ(r1)] .

(A.9)

The update equation for Ez is

Ez
∣

∣

n+1

rr,z
= c1Ez

∣

∣

n

rr,z

+
n

∑
i=1

c2iPzi
∣

∣

n+0.5

i, j+0.5

+ c3

[

i + 0.5
i

Hφ

∣

∣

n+0.5

i+0.5, j+0.5
− i− 0.5

i
Hφ

∣

∣

n+0.5

i−1/2, j+1/2

]

(A.10)
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Figure A.2: The Ez patch on the axis.

where

c1 =
2ε∞ −4t ∑n

i=0
εwi
τi
−σ4t

2ε∞ +4t ∑n
i=0

εwi
τi

+σ4t
, (A.11)

c2i =
24t/τi

2ε∞ +4t ∑n
i=0

εwi
τi

+σ4t
, (A.12)

c3 =
24t/4r

2ε∞ +4t ∑n
i=0

εwi
τi

+σ4t
. (A.13)

A.2 THE Ez PATCH ON THE AXIS

From the definition of the coordinate system the only component that

occurs on the axis is Ez. The geometry necessary to determine the

update equation for Ez is shown in Figure A.2. Only the previous

value of Ez and the value of Hφ in the cell adjacent to the axis are

necessary to calculate the present value of Ez. From Ampère’s Law,



A.2 THE Ez PATCH ON THE AXIS 175

equation Equation A.1,

∂
∂t

φ2
∫

φ1

r2
∫

r1

Dzr dr dφ + σ

φ2
∫

φ1

r2
∫

r1

Ezr dr dφ

=

r0
∫

0

Hr(φ1) dr +

0
∫

r0

Hr(φ2) dr

+

φ2
∫

φ1

Hφ r dφ. (A.14)

Evaluating the integrals gives

r2
0
2
4φ

[

σEz +
∂
∂t

Dz

]

= r04φHφ. (A.15)

Once again, because D = ε∞E + P and P = ∑ Pi,

r0

2

[

σEz +ε∞
∂
∂t

Ez +
n

∑
i=1

∂
∂t

Pzi

]

= Hφ. (A.16)

Expanding the derivative of Pz using Equation 4.19 yields

r0

2

[

σEz +ε∞
∂
∂t

Ez +
n

∑
i=1

1
τi

[εwiEz − Pzi]

]

= Hφ. (A.17)

Regrouping gives
[

σ +
n

∑
i=1

εwi

τi

]

Ez +ε∞
∂
∂t

Ez =
n

∑
i=1

1
τi

Pzi +
2
r0

Hφ. (A.18)

Note that r0 = 4r/2. If Equation A.18 is rearranged in difference

form,
[

2ε∞ +4t
n

∑
i=0

εwi

τi
+σ4t

]

Ez
∣

∣

n+1

0, j

=

[

2ε∞ −4t
n

∑
i=0

εwi

τi
−σ4t

]

Ez
∣

∣

n

0, j

+ 24t
n

∑
i=0

1
τi

Pi
∣

∣

0, j

n+1/2
+

84t
4r

Hφ

∣

∣

1/2, j

n+1/2

(A.19)

then the update equation for Ez on the axis is

Ez
∣

∣

0, j+1/2

n+1
= c1Ez

∣

∣

0, j+1/2

n+1

+
n

∑
i=1

c2iPzi
∣

∣

0, j+1/2

n+1/2
+ c5Hφ

∣

∣

1/2, j+1/2

n+1/2

(A.20)
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Figure A.3: The Er patch.

where c1 and c2i are defined as above in equations Equation A.11 and

Equation A.12 and c5 is

c5 =
84t/4r

2ε∞ −4t ∑n
i=0

εwi
τi
−σ4t

. (A.21)

A.3 THE Er PATCH

Using Ampère’s law, equation Equation A.1, around the patch shown

in Figure A.3 gives

φ2
∫

φ1

r2
∫

r1

[
∂
∂t

Dr +σEr].r dφ dz =
z2
∫

z1

Hz dz +
φ2
∫

φ1

Hφr dφ

+
z1
∫

z2

Hz dz +
φ1
∫

φ2

Hφr dφ (A.22)

Evaluating the integrals and simplifying gives

r4φ4z
(

∂
∂t

Dr +σEr

)

= r4φ (Hφ(z2)− Hφ(z1)) . (A.23)
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Because Dr = ε∞Er + Pr and Pr = ∑ Pri

ε∞
∂
∂t

Er +
n

∑
i=1

∂
∂t

Pri +σEr =
1
4z

(Hφ(z2)− Hφ(z1)) . (A.24)

The time derivative of Pri can be expanded, giving

σEr +ε∞
∂
∂t

Er +
n

∑
i=1

1
τi

[εwiEr − Pri]

=
1
4z

(Hφ(z2)− Hφ(z1)) . (A.25)

Rearranging gives

ε∞
∂
∂t

Er +

[

σ +
n

∑
i=1

εwi

τi

]

Er

=
n

∑
i=1

1
τi

Pri +
1
4z

(Hφ(z2)− (A.26)

−Hφ(z1)) (A.27)

The differential equation can now be discretized, using central differ-

encing, for the position shown in Figure A.3:

Er
∣

∣

n+1

i+1/2, j
− Er

∣

∣

n

i+1/2, j

4t
+

1
ε∞

[

σ +
n

∑
i=1

εwi

τi

]

Er
∣

∣

n+1

i+1/2, j
+ Er

∣

∣

n

i+1/2, j

2

=
n

∑
i=1

1
τi

P
∣

∣

n+1/2

i+1/2, j

+
1
4z

(

Hφ

∣

∣

n+1/2

i+1/2, j+1/2

−Hφ

∣

∣

n+1/2

i+1/2, j−1/2

)

(A.28)

which leads to an update equation for Er:

Er
∣

∣

n+1

i, j+1/2
= c1Er

∣

∣

n

i, j+1/2

+
n

∑
i=1

c2Pri
∣

∣

n+1/2

i, j+1/2

+ c4

(

Hφ

∣

∣

n+1/2

i+1/2, j+1/2
− Hφ

∣

∣

n+1/2

i+1/2, j−1/2

)

(A.29)

where c1 and c2i are as defined earlier and

c4 =
24t/4z

2ε∞ +4t ∑n
i=1

εwi
τi

+σ4t
. (A.30)

The polarization vector components Pri are updated in exactly the

same way as the components Pzi presented earlier.
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A.4 THE Hφ PATCH

The update equations for Hφ are derived using Faraday’s law,

∮

C
E · dl = − ∂

∂t

∫∫

S
B · dS (A.31)

Faraday’s law is applied on the patch shown in Figure A.4. The de-

rivation is simpler than that for the E-field update equations, because

the permeability is assumed to be constant, µ = µ0, there are no

losses and there is no frequency dependence.

− ∂
∂t

z2
∫

z1

r2
∫

r1

Bφ dr dz =

r2
∫

r1

Er(z2) dr +

z1
∫

z2

Ez(r2) dz

+

r1
∫

r2

Er(z1) dr +

z2
∫

z1

Ez(r1) dz

(A.32)

If B = µ0H and all the fields are assumed constant along their re-

spective edges and across the surface of the patch, then the integrals

evaluate to

−µ04r4z
∂
∂t

Hφ = 4r (Ez(r2)− Ez(r1))

+ 4r (Er(z2)− Ez(z1)) (A.33)
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which translates simply into the finite difference update equation,

Hφ

∣

∣

n+1/2

i+1/2, j+1/2
= Hφ

∣

∣

n−1/2

i+1/2, j+1/2

+ m1

(

Ez
∣

∣

n

i+1, j+1/2
− Ez

∣

∣

n

i, j+1/2

)

− m2

(

Er
∣

∣

n

i+1/2, j+1
− Er

∣

∣

n

i+1/2, j

)

(A.34)

where

m1 =
4t

µ04r
, (A.35)

m2 =
4t

µ04z
. (A.36)





B
Rock properties

This appendix contains a catalogue of the electrical properties of

the seven rock types used throughout this thesis. For each rock, a

series of graphs are plotted showing the basic electrical property be-

haviour with frequency, from 1 MHz to 64 MHz. Superimposed on

each graph is the response of a Debye material designed to replicate

the electrical properties of the sample. Error bars are also plotted on

the material properties graphs to indicate the uncertainty of measure-

ments made with the HP4815A Vector Impedance Meter.

The seven rocks chosen from the Miningtek rock properties data-

base have all been given single word titles, although the titles refer to

considerably more complex geological names. The rocks are

1 Quartzite: The sample is an example of a high quality massive

quartzite with very little contamination by other minerals, almost

pure silica (SiO2), with a low conductivity.

2 Granite: A coarse grained igneous intrusive rock consisting of quartz,

feldspar and biotite mica.

3 Dolerite: A fine grained igneous intrusive rock of more mafic com-

position than the granite.

4 Peridotite: A coarse grained ultramafic rock with a low silica content.

This particular sample has also undergone weathering and contains

clay minerals.

5 Cassiterite: The sample contains cassiterite, a tin ore, hosted in chlor-

ite. It is referred to in this thesis only by the name of its ore mineral.
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6 Pyrite: The sample is a quartzite that contains over 25% of pyrite

mineralization. Again, it is referred to only by the name of its ore

mineral.

7 Sulphide: The sample is an example of massive sulphide mineraliz-

ation and contains a variety of metallic sulphides, including those of

copper, lead and zinc.

B.1 FITTING THE DEBYE MODEL

To model rocks using the FDTD technique, the rock electrical prop-

erties as a function of frequency must be approximated by a Debye

model. The experimental rock property data at seven frequencies is

fitted to Debye models with one or more relaxation times, using a ge-

netic algorithm (GA) implemented in IDL. Fitting experimental data

to a Debye model is difficult for a number of reasons: two paramet-

ers must be fitted, the permittivity and the conductivity; the Debye

model is not an ideal model for rock electrical properties, but it is

well suited to the FDTD method; and the Debye equation for con-

ductivity is non-linear.

The GA avoids difficulties with the non-linear nature of the Debye

equations by making no assumptions about the form of the function

that it is fitting (Goldberg, 1989). It is also ideal for optimizing com-

plex systems, including the design of antennas (Lee et al., 2000a).

The Debye equation requires nt = 2 + 2n terms to be fitted for n
relaxation times. The GA starts with an initial population of a number

of sets of random values for the nt terms. For fitting the Debye equa-

tions a constant population size of 30 was used, although the number

of terms to be fitted varied.

In GA nomenclature, each value to be fitted is a string and the

whole set of strings that make up one Debye equation is a structure.

The structure can be decoded to form a solution point. In this imple-

mentation of the GA as a decimal GA (Lee et al., 2000b), the decoding

is a simple 1:1 mapping of strings to Debye equation parameters.

The GA is implemented using scaling: strings in the GA always

have values between 0 and 1, which are scaled to represent the para-

meters of the Debye equation. Values for ε are restricted to lie
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Table B.1: An example population with four strings.

No. String Fitness % of Total

1 0.45 169 14.4

2 0.98 576 49.2

3 0.16 64 5.5

4 0.29 361 30.9

Total 1170 100.0

between 0.01 to 1000. The value for τ is limited to lie between 1.0−5

and 1.0−9 and is mapped to its string logarithmically.

A simple genetic algorithm (Goldberg, 1989) consists of three

steps:

1 Reproduction,

2 Crossover,

3 Mutation.

Initially a population is created by filling a number of structures

with random strings. In reproduction, each structure is evaluated by a

fitness function. The fitness function used for fitting rock properties

data is

F =
7

∑
i=1

(

ε f i −εmi

εmi

)2

+ 100
7

∑
i=1

(

σ f i −σmi

σmi

)2

+
7

∑
i=1

(

tan δ f i − tan δmi

tan δmi

)2

(B.1)

where εmi is the i’th measured value and ε f i is the i’th fitted value.

Seven measured and fitted values are compared for each rock sample,

one for each frequency at which the sample is measured. The fitness

is made up of three parameters: the permittivity, ε, the conductivity,

σ and the loss tangent, tan δ. The factor of 100 in the conductivity

term was empirically determined to provide the best overall fit of the

three parameters.

Once the fitness of each member of the population is determined,

a new population is created by copying the existing population ran-
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domly, weighted by the fitness of each element. For example, con-

sider a structure of one string and a population with four members,

as shown in Table B.1. When creating the new population, the first

entry has a 49.2% chance of being string 2, and a 5.5% chance of

being string 3. The same is true for each other entry in the new pop-

ulation. Fitter members of the population come to dominate the new

population selected for reproduction, but there is a chance that less

fit members may survive.

The next stage is crossover: each string of each child is made up

of a combination of the same string from each of its two parents. In

the decimal GA crossover is a linear combination of the same string

in each parent (Lee et al., 2000b).

The population chosen for reproduction is paired off at random

and each pair of parents produces two children. If f1 is the string to

be fitted, then the new value of f1 for the two children is created with

f1c1 = r f1p1 + (1− r) f1p2

f1c2 = r f1p2 + (1− r) f1p1

(B.2)

where r is a random value between -0.5 and 1.5, and the subscipts

p1, p2, c1 and c2 represent the two parents and two children, re-

spectively. All strings have values between 0 and 1 and values are

wrapped around. For example, if crossover leads to a string having a

value of 1.1, then the value will be wrapped around to 0.1. Using a

random value from -0.5 and 1.5 increases the range of the search and

empirically performs better than a true GA which uses random values

between 0 and 1.

Most of the new population are created by reproduction and cros-

sover. However, the top 10% of the population is transferred directly

into the new population, an elitist approach that guarantees that the

fittest members of the population always survive.

A small proportion, 0.5%, of the new population are mutated, by

randomly adding or subtracting a fraction, 10%, to one of the strings

making up the member of the population.

The new population is then tested for fitness and subsequently

undergoes reproduction, crossover and mutation. For fitting the RT

Debye equations, the process continued until the fitness function var-

ied by less than 0.02% in 10 generations, or until 1200 generations
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Table B.2: Rock properties of all the chosen samples for a

wavelength of 12 m.

Rock Frequency Loss tangent Attenuation

(MHz) (dB/m)

Quartzite 8.59 0.02 0.05

Granite 7.98 0.06 0.14

Dolerite 4.26 0.24 0.54

Peridotite 3.29 0.76 1.57

Cassiterite 1.33 9.48 4.10

Pyrite 0.53 31.6 4.40

Sulphide 0.13 262 4.53

had passed. The GA is run 8 times for each rock and the best result is

selected.

The GA was used to fit models with 1 to 4 Debye relaxation times

to the measured data and the model that fitted the data best was then

chosen by hand. If a lower order model fitted the data nearly as

well, it would be chosen in preference to a higher order model with

a slightly better fit. The results for each rock are presented in the

catalogue that follows.

B.2 SUMMARY OF PROPERTIES

In Table B.2 all the rocks are listed, together with the frequency at

which the wavelength in the rock is 12 m. The loss tangent and at-

tenuation at that frequency are also listed.

The attenuation rates of the three most conductive rocks for a

wavelength of 12 m are all approximately equal, but occur at differ-

ent frequencies. This supports the relationship plotted in Figure 2.12

in Chapter 2: for a given attenuation rate, the resolution becomes

constant above a loss tangent of about 20-30. Table B.2 shows a con-

stant loss for a constant wavelength, and hence a fixed relationship

between attenuation and resolution.
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B.3 INDIVIDUAL ROCKS

Over the next pages, the properties of each of the seven rocks are

plotted. For each rock, the effective conductivity and permittivity

are presented, together with four derived parameters. For each para-

meter, the measured value is plotted at each of seven frequencies,

together with error bars. The error bars represent a rectangular distri-

bution of error, derived from the error specification of the HP4815A

Vector Impedance Meter given in Chapter 2. Where only one hori-

zontal line is plotted, the error values have converged.

For each rock, a table presents the Debye model used to approx-

imate that rock in all work in this thesis. The Debye model is also

plotted on the electrical property graphs as a line.
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Figure B.1: Electrical properties of the quartzite sample.

Table B.3: The Debye model for quartzite.

σ0 = 1.48×10−6

ε∞ = 8.11

εw1 = 10.21 τ1 = 9.79×10−6

εw2 = 0.44 τ2 = 8.08×10−9

B.3.1 Quartzite

This quartzite sample has almost the lowest conductivity or loss tan-

gent of any sample in the Miningtek database. It is almost perfectly

characterized by a constant loss tangent and is correspondingly diffi-

cult to fit to a Debye model with a small number of relaxation times.

The poor fit here is considered acceptable because the very low loss

tangent means that even poor loss tangent estimation is unlikely to

affect model performance.
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Figure B.2: Electrical properties of the granite sample.

Table B.4: The Debye model for granite.

σ0 = 2.99×10−5

ε∞ = 8.41

εw1 = 1.00 τ1 = 4.82×10−8

εw2 = 1.27 τ2 = 3.03×10−9

B.3.2 Granite

The granite is highly resistive, so its resistivity is subject to high un-

certainty.
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Figure B.3: Electrical properties of the dolerite sample.

Table B.5: The Debye model for the dolerite sample.

σ0 = 1.17×10−4 ε∞ = 17.30

εw1 = 16.53 τ1 = 2.65×10−7

εw2 = 3.77 τ2 = 9.18×10−7

εw3 = 9.13 τ3 = 3.07×10−8

εw4 = 10.52 τ4 = 2.62×10−9

B.3.3 Dolerite

Dolerite is a good example of a lossy dielectric with a relatively high

effective conductivity and loss tangent.
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Figure B.4: Electrical properties of the peridotite sample.

Table B.6: The Debye model for the peridotite sample.

σ0 = 3.74×10−9

ε∞ = 17.93

εw1 = 653.5 τ1 = 8.29×10−7

εw2 = 32.84 τ2 = 3.50×10−9

B.3.4 Peridotite

The peridotite is the first sample where the conductivity is domin-

ated by DC conductivity, rather than effective conductivity caused by

complex permittivity.
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Figure B.5: Electrical properties of the cassiterite sample.

Table B.7: The Debye model for the cassiterite sample.

σ0 = 0.041

ε∞ = 1.00

εw1 = 732.7 τ1 = 9.98×10−7

εw2 = 55.69 τ2 = 1.68×10−9

B.3.5 Cassiterite

The electrical properties of the cassiterite sample are dominated by

the high DC conductivity.
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Figure B.6: Electrical properties of the sample containing pyrite

mineralization.

Table B.8: The Debye model for the sample containing pyrite

mineralization.

σ0 = 0.117

ε∞ = 1.006

εw1 = 1284 τ1 = 9.99×10−7

εw2 = 28.95 τ2 = 2.38×10−9

B.3.6 Pyrite

The pyrite sample is a good example of a rock dominated by its con-

ductivity, but where complex permittivity comes affect the conduct-

ivity at high frequencies.
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Figure B.7: Electrical properties of the sample containing massive

sulphide mineralization.

Table B.9: The Debye model for the sample containing massive

sulphide mineralization.

σ0 = 0.531

ε∞ = 11.31

εw1 = 249.7 τ1 = 1.38×10−7

εw2 = 21.62 τ2 = 4.42×10−9

B.3.7 Sulphide

The sulphide is an example of a very good conductor. Effective con-

ductivity is high and remains roughly constant with frequency.





Symbols and nomenclature

NOMENCLATURE

V Vector V

Vx Component of vector V in the x direction

Vx
∣

∣

n

i, j
x component of vector V evaluated at time t = n4t and

position r = i4r and z = j4z
r, z,φ Components of cylindrical coordinate system

x, y, z Components of Cartesian coordinate system

ĉ Complex number

ĉ∗ Complex conjugate

c′ Real part of complex number

c′′ Imaginary part of complex number

< Real operator

SYMBOLS

α angle of incidence in ABCs

α fraction of transmitting velocity in Liao ABC

α Attenuation constant in Np/m (8.686 Np = 1 dB)

α∗ Attenuation constant in dB/m

β Wave number

4 Cell size if 4r = 4z, m

ε Permittivity or dielectric constant, F/m
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εr Permittivity relative to free space

εs Permittivity of Debye medium as ω → 0
εwi Weighted permittivity of Debye medium

ε0 Permittivity of free space, 8.854× 10−12 F/m

ε∞ Permittivity of Debye medium as ω →∞
ζ Wave impedance, Ω

η Efficiency, dimensionless

θ Elevation angle

λ Wavelength, m

µ Permeability, H/m

µ0 Permeability of free space, 4π × 10−7 H/m

ρ Resistivity, = 1/σ , Ω m

ρ′ Equivalent magnetic resistivity, Ω/m

σ Conductivity, Si/m

τ Relaxation time of a Debye medium, s

φ Azimuth angle

χ Electric susceptibility

ω Rotational frequency, rad/s

atot Total attenuation, dimensionless

c Speed of light in free space, 3× 108 m/s

c Velocity of propagation in FDTD model, m/s

cA Artifical transmitting velocity, m/s

f Frequency, Hz

f String, in GA

h Dipole antenna half length, m

i Index of x or r direction

j Index of y or z direction

j
√
−1

k Index of z or φ direction

k Boltzman’s constant, 1.38× 10−23 J/K

k Complex wavenumber = α + jβ
m Limit of i in r
n Limit of j in z
n Index of time

r Distance along path in tomographic equation, m

r Radius in cylindrical coordinate system, m
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t Time, s

tan δ Loss tangent, dimensionless

Ae Effective aperture, m2

Ap Antenna parameters in RT equation, dimensionless

B Bandwidth, Hz

Bi Bayliss-Turkel operator of order i
B Magnetic flux density, T

C Capacitance, F

Cu Conversion of units in RT equation, dimensionless

CRx RT transmitter antenna coefficient, dimensionless

CTx RT receiver antenna coefficient, dimensionless

Cm
n Binomial coefficient

D Electric flux density, C/m2

D Directivity, dimensionless

E Electric field, V/m

G Gain, dimensionless

H(1)
0 Hankel function of first kind, order zero

H Magnetic field, A/m

I Current, A

J Current density, A/m2

K Radiation intensity, W/sr

L Differential equation operator

Le Effective length, m

M Magnetic polarization, A/m

P Electric polarization, C/m2

P Power, W

Pn Noise power, W

R Resistance, Ω

R Range, m

Rx Receiver

S Spherical spreading in RT equation, dimensionless

T Temperature, K

Tx Transmitter

V Voltage, V

W Power density, W/m2

X Reactive impedance, Ω
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Z Complex impedance, Z = R + jX

ABBREVIATIONS

ABC Absorbing boundary condition

ADC Analog to digital converter

ADE Auxiliary differential equation

BOR Body of revolution

CEM Computational electromagnetics

COM Complimentary operator method

CT Computed tomography

DC Direct current

EMC Electromagnetic compatibility

FDTD Finite-Difference Time-Domain

FWHM Full wave, half maximum

FET Field Effect Transistor

GA Genetic algorithm

GPR Ground penetrating radar

HF High frequency (3–30 MHz)

IDL Interactive Data Language

LO Local oscillator

NEC Numerical Electromagnetics Code

PC Personal computer

PCB Printed circuit board

PEC Perfect electrical conductor

PTFE Polytetrafluoroethylene (Teflon)

PML Perfectly matched layer

PVC Polyvinyl chloride

RF Radio frequency

RIM Radio imaging method

RT Radio Tomography

SIRT Simultaneous iterative reconstruction technique

TLM Transmission line matrix

TE Transverse electric

TM Transverse magnetic

UHF Ultra high frequency (300 MHz – 3 GHz)
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equation, 33
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dolomite, 83

effective aperture, 121

efficiency, 18

Faraday’s law, 75, 79, 80, 178

FDTD, 3, 37

BOR, 58

bandwidth, 71

basics, 51

coated thin wire, 77

Debye media, 55, 56

source, 70

subcell extensions, 73

thin layer, 74

thin wire, 75
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finite element method, 41

Finite-Difference Time-Domain,
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genetic algorithm, see GA
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continuous wave, 8
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method of moments, 42

Miningtek, 3, 11, 131, 134

mutual impedance, 141

NEC, 46, 86

noise, 27

Parktown Shales, 134

PCB, 94

PEC, 49

perfectly matched layer, see ABC

peridotite, 90, 145, 148, 190

permeability, 19
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Radio Imaging Method, see RIM
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recursive convolution, 55
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measurement, 22

modelling, 32

variability, 23

Rotational symmetry, see FDTD
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constraints, 9

equation, 17

geometry, 6

introduction, 5

operating frequency, 26, 28

process, 6

resolution, 26, 29

saline solution, 94

scale model, 85
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stability, 54, 81

ABC, 82
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Debye media, 83

Liao ABC, 69

lossy media, 83

subcell extensions, 84

subcell extension, 74

thin-layer, 74
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system performance, 154
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resolution, 119

transmission line matrix, see
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verification, 85

volume current method, 42
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Yee, 51

Z transform, 55


