Do the results of respirable dust samples obtained from direct-on-filter X-ray diffraction, direct-on-filter Infrared and indirect Infrared (KBr pellet) methods correlate?

Cecilia Pretorius CSIR Centre for Mining Innovation (CMI)

CSIR/CMI/HF/EXP/2010/0028/A

CSIR

Test & Measurement Conference 2010

our future through science

Respirable dust and Silica

- Dust particles < 10 µm enters the gas exchange region of the lungs (alveoli)
- Silicosis: caused by respirable crystalline silica
- Silicosis can not be stopped, but can be prevented
- International drive to eliminate Silicosis
- Occupational Exposure Limit (OEL) in South Africa
- is 0.100 mg/m³

Sampling for Silica

- Filter in a cassette and sampling pump
- Sampling over entire shift of worker (TWA exposure)
- Gravimetric weighing to determine the amount of dust
- Analysis to determine the amount silica (quartz)
- Determine exposure level in mg/m³

Analysis methods for Silica

- Direct-on-filter (DoF) X-ray Diffraction (XRD);
- DoF Fourier-Transform Infrared (FTIR); and
- Indirect FTIR through the preparation of a

potassium bromide (KBr) pellet.

- Based on internationally recognised methods:
 - DoF XRD and FTIR: MDHS 101 (HSE UK); and
 - KBr pellet method: NIOSH 7602 (USA).

Objective

To determine whether the silica results obtained from DoF XRD, DoF FTIR and KBr pellet methods correlate – within the South African context

- International studies were done to compare these methods but were based on the use of PVC filters;
- In South Africa mixed cellulose ester (MCE) filters are mainly used; and
- This study took into account that blank filters are not necessarily available to the testing laboratory prior to dust sampling.

Methodology

- Filters from an international proficiency testing scheme were used as controls;
- 245 Samples from different commodities that were taken for another research project was used (gold, coal, diamond, quarries and ready-mix plants);
- Samples were analysed using all three methods;
- KBr pellets were individually prepared if the quantities of dust were sufficient (i.e. "Individual Group"); and
- Five filters were grouped and KBr pellets prepared convention (i.e. "KBr Group 1 49").

Methodology

- Calibration standards were prepared according to the methods;
- Certified reference materials were used;
- Measuring conditions were optimised according to the
- instrument parameters;
- Blank reference filters were analysed as the background for DoF FTIR;
- DoF FTIR scanning range was adopted to 820 500 cm⁻¹ to compensate for the MCE filter background; and
- Limit of detection was 0.010 mg quartz

our future through science

Results for entire data set

Results for each KBr group

our future through science

Results by commodity

Results on reduced data set

our future through science

All results > 0.010 mg

Results

- Scope of study was to determine correlations only
- Control filters showed an average of 8% difference
- Field samples showed significant differences
- Further work is currently underway to determine

actual differences between individual results and within each commodity

Reasons for differences

Each method is affected by different factors:

- DoF XRD: dust distribution & particle size distribution;
- DoF FTIR: background of filter & particle size distribution;
- KBr pellet: physical sample loss, chemical loss of silica, grouping of filters

Conclusions

- Strong positive correlation between the three methods for the controls filters;
- Moderate to strong positive correlation between the three methods for all the filters;
- Also strong positive correlation within commodities for gold and quarries; not for diamonds – correlation sensitive to mineral composition
- Strong positive correlation on the reduced data set

Recommendations

- Expand study to include other commodities as well;
- Determine the actual differences for the three methods; and
- Determine which factors are the cause of these

differences within the South African environment.

Current research

- Determine the effect of the sampler performance on XRD response;
- Sampler performance determines particle size distribution of dust collected; and
- Sampler determines how the dust is distributed on the filter (analysis area of XRD vs FTIR).

Acknowledgements

The Mine Health and Safety Council (MHSC) of South Africa provided the funding for this research project (SIM 080601)

References

1. "MDHS 101. Direct-on-filter analysis by infrared spectroscopy and X-ray diffraction", February 2005, Health and Safety Laboratory: Methods for the Determination of Hazardous Substances.

2. Occupational Health and Safety Administration (OSHA), Quartz and cristobalite in workplace atmospheres: Method ID-142, 1996.

3. National Institute of Occupational Safety and Health (NIOSH), Silica, crystalline, by XRD (filter redeposition): Method 7500, 2003(a).

4. Occupational Health and Safety Administration (OSHA), Infrared determination of quartz in respirable coal mine dust: Method P-7, 1994.

5. National Institute of Occupational Safety and Health (NIOSH), Quartz in coal mine dust, by IR (filter redeposition): Method 7603, 2003(c).

6. NIOSH 7602, Silica, Crystalline by Infrared – KBr pellet, March 2003, National Institute for Occupational Health: Manual of Analytical Methods (4th edition).

7. K.J. Pickard, R.F. Walker, and N.G. West, "A comparison between x-ray diffraction and infrared spectrophotometric methods for the analysis of alpha-quartz in airborne dusts", Ann. Occup. Hyg, 29 (2), 1985, pages 149 to 167.

8. E. Kauffer, et al, "Comparison of direct (X-ray diffraction and Infrared spectrophotometry) and indirect (Infrared spectrophotometry) methods for the analysis of alpha-quartz in airborne dusts", Ann. Occup. Hyg, 49 (8), 2005, pages 661 to 671.

9. Mine Health and Safety Council, "Silicosis Elimination Programme Phase 2. SIM030603 Track A: Dust Measurement and Reporting."

10. Mine Health and Safety Council, "Silicosis Elimination Programme Phase 2. SIM030603 Track B: Silicosis Control."

Questions?

Cecilia Pretorius CSIR Centre for Mining Innovation (CMI)

Tel: 011 - 358 0052 Email: cpretorius@csir.co.za

