Sensors and Actuators B 148 (2010) 93-102

Sensors and Actuators B: Chemical

Electrocatalytic detection of dopamine at single-walled carbon nanotubesiron (III) oxide nanoparticles platform

Abolanle S. Adekunle^a, Bolade O. Agboola^b, Jeseelan Pillay^c, Kenneth I. Ozoemena^{a,b,a}

^a Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa

^b Energy & Processes Unit, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa

c Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg 2125, South Africa

^{*} Corresponding author at: Energy & Processes Unit, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), Mering Naude Road, Pretoria 0001, South Africa.

Tel.: +27 12 841 3664; fax: +27 12 841 2135.

E-mail address: kozoemena@csir.co.za (K.I. Ozoemena).

ABSTRACT

Electrochemical sensors using edge-plane pyrolytic graphite electrode (EPPGEs) modified with singlewall carbon nanotubes—iron (III) oxide (SWCNT/Fe₂O₃) nanoparticles for the sensitive detection of dopamine (DA) are described for the first time. The surface of the EPPGE-SWCNT—Fe₂O₃ was characterized using field emission scanning electron microscopy, atomic force microscopy and energy dispersive X-ray spectroscopy while the electrochemical properties were investigated using the cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy techniques. Whencompared with the bare electrode or electrodes without the Fe₂O₃ nanoparticles, the EPPGE-SWCNT—Fe₂O₃ gave best response (7 times more than bare EPPGE and 2-fold more than the other two modified electrodes) towards the detection of DA. Also, the EPPGE-SWCNT—Fe₂O₃ showed the best analytical performance for DA with an electron transfer rate constant of ~0.26cms⁻¹, a sensitivity of 3.44μ A μ M⁻¹, a limit of detection of 0.36μ M, a catalytic rate constant of 8.7×10^5 cm³ mol⁻¹ s⁻¹, and a diffusion coefficient of 3.5×10^{-5} cm² s⁻¹. This electrode can be reliably used to assay DA in its real drug composition.