
 

Abstract-Optimization of bandwidth usage for video 
streaming is of paramount importance in networks 
where low bitrate links are typical. Among the solutions 
proposed to address this problem is header compression. 
Real-Time Transport Protocol (RTP) and RTP Control 
Protocol (RTCP) are the major protocols responsible for 
the delivery of real-time media. Previously, header 
compression at the hardware layer and multiplexing of 
media frames into single RTP packets was considered 
sufficient for reducing the bit overhead of the RTP 
packets. However, at the very low bit rates encountered 
in congested and low throughput networks, multiplexing 
and hardware compression do not suffice for end-to-end 
delivery and therefore the use of a lightweight version of 
RTP, defined in this work as RTP-Lite, requires 
investigation. A cyclical approach to compression of the 
RTP headers was used with different compression cycle 
patterns for Transmission Control Protocol (TCP) and 
User Datagram Protocol (UDP) transport. 
Measurements over the public Internet showed that end-
to-end compression of the RTP header at the application 
layer was achieved with the expected reduction in 
required throughput and minimal degradation of packet 
loss and jitter performance. 
 

Index Terms—End-to-end, header compression, low-
bandwidth, multimedia streaming, RTP 
 

I. INTRODUCTION 
 
Multimedia applications today comprise one of the key 

classes of Internet traffic. However, the Internet is a best-
effort transmission platform with no quality of service 
(QoS) guarantees, which creates several challenges for real-
time multimedia streaming. The major hurdles are 
fluctuating throughput and other QoS-related issues 
including packet loss, jitter and delay.  

 
In the developing world, limited-capacity Internet 

infrastructure results in links that exhibit low end-to-end bit 
rates due to network congestion. Effective rates as low as 5 
kbps have been measured [1]. Wireless technologies that are 
becoming a more and more prevalent means of Internet 
connectivity possess capacity constraints relative to fixed 

line infrastructure. This further enhances the requirement for 
protocols geared towards supporting low throughput 
capacities. One approach to tackle this problem has been 
compression of the packet headers for a media flow so as to 
achieve rate savings and alleviate the streaming problems 
encountered on low bit rate links. 

 
The principal protocol used for real-time media streaming 

is the Real-Time Transport Protocol (RTP) [2]. RTP 
operates at the application layer, and provides end-to-end 
delivery services for supporting real-time applications 
including interactive audio and video. Real-Time Control 
Protocol (RTCP) [2] adds QoS functionality to RTP, 
furnishing packet loss and jitter or time arrival statistics. 
RTP/RTCP operate above the connectionless and best-effort 
User Datagram Protocol (UDP) or the connection-oriented, 
reliable Transmission Control Protocol (TCP) and the 
Internet Protocol (IP). 

 
Header compression is the process of reducing protocol 

header overhead, while still maintaining end-to-end 
transparency [3]. Previously, header compression at the 
hardware layer and multiplexing of media frames into single 
RTP packets was considered sufficient for reducing the bit 
overhead of the RTP packets. By increasing the number of 
frames in an RTP packet the header overhead is reduced but 
this increases the susceptibility to errors and packetization 
delay [4]. At the very low bit rates encountered in congested 
and low bandwidth networks however, multiplexing and 
hardware compression do not suffice. Therefore the use of a 
smaller size RTP header protocol at the application layer, 
hereafter referred to as RTP-Lite, is investigated in this 
work.  The compression efficient RObust Header 
Compression (ROHC) [3] scheme is used to provide a 
benchmark for evaluating the performance of the proposed 
RTP-Lite protocol. The network performance in terms of 
throughput, jitter and loss relative to standard RTP and 
ROHC are investigated and the improvements obtained by 
using RTP-Lite identified. 

 
The outline of the rest of the paper is as described below. 

Section II contains an overview of header compression. In 
section III, the proposed RTP-Lite frame work is presented. 
In section IV the experimental setup and tools are described, 
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followed by results analysis in section V. Section VI 
contains the conclusions and recommendations for future 
work. 

II. HEADER COMPRESSION OVERVIEW 
 

Header compression typically involves a compressor 
transmitting data to a receiving node equipped with a 
decompressor. Header compression is facilitated by the fact 
that header fields tend to contain redundant information [5, 
6]. Two classes of header redundancy have been identified 
as intra-packet redundancy, whereby different headers 
within a packet contain information that can be inferred 
from other headers contained in the same packet and inter-
packet redundancy, whereby there are no or minimal 
additive differences between corresponding header field 
values for successive packets [6]. As such some fields may 
be omitted completely from the compressed header once 
their information has been stored at the decompressor, or 
only the changes (delta parameters) in some predictably 
varying fields are conveyed. For successful decompression 
both sender and receiver need to be aware of and store some 
shared flow-specific information referred to as the context 
and to remain synchronized throughout the session [3, 7].  

 
Compression efficiency, expressed in terms of 

compression gain as given in Equation 1, refers to how 
much throughput is saved by a compression scheme. 

 
100*
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                                                                (1) 
 
Several header compression implementations have been 

proposed over the years. The Van Jacobson Protocol was 
designed for compression of TCP/IP datagrams [8]. It 
reduced the 40 byte TCP/IP header to as low as 3 bytes and 
was designed for low-speed serial links of 0.3 kbps to 19.2 
kbps.  

 
Later, an IP/UDP/RTP compression scheme called 

Compressed RTP (CRTP) was devised [9] with the goal of 
reducing the RTP header size for transmission of video and 
audio traffic over limited bit rate links (14.4 kbps and 28.8 
kbps) with low round-trip times. CRTP was found to 
operate poorly on unreliable and long round-trip time (RTT) 
links leading to inefficient bandwidth usage as packets 
arriving within an RTT after loss of context could not be 
properly decompressed. Furthermore it was necessary to 
send large context-restoration headers to reinstate the shared 
state of header information between the compressor and 
decompressor. 

 
To cater for long RTTs, packet loss and reordering, 

Enhanced CRTP (ECRTP) was designed to provide 
repeated updates by the compressor of the context state 
stored at the decompressor [7]. These updates included not 
only the delta parameters but also some full parameters of 
the context. While ECRTP was less compression efficient 
than CRTP, it provided better performance over unreliable 

links with large delays. 
 
ROHC was developed as a link-by-link robust 

compression scheme to handle the high bit error rates and 
long delays associated with wireless links [3]. Robustness in 
this context refers to the ability of the scheme to handle 
packet losses and errors. ROHC, which has a relatively high 
compression efficiency and is suited for varying link 
technologies, compresses the RTP/UDP/IP packet header 
length to 2 to 4 bytes. It operates at ‘layer 2.5’ above the 
link layer but below the IP layer. 

III. PROPOSED RTP-LITE FRAMEWORK 
 

To derive the RTP-Lite compression scheme the RTP 
header fields were categorised according to how often their 
values changed and how important it was that they be 
conveyed in the header of a packet.  Three classes were 
identified as listed below: 
• Always (A):  For fields that always need to be sent. 
• Rarely (R): For fields which need only be sent 

infrequently because after initial transmission they 
rarely change. 

• Initially (I): For fields that need only be transmitted 
once either because of redundancy or because they are 
known beforehand.  

 
The proposed protocol incorporates the use of standard 

RTP full-header packets that provide a reference for 
decompressing the ensuing compressed header packets.  

 
UDP is the primary transport protocol used with RTP on 

account of its features such as low delay and support for 
multicasting (one-to-many transmission) that is suited to 
broadcasting. The nature of real-time data requires the low 
delay that is provided by UDP but at the cost of unreliable 
delivery. TCP is unsuited to time-critical applications due to 
its flow control, error correction and retransmission 
characteristics. However, TCP guarantees packet delivery 
and therefore packet loss or reordering do not need to be 
considered for RTP-based applications that can tolerate the 
delay associated with TCP. Furthermore, TCP traffic is able 
to traverse firewalls.  Table 1 outlines the RTP header fields 
and their classification for the proposed RTP-Lite 
compression over both UDP (U) and TCP (T) transport. The 
fixed RTP header is of 12 bytes. 

 

A. RTP-Lite over UDP 
The fields that are excluded from the compressed RTP-

Lite header for UDP transport are described below: 
• Padding, Extension, SSRC: Usually remain the same 

for all session packets and hence are omitted from the 
RTP-Lite headers. 

• CSRC Count, CSRC: Assumed to be unchanging [1, 3] 
and that there is no mixer along the end-to-end path. 

• Payload Type: Some coders compress media into 
multiple bit rates, e.g. the G.722.1 coder encodes audio 
signals into 24 kbps, 32 kbps or 48 kbps [10]. Out-of-
band methods such as Session Description Protocol 



 

(SDP) are then used to convey bit rate information. It 
was assumed that the type of media encoding and bit 
rate remained constant for the entire streaming session. 

 
 

TABLE I. RTP HEADER FIELD CLASSIFICATION 
 

Field Size 
(bits) 

Details U T 

Version (V) 2 Indicates the version number 
of RTP, 2 being the most 
recent. 

I I 

Padding (P) 1 Indicates the presence of 
any end padding bits. The 
last octet of padding states 
how many padding bits 
there are. 

R R 

Extension 
(X) 

1 If set, it indicates that there 
is one header extension after 
the fixed header. 

R R 

CSRC Count 
(CC) 

4 Shows the number of 
contributing sources for the 
payload of the packet. 

R R 

Marker (M ) 1 Permits significant 
occurrences such as media 
frame boundaries to be 
marked.  

A A 

Payload type 
(PT) 

7 Specifies the payload type 
and the encoding or media 
compression schemes. 

R R 

Sequence 
number 

16 Increments by one for each 
successive packet sent out. 
Used by the receiver to 
detect packet loss and for 
packet reordering. 

A I 

Timestamp 32 Identifies when the first 
octet in the RTP data packet 
was sampled. May be used 
for jitter and delay 
calculations. 

A A 

Synchronisa-
tion source 
(SSRC) 
Identifier 

32 Randomly chosen number 
used to differentiate 
between different media 
streams in the same RTP 
session. 

R R 

Contributing  
source 
(CSRC) 
Identifiers 

      
Varies 
 

Contains the list of SSRCs 
for the hosts whose 
information is contained in 
the RTP payload. Created by 
any mixers along the end-to-
end path.  

R R 

 
 
The compressed RTP-Lite header is shown in Figure 1. 
 

 
Figure 1: RTP-Lite over UDP header 

 
The RTP header is compressed to 4 bytes, with the 

structure described below: 
• Compression Field (2 bits): Has a value of 3. 

Differentiates the RTP-Lite header from the normal 
RTP header. 

• Marker (1 bit): Same as in the 12-byte RTP header. 
• Lite Sequence number (5 bits): Increments by one for 

successive 4-byte header packets sent, up to a 

maximum value of 31. At the client this field’s value is 
added to the saved sequence number from the last 
uncompressed header, to regenerate the actual packet 
sequence number. The 5-bit field size ensures byte 
alignment. 

• Lite Timestamp (24 bits): Difference between the 
timestamp of the last sent 12-byte header packet and 
the timestamp of the ensuing compressed RTP-Lite 
headers. The decompression process is similar to that 
of the Lite sequence number. The timestamp interval 
for regularly increasing timestamps of a video session 
is given in Equation 2 [11]. 

 

second)per   (frames Rate  Frame

(Hz) RateClock 
Interval   Timestamp  RTP =       (2) 

 
Video media encoding formats have a clock rate of 
90,000 Hz [12]. The 24-bit Lite timestamp field thus 
encompasses a range of values that for a video stream 
can comfortably accommodate the sum of timestamp 
intervals for 31 successive 4-byte RTP-Lite header 
packets. Typically audio has smaller timestamp 
intervals than video [11] and therefore this range 
would again suffice. 

 
A timeout mechanism is used as the proposed protocol 

operates in a unidirectional manner. The basic concept of 
the RTP-Lite timeout pattern is to match the compression 
cycle with the error characteristics of the channel. The ratio 
of uncompressed to compressed headers per cycle may be 
used to trade off error robustness for compression ratio. 
Therefore, on a highly reliable channel, a 1-31 cycle could 
be adopted where one uncompressed header packet is 
followed by 31 RTP-Lite compressed header packets. On a 
more loss-prone channel, the cycle may be reduced to 3-10 
where 3 uncompressed header packets are sent per shorter 
cycle to reduce the probability of context storage errors. 
Shorter cycles trade off quick error recovery for lower 
compression gain. A 3-31 cycle was chosen to demonstrate 
the viability of this cyclical approach. The chosen number 
of uncompressed packets per cycle is three, rather than one, 
to increase the error robustness such that the loss of the 
single uncompressed packet does not result in an incorrect 
state being shared by server and client. 

 

B. RTP-Lite over TCP 
The 4-byte compressed RTP-Lite header structure for 

TCP transport is similar to that for UDP transport. The 
difference is that the last 5 bits of the first byte are unused 
because reliable, in order TCP packet delivery means that a 
sequence number field is unnecessary.  However, to 
maintain byte alignment, the 5 bits are still required as 
padding. At the client the saved sequence number is 
incremented by one for each compressed header packet 
received until the next 12-byte RTP header packet is 
received. The Lite sequence number range is not a limitation 
as is the case for RTP-Lite over UDP. Therefore for a video 
stream, it can be surmised from Equation 2 that at least 186 
RTP-Lite 4-byte header packets can be sent per cycle. A 3-



 

183 cycle was tested. 
 

C. Comparison with existing Header Compression 
Schemes 
The RTP-Lite compression framework builds upon 

existing RTP header compression protocols such as CRTP 
[9], ECRTP [7] and ROHC [3]. A key similarity is the 
concept of transmitting delta values to achieve a smaller 
header. Furthermore, like the three mentioned header 
compression schemes RTP-Lite is less error and loss 
resilient than the corresponding uncompressed RTP 
protocol.  

 
RTP-Lite however differs from CRTP, ECRTP and 

ROHC in the following aspects: 
• It achieves end-to-end compression of the RTP header 

and not merely link-by-link compression without 
needing to resort to tunneling with the associated 
disadvantages such as increased delay [16]. 

• RTP-Lite differential encoding uses as a reference not 
the previous packet but the most recent uncompressed 
packet header. As a result, RTP-Lite is less affected by 
the loss of a single packet than the other compression 
schemes.  ROHC and CRTP are susceptible to loss 
propagation whereby loss of a single packet results in a 
loss of context for multiple received compressed 
header packets and possibly a significant delay before 
the context is restored [3, 9]. While the larger 
differential values of RTP-Lite mean a larger 
compressed header, the added robustness offsets the 
shortcoming of reduction in achievable compression 
gain. 

• RTP-Lite is a simpler compression scheme to 
implement than CRTP, ECRTP and ROHC. For the 
proposed unidirectional operation, there is only one 
type of compressed header packet. The other 
compression protocols utilise multiple types of 
compressed header packets which while providing 
greater compression gain, make the compression 
schemes more complex. Furthermore, RTP-Lite unlike 
CRTP is not dependent on lower layers such as the link 
layer [9]. 

• RTP-Lite is a transport layer-independent compression 
protocol. Unlike the other header compression schemes 
that are UDP-specific, RTP-Lite can also be deployed 
over TCP making it a more flexible means to achieve 
throughput savings. 

IV. EXPERIMENTAL METHOD 
 

The open source Live555 streaming library [13] and 
ROHC-1.2.0 library [14] were used. Live555 was modified 
to create the compressed header packets and to decompress 
them at the client. The ROHC-1.2.0 library implementation 
of end-to-end header compression using tunneling was used 
to provide a baseline for evaluating the RTP-Lite protocol’s 
performance. This work focused on low throughput 
networks and therefore the parameters for the video test clip 
were set accordingly. The video sequence of the bear advert 

with a sub-qcif (128x96) pixel resolution at 10 frames per 
second and a duration of 30 seconds was used. The clip was 
converted using ffmpeg, a media transcoding application 
[15] from the original avi format to the mpeg4 ES 
(elementary stream) format that Live555’s test MPEG4ES 
streamer program could process. The average bit rate of the 
converted file was 54.5 kbps. 

 
Two machines were set up to establish a media session 

over the public Internet as shown in Figure 2. The server 
was located at the University of Cape Town (UCT) in Cape 
Town, South Africa, with the client being stationed at the 
Council for Scientific and Industrial Research (CSIR) 
offices in Pretoria, South Africa. Traceroute results revealed 
that there were nine hops between the server and client.  

 
  UCT, Cape Town  CSIR, Pretoria 

 
 

Figure 2: Illustration of streaming experimental setup 
 
 
The server was a Proline UATX desktop machine with 

Intel Pentium(R) Dual-Core CPU E5200 @ 2.50 GHz and 
2GB of RAM. The client machine was a Dell Inspiron 
E140S laptop with Intel(R) CPU, T1350 single core 
microprocessor @1.86 GHz and 504 MB RAM. All 
experiments were conducted with the server and client both 
using the Ubuntu 8.04 operating system with Linux kernel 
version 2.6.24. 

 
Thirty sets of experiments were conducted each for the 

UDP and TCP transport investigations to provide an 
averaged performance result. For UDP, a ROHC tunnel was 
first established between the server and client. Each test set 
involved a comparison experiment for a standard RTP 
stream, an RTP-Lite stream and a ROHC stream run 
simultaneously between the end hosts using three separate 
Live555 streaming sessions. The experiments were carried 
out simultaneously to eliminate as much as possible the 
effect of the spurious changes in network conditions that 
characterise the public Internet and to ensure environments 
that were nearly identical for the flows being compared. 
ROHC-1.2.0 does not provide RTP over TCP functionality 
and therefore the TCP experiments involved only RTP and 
RTP-Lite flow comparison. All jitter, throughput, loss, 
packet size and header size measurements were recorded 
from Live555. 

V. RESULTS AND ANALYSIS 
 

A. RTP-Lite over UDP 
1) Header Size and Compression Gain: The measured 

average RTP-Lite packet header size for the 3-31 packet 
cycle was 4.7 bytes, less than the 12 byte average of the 
standard RTP headers. As ROHC operates below the 



 

application layer, the ROHC streams’ RTP header size 
measurements obtained from Live555 corresponded to those 
of standard RTP. The measured average packet size values 
for RTP and RTP-Lite were 634.9 bytes and 627.6 bytes 
respectively.  The average RTP header compression gain 
computed using Equation 1 was 61%. 
 

2) Throughput: The average RTP throughput rates for 
the 30 repetitions of the experiments were 56.84 kbps, 56.21 
kbps and 56.85 kbps for the RTP, RTP-Lite and ROHC 
flows, respectively. The throughput results are plotted in 
Figure 3. The magnitude of throughput gain was small 
relative to the total throughput rate, but it is sufficient to 
verify the lower link capacity required by the RTP-Lite 
stream. The ROHC and standard RTP throughput values 
were almost the same, which is expected as the ROHC 
packets are decompressed below the network layer and so 
the RTP headers arriving at the application layer are in an 
uncompressed format. 
 

 
 

Figure 3: Throughput for the RTP, RTP-Lite and ROHC flows over 
UDP 

 
3) Loss: In all 30 repetitions of the experiments, the 

percentage packet losses for the three flows remained below 
1%. The average percentage loss for the RTP flows was 
0.08%, for the ROHC flows it was 0.01% and that of the 
RTP-Lite flows was 0.17%. The RTP-Lite flows 
experienced a greater average percentage loss than the RTP 
flows.  This correlates to the expectation of a higher packet 
loss rate for end-to-end compression [8] but the magnitude 
of increase is not significant. ROHC, because of its robust 
design and feedback mechanisms, showed better 
performance than both standard RTP and RTP-Lite.  
 

4) Jitter: For the standard RTP flow the average 
measured jitter was 0.82 ms and for RTP-Lite the average 
measured jitter was lower at 0.77 ms. The ROHC flow had 
an average jitter of 0.91 ms. The jitter results are plotted in 
Figure 4. The increased jitter for ROHC can be attributed to 
the tunneling mechanism that degrades delay performance 
[16]. Thus the jitter experienced by RTP-Lite packets was 
on average 6% less than that experienced by the RTP stream 
packets while that of ROHC was 10% higher than for 
standard RTP. A smaller jitter value implies that a smaller 
buffer is needed at the client to compensate for the delay 
variations. The 6% reduction in jitter illustrates that overall 
RTP-Lite does not result in added jitter, as depicted in 
Figure 4. 
 

 
 

Figure 4: Jitter for the RTP, RTP-Lite and ROHC flows over UDP 
 

B. RTP-Lite over TCP 
1) Header Size and Compression Gain: The average 

RTP-Lite over TCP flow packet header size for the 3-183 
packet cycle was found to be 4.1 bytes. The measured 
average packet sizes for RTP and RTP-Lite were 634.9 
bytes and 628.0 bytes respectively. The difference in these 
average sizes was 7.9 bytes, confirming the expected 
reduction in average header size from 12 bytes to 4.1 bytes. 
The average header compression gain calculated using 
Equation 1 was found to be 66% indicating the obvious, that 
the larger the number of compressed packets per cycle, the 
greater the compression efficiency. 
 

2) Throughput: The average throughput rates of all 30 
repetitions of the experiments for RTP and RTP-Lite were 
56.88 kbps and 56.19 kbps, respectively. The throughput 
results are plotted in Figure 5 and they show that the 
throughput rate for RTP-Lite is less than that of standard 
RTP, indicating more efficient use of link capacity.  

 

 
 

Figure 5: Throughput for the RTP and RTP-Lite flows over TCP 
 

3) Jitter: For the standard RTP flow the average 
measured jitter was 4.97 ms while for RTP-Lite the average 
reported was 5.08 ms. Figure 6 is a plot depicting the 
measured jitter characteristics of the RTP and RTP-Lite 
flows. With TCP transport, RTP-Lite has a 2% greater 
average jitter than standard RTP that can be partly attributed 
to the retransmission properties of TCP that affect the 
timing of packet delivery. The increase in jitter is 
considered to be an insignificant effect on the stream quality 
relative to standard RTP. The measured average interpacket 
gap values for RTP and RTP-Lite were 90.86 ms and 90.87 



 

ms respectively while the average maximum interpacket gap 
values were 231.70 ms and 217.86 ms, respectively. Thus 
standard RTP packets were more likely to be treated as late 
arrivals at the client and be discarded than RTP-Lite 
packets. 
 
 

 
 

Figure 6: Jitter for the RTP and RTP-Lite flows over TCP 
 

VI. CONCLUSION 
 
An application layer compression scheme for RTP was 

developed. Improved throughput efficiency was 
demonstrated using the proposed RTP-Lite protocol. For the 
uncompressed-compressed packet header cycle of 3-31 that 
was used in the experiments over UDP, the average header 
compression gain was 61%. Larger throughput gains could 
be attained by reducing the number of uncompressed header 
packets sent in each cycle for a highly error-resilient 
channel.  RTP-Lite over TCP for a 3-183 cycle generated an 
average header compression gain of 66%. For UDP 
transport, a reduction in measured jitter of 6% and 15% was 
achieved by RTP-Lite compared to standard RTP and 
ROHC, respectively. The 2% increase in RTP-Lite jitter 
relative to standard RTP for TCP transport was considered 
insignificant. The RTP-Lite over UDP streams experienced 
a slightly greater average loss than the corresponding RTP 
and ROHC streams that is offset by the throughput gains 
that are of paramount importance on low bit-rate links. The 
performance improvements were more pronounced for the 
UDP case, from which it can be concluded that the proposed 
RTP-Lite protocol is better suited to UDP than TCP.  

 
As future work, for added robustness RTP-Lite could be 

extended to provide a feedback mode at the application 
layer with extensions to the RTCP protocol. Furthermore, 
RTP-Lite could be modified to adapt the packet cycle 
dynamically to the error and loss characteristics of the 
channel over which it is deployed. Use of a feedback 
channel such as RTCP may permit adaptation of the cycle 
pattern on the fly. WLSB (Windows Least Significant Bit) 
encoding of the sequence number and Timestamp fields 
may be incorporated to attain greater compression gain 
levels.  
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