

Abstract-Optimization of bandwidth usage for video
streaming is of paramount importance in networks
where low bitrate links are typical. Among the solutions
proposed to address this problem is header compression.
Real-Time Transport Protocol (RTP) and RTP Control
Protocol (RTCP) are the major protocols responsible for
the delivery of real-time media. Previously, header
compression at the hardware layer and multiplexing of
media frames into single RTP packets was considered
sufficient for reducing the bit overhead of the RTP
packets. However, at the very low bit rates encountered
in congested and low throughput networks, multiplexing
and hardware compression do not suffice for end-to-end
delivery and therefore the use of a lightweight version of
RTP, defined in this work as RTP-Lite, requires
investigation. A cyclical approach to compression of the
RTP headers was used with different compression cycle
patterns for Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) transport.
Measurements over the public Internet showed that end-
to-end compression of the RTP header at the application
layer was achieved with the expected reduction in
required throughput and minimal degradation of packet
loss and jitter performance.

Index Terms—End-to-end, header compression, low-
bandwidth, multimedia streaming, RTP

I. INTRODUCTION

Multimedia applications today comprise one of the key

classes of Internet traffic. However, the Internet is a best-
effort transmission platform with no quality of service
(QoS) guarantees, which creates several challenges for real-
time multimedia streaming. The major hurdles are
fluctuating throughput and other QoS-related issues
including packet loss, jitter and delay.

In the developing world, limited-capacity Internet

infrastructure results in links that exhibit low end-to-end bit
rates due to network congestion. Effective rates as low as 5
kbps have been measured [1]. Wireless technologies that are
becoming a more and more prevalent means of Internet
connectivity possess capacity constraints relative to fixed

line infrastructure. This further enhances the requirement for
protocols geared towards supporting low throughput
capacities. One approach to tackle this problem has been
compression of the packet headers for a media flow so as to
achieve rate savings and alleviate the streaming problems
encountered on low bit rate links.

The principal protocol used for real-time media streaming

is the Real-Time Transport Protocol (RTP) [2]. RTP
operates at the application layer, and provides end-to-end
delivery services for supporting real-time applications
including interactive audio and video. Real-Time Control
Protocol (RTCP) [2] adds QoS functionality to RTP,
furnishing packet loss and jitter or time arrival statistics.
RTP/RTCP operate above the connectionless and best-effort
User Datagram Protocol (UDP) or the connection-oriented,
reliable Transmission Control Protocol (TCP) and the
Internet Protocol (IP).

Header compression is the process of reducing protocol

header overhead, while still maintaining end-to-end
transparency [3]. Previously, header compression at the
hardware layer and multiplexing of media frames into single
RTP packets was considered sufficient for reducing the bit
overhead of the RTP packets. By increasing the number of
frames in an RTP packet the header overhead is reduced but
this increases the susceptibility to errors and packetization
delay [4]. At the very low bit rates encountered in congested
and low bandwidth networks however, multiplexing and
hardware compression do not suffice. Therefore the use of a
smaller size RTP header protocol at the application layer,
hereafter referred to as RTP-Lite, is investigated in this
work. The compression efficient RObust Header
Compression (ROHC) [3] scheme is used to provide a
benchmark for evaluating the performance of the proposed
RTP-Lite protocol. The network performance in terms of
throughput, jitter and loss relative to standard RTP and
ROHC are investigated and the improvements obtained by
using RTP-Lite identified.

The outline of the rest of the paper is as described below.

Section II contains an overview of header compression. In
section III, the proposed RTP-Lite frame work is presented.
In section IV the experimental setup and tools are described,

Investigating a Reduced Size Real-Time Transport
Protocol for Low-Bandwidth Networks

Josephine N. Kakande1, Keith L. Ferguson1, Mqhele E. Dlodlo2 and Gerhard de Jager2

Council for Scientific and Industrial Research1
P. O. Box 395, Pretoria 0001, South Africa

Tel: +27 12 8413028
and Department of Electrical Engineering

University of Cape Town2
email: {nkakande, kferguson}@csir.co.za1; {Mqhele.Dlodlo, Gerhard.DeJager}@uct.ac.za 2

followed by results analysis in section V. Section VI
contains the conclusions and recommendations for future
work.

II. HEADER COMPRESSION OVERVIEW

Header compression typically involves a compressor
transmitting data to a receiving node equipped with a
decompressor. Header compression is facilitated by the fact
that header fields tend to contain redundant information [5,
6]. Two classes of header redundancy have been identified
as intra-packet redundancy, whereby different headers
within a packet contain information that can be inferred
from other headers contained in the same packet and inter-
packet redundancy, whereby there are no or minimal
additive differences between corresponding header field
values for successive packets [6]. As such some fields may
be omitted completely from the compressed header once
their information has been stored at the decompressor, or
only the changes (delta parameters) in some predictably
varying fields are conveyed. For successful decompression
both sender and receiver need to be aware of and store some
shared flow-specific information referred to as the context
and to remain synchronized throughout the session [3, 7].

Compression efficiency, expressed in terms of

compression gain as given in Equation 1, refers to how
much throughput is saved by a compression scheme.

100*

sizeheader edUncompress
sizeheader Compressed - sizeheader edUncompress (%)Gain n Compressio =

 (1)

Several header compression implementations have been

proposed over the years. The Van Jacobson Protocol was
designed for compression of TCP/IP datagrams [8]. It
reduced the 40 byte TCP/IP header to as low as 3 bytes and
was designed for low-speed serial links of 0.3 kbps to 19.2
kbps.

Later, an IP/UDP/RTP compression scheme called

Compressed RTP (CRTP) was devised [9] with the goal of
reducing the RTP header size for transmission of video and
audio traffic over limited bit rate links (14.4 kbps and 28.8
kbps) with low round-trip times. CRTP was found to
operate poorly on unreliable and long round-trip time (RTT)
links leading to inefficient bandwidth usage as packets
arriving within an RTT after loss of context could not be
properly decompressed. Furthermore it was necessary to
send large context-restoration headers to reinstate the shared
state of header information between the compressor and
decompressor.

To cater for long RTTs, packet loss and reordering,

Enhanced CRTP (ECRTP) was designed to provide
repeated updates by the compressor of the context state
stored at the decompressor [7]. These updates included not
only the delta parameters but also some full parameters of
the context. While ECRTP was less compression efficient
than CRTP, it provided better performance over unreliable

links with large delays.

ROHC was developed as a link-by-link robust

compression scheme to handle the high bit error rates and
long delays associated with wireless links [3]. Robustness in
this context refers to the ability of the scheme to handle
packet losses and errors. ROHC, which has a relatively high
compression efficiency and is suited for varying link
technologies, compresses the RTP/UDP/IP packet header
length to 2 to 4 bytes. It operates at ‘layer 2.5’ above the
link layer but below the IP layer.

III. PROPOSED RTP-LITE FRAMEWORK

To derive the RTP-Lite compression scheme the RTP
header fields were categorised according to how often their
values changed and how important it was that they be
conveyed in the header of a packet. Three classes were
identified as listed below:
• Always (A): For fields that always need to be sent.
• Rarely (R): For fields which need only be sent

infrequently because after initial transmission they
rarely change.

• Initially (I): For fields that need only be transmitted
once either because of redundancy or because they are
known beforehand.

The proposed protocol incorporates the use of standard

RTP full-header packets that provide a reference for
decompressing the ensuing compressed header packets.

UDP is the primary transport protocol used with RTP on

account of its features such as low delay and support for
multicasting (one-to-many transmission) that is suited to
broadcasting. The nature of real-time data requires the low
delay that is provided by UDP but at the cost of unreliable
delivery. TCP is unsuited to time-critical applications due to
its flow control, error correction and retransmission
characteristics. However, TCP guarantees packet delivery
and therefore packet loss or reordering do not need to be
considered for RTP-based applications that can tolerate the
delay associated with TCP. Furthermore, TCP traffic is able
to traverse firewalls. Table 1 outlines the RTP header fields
and their classification for the proposed RTP-Lite
compression over both UDP (U) and TCP (T) transport. The
fixed RTP header is of 12 bytes.

A. RTP-Lite over UDP
The fields that are excluded from the compressed RTP-

Lite header for UDP transport are described below:
• Padding, Extension, SSRC: Usually remain the same

for all session packets and hence are omitted from the
RTP-Lite headers.

• CSRC Count, CSRC: Assumed to be unchanging [1, 3]
and that there is no mixer along the end-to-end path.

• Payload Type: Some coders compress media into
multiple bit rates, e.g. the G.722.1 coder encodes audio
signals into 24 kbps, 32 kbps or 48 kbps [10]. Out-of-
band methods such as Session Description Protocol

(SDP) are then used to convey bit rate information. It
was assumed that the type of media encoding and bit
rate remained constant for the entire streaming session.

TABLE I. RTP HEADER FIELD CLASSIFICATION

Field Size
(bits)

Details U T

Version (V) 2 Indicates the version number
of RTP, 2 being the most
recent.

I I

Padding (P) 1 Indicates the presence of
any end padding bits. The
last octet of padding states
how many padding bits
there are.

R R

Extension
(X)

1 If set, it indicates that there
is one header extension after
the fixed header.

R R

CSRC Count
(CC)

4 Shows the number of
contributing sources for the
payload of the packet.

R R

Marker (M) 1 Permits significant
occurrences such as media
frame boundaries to be
marked.

A A

Payload type
(PT)

7 Specifies the payload type
and the encoding or media
compression schemes.

R R

Sequence
number

16 Increments by one for each
successive packet sent out.
Used by the receiver to
detect packet loss and for
packet reordering.

A I

Timestamp 32 Identifies when the first
octet in the RTP data packet
was sampled. May be used
for jitter and delay
calculations.

A A

Synchronisa-
tion source
(SSRC)
Identifier

32 Randomly chosen number
used to differentiate
between different media
streams in the same RTP
session.

R R

Contributing
source
(CSRC)
Identifiers

Varies

Contains the list of SSRCs
for the hosts whose
information is contained in
the RTP payload. Created by
any mixers along the end-to-
end path.

R R

The compressed RTP-Lite header is shown in Figure 1.

Figure 1: RTP-Lite over UDP header

The RTP header is compressed to 4 bytes, with the

structure described below:
• Compression Field (2 bits): Has a value of 3.

Differentiates the RTP-Lite header from the normal
RTP header.

• Marker (1 bit): Same as in the 12-byte RTP header.
• Lite Sequence number (5 bits): Increments by one for

successive 4-byte header packets sent, up to a

maximum value of 31. At the client this field’s value is
added to the saved sequence number from the last
uncompressed header, to regenerate the actual packet
sequence number. The 5-bit field size ensures byte
alignment.

• Lite Timestamp (24 bits): Difference between the
timestamp of the last sent 12-byte header packet and
the timestamp of the ensuing compressed RTP-Lite
headers. The decompression process is similar to that
of the Lite sequence number. The timestamp interval
for regularly increasing timestamps of a video session
is given in Equation 2 [11].

second)per (frames Rate Frame

(Hz) RateClock
Interval Timestamp RTP = (2)

Video media encoding formats have a clock rate of
90,000 Hz [12]. The 24-bit Lite timestamp field thus
encompasses a range of values that for a video stream
can comfortably accommodate the sum of timestamp
intervals for 31 successive 4-byte RTP-Lite header
packets. Typically audio has smaller timestamp
intervals than video [11] and therefore this range
would again suffice.

A timeout mechanism is used as the proposed protocol

operates in a unidirectional manner. The basic concept of
the RTP-Lite timeout pattern is to match the compression
cycle with the error characteristics of the channel. The ratio
of uncompressed to compressed headers per cycle may be
used to trade off error robustness for compression ratio.
Therefore, on a highly reliable channel, a 1-31 cycle could
be adopted where one uncompressed header packet is
followed by 31 RTP-Lite compressed header packets. On a
more loss-prone channel, the cycle may be reduced to 3-10
where 3 uncompressed header packets are sent per shorter
cycle to reduce the probability of context storage errors.
Shorter cycles trade off quick error recovery for lower
compression gain. A 3-31 cycle was chosen to demonstrate
the viability of this cyclical approach. The chosen number
of uncompressed packets per cycle is three, rather than one,
to increase the error robustness such that the loss of the
single uncompressed packet does not result in an incorrect
state being shared by server and client.

B. RTP-Lite over TCP
The 4-byte compressed RTP-Lite header structure for

TCP transport is similar to that for UDP transport. The
difference is that the last 5 bits of the first byte are unused
because reliable, in order TCP packet delivery means that a
sequence number field is unnecessary. However, to
maintain byte alignment, the 5 bits are still required as
padding. At the client the saved sequence number is
incremented by one for each compressed header packet
received until the next 12-byte RTP header packet is
received. The Lite sequence number range is not a limitation
as is the case for RTP-Lite over UDP. Therefore for a video
stream, it can be surmised from Equation 2 that at least 186
RTP-Lite 4-byte header packets can be sent per cycle. A 3-

183 cycle was tested.

C. Comparison with existing Header Compression
Schemes
The RTP-Lite compression framework builds upon

existing RTP header compression protocols such as CRTP
[9], ECRTP [7] and ROHC [3]. A key similarity is the
concept of transmitting delta values to achieve a smaller
header. Furthermore, like the three mentioned header
compression schemes RTP-Lite is less error and loss
resilient than the corresponding uncompressed RTP
protocol.

RTP-Lite however differs from CRTP, ECRTP and

ROHC in the following aspects:
• It achieves end-to-end compression of the RTP header

and not merely link-by-link compression without
needing to resort to tunneling with the associated
disadvantages such as increased delay [16].

• RTP-Lite differential encoding uses as a reference not
the previous packet but the most recent uncompressed
packet header. As a result, RTP-Lite is less affected by
the loss of a single packet than the other compression
schemes. ROHC and CRTP are susceptible to loss
propagation whereby loss of a single packet results in a
loss of context for multiple received compressed
header packets and possibly a significant delay before
the context is restored [3, 9]. While the larger
differential values of RTP-Lite mean a larger
compressed header, the added robustness offsets the
shortcoming of reduction in achievable compression
gain.

• RTP-Lite is a simpler compression scheme to
implement than CRTP, ECRTP and ROHC. For the
proposed unidirectional operation, there is only one
type of compressed header packet. The other
compression protocols utilise multiple types of
compressed header packets which while providing
greater compression gain, make the compression
schemes more complex. Furthermore, RTP-Lite unlike
CRTP is not dependent on lower layers such as the link
layer [9].

• RTP-Lite is a transport layer-independent compression
protocol. Unlike the other header compression schemes
that are UDP-specific, RTP-Lite can also be deployed
over TCP making it a more flexible means to achieve
throughput savings.

IV. EXPERIMENTAL METHOD

The open source Live555 streaming library [13] and
ROHC-1.2.0 library [14] were used. Live555 was modified
to create the compressed header packets and to decompress
them at the client. The ROHC-1.2.0 library implementation
of end-to-end header compression using tunneling was used
to provide a baseline for evaluating the RTP-Lite protocol’s
performance. This work focused on low throughput
networks and therefore the parameters for the video test clip
were set accordingly. The video sequence of the bear advert

with a sub-qcif (128x96) pixel resolution at 10 frames per
second and a duration of 30 seconds was used. The clip was
converted using ffmpeg, a media transcoding application
[15] from the original avi format to the mpeg4 ES
(elementary stream) format that Live555’s test MPEG4ES
streamer program could process. The average bit rate of the
converted file was 54.5 kbps.

Two machines were set up to establish a media session

over the public Internet as shown in Figure 2. The server
was located at the University of Cape Town (UCT) in Cape
Town, South Africa, with the client being stationed at the
Council for Scientific and Industrial Research (CSIR)
offices in Pretoria, South Africa. Traceroute results revealed
that there were nine hops between the server and client.

 UCT, Cape Town CSIR, Pretoria

Figure 2: Illustration of streaming experimental setup

The server was a Proline UATX desktop machine with

Intel Pentium(R) Dual-Core CPU E5200 @ 2.50 GHz and
2GB of RAM. The client machine was a Dell Inspiron
E140S laptop with Intel(R) CPU, T1350 single core
microprocessor @1.86 GHz and 504 MB RAM. All
experiments were conducted with the server and client both
using the Ubuntu 8.04 operating system with Linux kernel
version 2.6.24.

Thirty sets of experiments were conducted each for the

UDP and TCP transport investigations to provide an
averaged performance result. For UDP, a ROHC tunnel was
first established between the server and client. Each test set
involved a comparison experiment for a standard RTP
stream, an RTP-Lite stream and a ROHC stream run
simultaneously between the end hosts using three separate
Live555 streaming sessions. The experiments were carried
out simultaneously to eliminate as much as possible the
effect of the spurious changes in network conditions that
characterise the public Internet and to ensure environments
that were nearly identical for the flows being compared.
ROHC-1.2.0 does not provide RTP over TCP functionality
and therefore the TCP experiments involved only RTP and
RTP-Lite flow comparison. All jitter, throughput, loss,
packet size and header size measurements were recorded
from Live555.

V. RESULTS AND ANALYSIS

A. RTP-Lite over UDP
1) Header Size and Compression Gain: The measured

average RTP-Lite packet header size for the 3-31 packet
cycle was 4.7 bytes, less than the 12 byte average of the
standard RTP headers. As ROHC operates below the

application layer, the ROHC streams’ RTP header size
measurements obtained from Live555 corresponded to those
of standard RTP. The measured average packet size values
for RTP and RTP-Lite were 634.9 bytes and 627.6 bytes
respectively. The average RTP header compression gain
computed using Equation 1 was 61%.

2) Throughput: The average RTP throughput rates for
the 30 repetitions of the experiments were 56.84 kbps, 56.21
kbps and 56.85 kbps for the RTP, RTP-Lite and ROHC
flows, respectively. The throughput results are plotted in
Figure 3. The magnitude of throughput gain was small
relative to the total throughput rate, but it is sufficient to
verify the lower link capacity required by the RTP-Lite
stream. The ROHC and standard RTP throughput values
were almost the same, which is expected as the ROHC
packets are decompressed below the network layer and so
the RTP headers arriving at the application layer are in an
uncompressed format.

Figure 3: Throughput for the RTP, RTP-Lite and ROHC flows over
UDP

3) Loss: In all 30 repetitions of the experiments, the

percentage packet losses for the three flows remained below
1%. The average percentage loss for the RTP flows was
0.08%, for the ROHC flows it was 0.01% and that of the
RTP-Lite flows was 0.17%. The RTP-Lite flows
experienced a greater average percentage loss than the RTP
flows. This correlates to the expectation of a higher packet
loss rate for end-to-end compression [8] but the magnitude
of increase is not significant. ROHC, because of its robust
design and feedback mechanisms, showed better
performance than both standard RTP and RTP-Lite.

4) Jitter: For the standard RTP flow the average
measured jitter was 0.82 ms and for RTP-Lite the average
measured jitter was lower at 0.77 ms. The ROHC flow had
an average jitter of 0.91 ms. The jitter results are plotted in
Figure 4. The increased jitter for ROHC can be attributed to
the tunneling mechanism that degrades delay performance
[16]. Thus the jitter experienced by RTP-Lite packets was
on average 6% less than that experienced by the RTP stream
packets while that of ROHC was 10% higher than for
standard RTP. A smaller jitter value implies that a smaller
buffer is needed at the client to compensate for the delay
variations. The 6% reduction in jitter illustrates that overall
RTP-Lite does not result in added jitter, as depicted in
Figure 4.

Figure 4: Jitter for the RTP, RTP-Lite and ROHC flows over UDP

B. RTP-Lite over TCP
1) Header Size and Compression Gain: The average

RTP-Lite over TCP flow packet header size for the 3-183
packet cycle was found to be 4.1 bytes. The measured
average packet sizes for RTP and RTP-Lite were 634.9
bytes and 628.0 bytes respectively. The difference in these
average sizes was 7.9 bytes, confirming the expected
reduction in average header size from 12 bytes to 4.1 bytes.
The average header compression gain calculated using
Equation 1 was found to be 66% indicating the obvious, that
the larger the number of compressed packets per cycle, the
greater the compression efficiency.

2) Throughput: The average throughput rates of all 30
repetitions of the experiments for RTP and RTP-Lite were
56.88 kbps and 56.19 kbps, respectively. The throughput
results are plotted in Figure 5 and they show that the
throughput rate for RTP-Lite is less than that of standard
RTP, indicating more efficient use of link capacity.

Figure 5: Throughput for the RTP and RTP-Lite flows over TCP

3) Jitter: For the standard RTP flow the average
measured jitter was 4.97 ms while for RTP-Lite the average
reported was 5.08 ms. Figure 6 is a plot depicting the
measured jitter characteristics of the RTP and RTP-Lite
flows. With TCP transport, RTP-Lite has a 2% greater
average jitter than standard RTP that can be partly attributed
to the retransmission properties of TCP that affect the
timing of packet delivery. The increase in jitter is
considered to be an insignificant effect on the stream quality
relative to standard RTP. The measured average interpacket
gap values for RTP and RTP-Lite were 90.86 ms and 90.87

ms respectively while the average maximum interpacket gap
values were 231.70 ms and 217.86 ms, respectively. Thus
standard RTP packets were more likely to be treated as late
arrivals at the client and be discarded than RTP-Lite
packets.

Figure 6: Jitter for the RTP and RTP-Lite flows over TCP

VI. CONCLUSION

An application layer compression scheme for RTP was

developed. Improved throughput efficiency was
demonstrated using the proposed RTP-Lite protocol. For the
uncompressed-compressed packet header cycle of 3-31 that
was used in the experiments over UDP, the average header
compression gain was 61%. Larger throughput gains could
be attained by reducing the number of uncompressed header
packets sent in each cycle for a highly error-resilient
channel. RTP-Lite over TCP for a 3-183 cycle generated an
average header compression gain of 66%. For UDP
transport, a reduction in measured jitter of 6% and 15% was
achieved by RTP-Lite compared to standard RTP and
ROHC, respectively. The 2% increase in RTP-Lite jitter
relative to standard RTP for TCP transport was considered
insignificant. The RTP-Lite over UDP streams experienced
a slightly greater average loss than the corresponding RTP
and ROHC streams that is offset by the throughput gains
that are of paramount importance on low bit-rate links. The
performance improvements were more pronounced for the
UDP case, from which it can be concluded that the proposed
RTP-Lite protocol is better suited to UDP than TCP.

As future work, for added robustness RTP-Lite could be

extended to provide a feedback mode at the application
layer with extensions to the RTCP protocol. Furthermore,
RTP-Lite could be modified to adapt the packet cycle
dynamically to the error and loss characteristics of the
channel over which it is deployed. Use of a feedback
channel such as RTCP may permit adaptation of the cycle
pattern on the fly. WLSB (Windows Least Significant Bit)
encoding of the sequence number and Timestamp fields
may be incorporated to attain greater compression gain
levels.

REFERENCES

[1] S. R. Gandham and K. V. Muppalla, “Header compression mechanism

for transmitting RTP packets over wireless links,” US Patent
application, Pub. No. 20090268667, Publication date 29 October
2009.

[2] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 3550, July
2003.

[3] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu,
L-E. Jonsson, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson,
A. Miyazaki, K. Svanbro, T. Wiebke, T. Yoshimura and H. Zheng,
"RObust Header Compression (ROHC): Framework and four profiles:
RTP, UDP, ESP, and uncompressed," RFC 3095, July 2001.

[4] Keiko Tanigawa, “Simple RTP Multiplexing Transfer Methods for
VoIP,” IETF Internet Draft, May 1999. http://tools.ietf.org/html/draft-
tanigawa-rtp-multiplex-01.

[5] C. Lamy-Bergot and P. Vila, “Multiplex header compression for
transparent cross-layer design,” Proc. IEEE International Conference
on Networking (ICN`04), March 2004, pp. 1084-1089.

[6] F.H.P. Fitzek, S. Hendrata, P. Seeling and M. Reisslein, “Header
Compression Schemes for Wireless Internet Access”, chapter in
Wireless Internet, CRC Press, 2004.

[7] T. Koren, S. Casner, J. Geevarghese, B. Thompson and P. Ruddy,
"Enhanced Compressed RTP (CRTP) for Links with High Delay,
Packet Loss and Reordering," RFC 3545, July 2003.

[8] V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial
Links,” RFC 1144, February 1990.

[9] S. Casner and V. Jacobson, "Compressing IP/UDP/RTP Headers for
Low-Speed Serial Links," RFC 2508, February 1999.

[10] P. Luthi and R. Even, "RTP Payload Format for ITU-T
Recommendation G.722.1", RFC 5577, July 2009.

[11] C. Perkins, “RTP Audio and Video for the Internet,” Addison-Wesley,
New York, USA, 2003.

[12] S. Casner, “Media Type Registration of Payload Formats in the RTP
Profile for Audio and Video Conferences,” RFC 4856, March 2007.

[13] Live555 Streaming Library.
http://www.live555.com/liveMedia/public/.

[14] ROHC-1.2.0 Library. French space agency (CNES), Thales Alenia
Space (TAS) and Viveris Technologies, “Robust Header Compression
library”. https://launchpad.net/rohc.

[15] FFmpeg. http://www.ffmpeg.org/index.html.
[16] X. Zhou, M. Jacobsson, H. Uijterwaal and P. Van Mieghem, “IPv6

delay and loss performance evolution,” International Journal of
Communication Systems, Vol. 21, No. 6, June 2008, pp. 643-663.

Josephine Nakato Kakande received her Masters degree in Electrical
Engineering specializing in Telecommunications from the University
of Cape Town in 2010. She is currently a Researcher with the Real
Time Video Coding Project at the CSIR Meraka Institute. Her
research interests include multimedia streaming, communication
protocols and wireless networks.

