
 

Abstract- Deployment of real-time applications has 
become ubiquitous in recent years. These applications (e.g. 
streaming video over the Internet) however, are processor-
intensive and require fast video-processing techniques for 
more flexible, efficient operation. Media pipeline plug-in 
architectures have been introduced to provide these 
capabilities in form of extensible, integrated frameworks. 
Several architectures are in existence and many future 
designs are expected. This paper serves to design a set of 
measurement metrics on which to base the comparative 
performance analysis of the real-time capabilities of two of 
the architectures; DirectShow and GStreamer. This 
exemplifies the decision process through which a particular 
architecture can be isolated as that best suited for a 
specified real-time application. The metrics used are: 
average processing speed, plug-in scalability, threading 
overhead and programming complexity. Based on these 
metrics, effective comparison of other plug-in architectures 
can be made to determine their real-time performance in 
relation to a particular application. 
 

Index Terms— GStreamer; measurement metrics; media 
pipeline plug-in architectures; Microsoft DirectShow; real-
time applications 

I. INTRODUCTION 

 Digital media is becoming more popular, with millions of 
people streaming various forms of media including music and 
videos over the Internet. In addition, real-time applications 
similar to video conferencing using instant messaging platforms 
(e.g. Skype), are now becoming a preferred means of long 
distance interactive communication. More recently, the 
increased demand for high definition television (HDTV) over 
Internet Protocol (IP)-based networks has led to the demand for 
more efficient, flexible and fast video processing techniques at 
the broadcasting end. In light of these developments, 
importance is drawn to the preparation of video for the encoding 
process required for such bandwidth-intensive applications. 
Raw captured multimedia needs to undergo various 
transformations and enhancements before it is transmitted to the 
receiver, with further quality improvements at the receiver end, 
before being rendered to the screen as a video image. This 
preparation is referred to as video processing and a few 
examples of this are: scaling down a large video image, 
compression, colour conversion after decompression etc.  

 
 Traditionally, the computing resources required to perform 

video processing functions were restricted to the domain of 
dedicated hardware or Digital Signal Processing (DSP) 
solutions. The current state of the art however, provides full 
flexibility to assemble useful video processing functions into 
media pipelines capable of real-time performance on standard 
consumer Personal Computers (PCs). Open software-based 

frameworks have been introduced for this purpose, the majority 
of which are structured as plug-in architectures. These plug-in 
architectures have been designed for software developers to 
build applications that are modular, customizable and easily 
extensible [1].  The basic structure of a plug-in architecture 
consists of a collection of filters or elements linked to form a 
pipeline. The basic class of objects for Microsoft DirectShow is 
referred to as a ‘filter’ while that of GStreamer is referred to as 
an ‘element’. Each plug-in filter or element implements a 
distinct or specific video processing function [1].   

 
Numerous media pipeline plug-in architectures are in 

existence today and many more will be designed in future. A 
few of these include: Microsoft DirectShow™, Microsoft Media 
Foundation®, Open source GStreamer™, RealNetworks Helix. 
Selecting which of the various media pipeline plug-in 
architectures to use for a particular real-time application is 
therefore of great interest. This selection can be based on 
various criteria. A few of these typically include: the operating 
system on which the application will run, the context in which 
the application will be used (e.g. video editing, video 
conferencing, live broadcasts etc.), the familiarity of the 
software design engineer with the architecture etc. The current 
selection process is often not based on the actual performance of 
the given application. Therefore, there is need to design a 
mechanism by which the most appropriate architecture can be 
selected that would best suit the particular application. 
 

This work seeks to address which is the best technology or 
framework to use for a given application. This is performed by 
defining measurement metrics that generalize a fair evaluation 
of performance that can be applied to these and any new 
frameworks that may become available in the future. The two 
frameworks that were selected for comparison in this paper are:  
Microsoft DirectShow and the open source GStreamer. 
Microsoft DirectShow is a commercial proprietary framework 
and Microsoft Windows is the most popular and widely 
distributed operating system (OS) in the market to date [2]. 
Therefore due to its current widespread usage, Microsoft 
DirectShow has been included in this comparison. To diversify 
the comparison, a popular open source framework that could 
also be implemented on the Microsoft Windows Operating 
System (OS) was the criterion for selecting the GStreamer 
framework. However, it should be noted that our primary 
interest here is the measurement metrics themselves and not the 
specific framework. The metrics defined here can also be 
applied to all other frameworks. 

 
The outline of the paper is as follows. Section II gives an 

overview of the operation and benefit of using media pipeline 
plug-in architectures. Section III describes the measurement 
metrics that were used to make the analysis and outlines the 
experiments that were carried out to investigate these metrics. In 
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Section IV, the experimental results are displayed and 
discussed. Section V presents the performance comparison and 
concludes on how a decision can be drawn on which media 
pipeline plug-in architecture best suits an application. Finally, 
recommendations for future work in this area are documented in 
Section VI. 

II. MEDIA PIPELINE PLUG-IN ARCHITECTURES 

Media pipeline plug-in architectures have been designed to 
allow third party developers to add features to a host application 
that were not originally available to it without recompiling or 
accessing the source code of that application [3]. These features 
are modules referred to as “plug-ins” each with its own 
specialized task. The plug-ins are designed to be seamlessly 
plugged back into the host application in order to actuate the 
required improvements. A media pipeline consists of a 
succession of video processing filters (elements) such that the 
output of one element becomes the input of the next element 
based on their compatibility with one another as shown in figure 
1 below.  
 

 
 
 
 
 
 
 
 
 

 

Figure 1.  Output of one element forms input of the next 
to create a media pipeline [4] 

The direct connection between the filters (elements) enables 
data to be transferred continuously through the pipeline rather 
than waiting for one video process to be terminated before the 
next process can begin [9].  

 
A typical plug-in model is illustrated in figure 2 below. It 

consists of two basic parts, the plug-in host and the plug-in 
itself. The plug-in host code is designed such that well-defined 
areas of functionality can be provided by an external module of 
code (i.e. the plug-in). When the host code is executed, it uses 
the mechanism provided by the plug-in architecture to locate 
compatible plug-ins and load them dynamically. As a result, the 
benefit of using these plug-in architectures is that capabilities, 
that were not previously available, are added to the host 
application [3].  

 
Figure 2.  Plug-in host attached to three plug-ins [3] 

III. REAL-TIME PERFORMANCE EVALUATION METRICS 

Numerous video plug-ins exist. However, in order to 
maintain consistency in the tests conducted, a single video 

processing tool; the scaling tool, was chosen. This processing 
tool can be easily modified to work seamlessly with comparable 
efficiency on both pipeline architectures. A singe tool was also 
chosen to be continuously concatenated for all the test processes 
because our focus is on the application of the plug-in to the 
performance of the architecture under test and not on the 
functionality of the plug-in itself. Using the same base code, the 
scale filter was designed for DirectShow and the scale element 
designed for GStreamer mandating that the performance of the 
two processing tools remained identical across both 
architectures. 

 
In order to evaluate fairly the performance of each of the 

media pipeline plug-in architectures involved, various 
performance parameters (measurement metrics) were isolated 
and different experiments carried out based on these metrics. 
The metrics used in this paper can be categorized as quantitative 
and qualitative as discussed below: 

A. Quantitative measurement metrics:  
These refer to the measurement metrics that exist in a range 

of magnitudes and can therefore be measured or quantified. 
Different experiments were conducted on the DirectShow and 
GStreamer pipelines and the general pipeline setup was shown 
in figure 3 below: 

Figure 3.  Simple measurement pipeline on which 
comparison of pipeline architectures is based 

This pipeline included a video capture source (Logitech 
webcam that produced a live feed) and an incremental number 
of scale filters (elements) in the measurement pipeline that 
repeatedly scaled a video up and down from 320x240 to 
176x144 pixels. It also consisted of two timing measurement 
filters at either ends of the pipeline and a video renderer to 
render the video to the screen. The scaling up and down of the 
video image was conducted with small values such that the 
performance of the pipeline architecture could be analysed as it 
performed a simple task. This ensured consistency across both 
platforms without making a great impact on the overall 
processing power utilised by the experiments.  

 
The video from the webcam was rendered through the timing 

filters and the measurement pipeline to the screen. The 
experiments were run and measurements were taken and 
recorded. The quantitative metrics defined for the purpose of 
this comparative study include: 

 
1) Experiment 1: Average processing time of the 1st frame 

This is a measure of the average time in seconds that it takes 
a single or collection of video processing tools (e.g. scale 
filters/elements) within the pipeline to receive the very first 
frame of the video sequence, carry out the video scaling and 
transfer the first processed frame to the renderer. This metric 
can be used as a measure of the correlation between the scaling 
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size and the performance of the architecture. It is an important 
metric because the average processing time of the 1st frame 
varies significantly between plug-in architectures and 
contributes to the total time taken to process all the remaining 
frames in the sequence. This metric would therefore determine 
which type of video application that the particular architecture 
would best serve.  

 
For the GStreamer and DirectShow pipelines, timing tools 

were placed in each pipeline to measure the time at which a 
video frame moved through each of the two timing tools A and 
B located at either ends of the measurement pipeline as shown 
in figure 3 above. The time measured at each timing tool is 
referred to as the reference time. A single time measurement 
represented the time taken for a single video frame to pass 
through the pipeline from the first inserted timing tool A, 
through the measurement pipeline to the second timing tool B. 
The processing time was measured using the difference between 
the reference times recorded by the timing tools for each video 
frame. These measurements were averaged over 100 tests where 
the video was played and the processing time of the 1st frame 
recorded. To calculate the average processing time for the first 
frame for each scale filter (element) combination, the following 
equation was used: 

 
 
 
 

 
 
 

The first timing measurement was taken with only one video 
processing tool (scale filter/element) in the measurement 
pipeline. Successive average timing measurements were 
repeated on the pipeline after incrementing the number of filters 
by one up until the point where the pipeline could no longer 
sustain any further additions.  

 
The main limitation of this metric was the interference caused 

by the underlying OS processes. Despite the fact that all other 
applications were turned off at the time of the experiments, the 
underlying Central Processing Unit (CPU) processes still 
contributed a small amount of interference or delay.  

 
2) Experiment 2: Average processing time of successive 
video frames 

This metric is an extension of the previous experiment where 
all the subsequent frames passing through the measurement 
pipeline in the sequence were now included. The timing 
measurements evaluated in Experiment 2 commenced with the 
time taken for the 2nd video frame to move through the 
measurement pipeline and continued to include the other 
subsequent video frames that were sent through the pipeline. 
For every filter added to the pipeline, 100 frame traversal times 
were averaged and the measurement was recorded. The purpose 
of this experiment was to determine the long term steady-state 
performance of the pipeline under test.  

 
The average processing time of the successive video frames 

was calculated in the same way as in Experiment 1 above and 
therefore had the same experimental limitations.  

 
3) Experiment 3: Plug-in scalability  

The scalability of the pipeline is a measure of how many 
filters (elements) that the different plug-in architectures can 
support while maintaining the required efficiency. The validity 
of this metric is based on the fact that it is important to know the 

maximum number of processing functions that a particular 
architecture can support before the system fails. The yield point 
at which the system fails completely is defined here as the 
maximum scalability of the plug-in architecture. This 
experiment was conducted by adding successive video scaling 
tools to the pipeline and identifying the point at which no more 
filters (elements) could be accommodated without rejection by 
the pipeline. 

 
The limitation of this metric is that it is directly tied to the PC 

hardware resources available. Therefore the absolute value for 
the maximum scalability indicates the point at which all the 
CPU resources are consumed for a given PC. The relative 
measure between architectures on the same PC was used for the 
comparison and therefore still provided a good measure of 
relative performance. 

 
4) Experiment 4: Plug-in (threading) overhead  

This is defined as the number of active threads that are 
involved during the processing of the video frames. The number 
of threads involved in a process was measured using the Task 
Manager application of the Windows OS. This metric is 
important because an increased number of threads doing similar 
amount of work is indicative of an increase in overhead but can 
be balanced with a gain from multi-core CPUs. 

B. Qualitative measurement metrics:  
These are the measurement metrics that are based on 

subjective attributes that influence the software development 
process. The qualitative measurement metric used in this 
analysis was: 

 
1) Experiment 5: Programming interface complexity  

This is a measure of the degree of difficulty or complexity 
that was involved in designing the filter (element), creating the 
media pipeline, inserting the filters into the pipeline and taking 
the measurements. This is an important metric because it is an 
indirect measure of the cost of development. The comparable 
programming complexity of developing software for a particular 
plug-in architecture and also the ease with which third parties 
can design additional plug-ins, determines the time required to 
develop a given application. 

 
The limitation of this metric though, is that it is based on the 

opinion and experience of the developer. However, using the 
same developer, designing the same task for the different 
architectures justifies the reasonable validity of this subjective 
metric. 

IV. EXPERIMENTAL RESULTS 

In order to make a comprehensive performance comparison 
between the two media pipeline plug-in architectures 
(GStreamer and Microsoft DirectShow), this section has been 
sub-divided according to the measurement metrics stated above 
that have been used in this paper as a basis of comparison. 

A. Quantitative measurement metrics: 
1) Average processing time of the 1st video frame 

A comparison of the average processing times of the first 
frame of both GStreamer and Microsoft DirectShow is 
presented in figure 4 below: 
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where:   N = Total number of measurements taken (100),  
start_time = time taken from Timing Filter (Element) A, 
stop_time = time taken from Timing Filter (Element) B. 



 

Figure 4.  Average processing time vs. number of filters 
(elements) of the 1st video frame in the measurement 

pipeline for GStreamer and Microsoft DirectShow 

  Figure 4 shows that, with DirectShow, the average 
processing time for the 1st frame remained constant at a value 
below 0.001s regardless of how many filters were added to the 
pipeline. Hence the 1st video frame had no effect on the overall 
average processing time of the architecture. However, with 
GStreamer, the graph indicates a 2nd order polynomial increase 
in the average processing times as the number of elements in the 
pipeline was also increased. The equation of this curve of best 
fit was: 
 
 

Equation (2) illustrates that the number of elements in the 
pipeline is a factor in the increase in overhead as more elements 
are added to the pipeline. The graph was seen to lose its 
linearity as more elements were added and hence its efficiency 
since the 1st frame took longer to traverse through the pipeline. 
As more elements were added to the pipeline, the architecture 
overhead also increased going up to a value of 0.705s for 118 
elements. Therefore the 1st frame processing time of GStreamer 
had a significant impact on the overall processing time of the 
plug-in architecture.  

 
This indicates a major limitation with GStreamer for large 

element bins and will impact the initial waiting period before 
the successive frames begin to flow through the pipeline. 

 
2) Average processing time of successive frames  

In figure 5 below, the processing times of both GStreamer 
and Microsoft DirectShow (excluding the first video frame) are 
presented. Figure 5 shows that as the number of filters in the 
DirectShow pipeline was increased (from 1 to 118 filters); there 
was a corresponding linear increase in average processing time 
(from 0.002s to 0.771s). The black trend line indicated a linear 
line of best fit with the following equation: 

 
 

This implied that the average processing time of this scale 
filter could be predicted due to the linear relation between the 
average processing time and the number of filters in the 
measurement pipeline. The linear relationship further implied 

that the architecture overhead did not increase with increase in 
the number of filters in the pipeline. 

Figure 5.  Average processing time excluding the 1st 
frame vs. number of filters (elements) in the measurement 

pipeline for Microsoft DirectShow and GStreamer 

With regards to GStreamer, figure 5 shows that as the number 
of elements in the pipeline was increased (from 0 to 145 
elements), the processing time values correspondingly increased 
linearly (from 0s to 0.352s). The trend line of best fit has an 
equation of best fit as shown below: 
 
 

Equation (4) implies a smaller constant increase in the 
average processing time of the GStreamer elements. Therefore, 
using this equation, the average processing time of the 
architecture could also be predicted using the number of scale 
elements in the pipeline. The slope of the graph derived from 
the equation of the line of best fit above is equal to a constant 
(0.0024s). Therefore the number of elements in the pipeline can 
be used as a direct measure of the average processing time of 
the successive video frames passing through the pipeline. 
 
As a result, considering the average processing time 

(excluding the waiting time for the first frame) GStreamer 
showed better performance. The implication of this is, despite 
the fact that 1st frame processing time (time taken for first 
frame to pass through the pipeline) with GStreamer was much 
more than that of Microsoft DirectShow; the time taken for the 
successive frames to move through the pipeline was less.  

 
Consequently, a decision can be made on which architecture 

to use depending on whether a long initial setup time would 
greatly impact the overall efficiency of the application.   

 
Average time per filter (element) 

The average time per filter, is a measure of the gradient (slope) 
of the graph in figure 5 above. Due to the linear nature of the 
relationship it is also expected to be constant. To calculate the 
average time per filter for each scale filter combination, the 
following equation was used: 
 

y = x (0.00005x+0.0044) +0.0003             (2) 

y = 0.0024x-0.0027      (4) 

y= 0.0065x + 0.002       (3) 



 

Average Time per Filter =    

pipeline)t measuremenin  filters of(Number 
 time)processing (Average          (5) 

A comparison of the average processing time per filter 
(element) of video frames (excluding the 1st frame) that passed 
through both GStreamer and Microsoft DirectShow pipelines is 
presented in figure 6 below. 

Figure 6.  Average time per filter (element) vs. number of 
filters (elements) in the measurement pipeline for 

Microsoft DirectShow and GStreamer 

The graph in figure 6 above shows that with DirectShow, 
initially when it had a few filters in the measurement pipeline, 
there was a high initial time per filter. This is because the first 
filter involved in scaling down the image performed a copious 
amount of work in scaling the live video image from the 
webcam (320x240 pixels) to the first arbitrary scale value 
chosen for this experiment (176x144 pixels). This work done 
was much greater than that required by the successive filters to 
scale the image from (176x144 pixels) up to (180x148pixels) 
then scale it down again to (176x144 pixels) and so on. Thus the 
influence of the first filter became less dominant on the average 
time per filter of the successive filters added to the pipeline due 
to the fact that the successive work done became relatively 
constant. Consequently, as illustrated in the figure 6 above, 
there was a marked difference in the average time per filter from 
0.008s for the 1st filter to 0.0072s for the 2nd filter and then 
further down to 0.0069s for the 3rd filters respectively added to 
the pipeline.  

 
However, with time, as more filters were added with more 

regular scaling value patterns, the time per filter evened out and 
began to show very slight variation as the number of filters 
added to the pipeline increased from 0 to 118. The trend 
fluctuated slightly above and below the value of 0.0066s. This 
value coincides with the constant value previously derived from 
the equation (3) of the graph in figure 5 above, 

 
For GStreamer, figure 6 shows that once again initially, there 

was a sharp reduction in work that was done to scale the live 
video image received from the webcam from a value of 
320x240 to a value of 176x144 pixels. The time taken to effect 
this large initial pixel size reduction by the first element was 
long (i.e. 0.0026s). With the immediate succeeding elements, 
this large amount of work done by the first element dominated 
the average time per element. The work done by the 2nd element 
to increase the pixel size from 176x144 to 180x148 pixels in 
comparison was quite small. Therefore the average time per 

element in turn also dropped to 0.0019s. This time further 
decreased to a value of 0.0018s as the image was now scaled 
down again to 176x144 pixels.  

 
However, as the number of elements in the pipeline 

increased, the effect of the initial dominant element became less 
significant and the average time per element evened out to an 
approximate value of 0.00237s. The graph now began to show 
very slight variation as the number of elements added to the 
pipeline increased from 20 to 145. This average value of 
0.00237s is approximately equal to the slope illustrated by the 
line of best fit of the graph in figure 5 in the GStreamer equation 
(4) above. 

 
This graph therefore indicates that the average processing 

time per element (excluding the first frame) for GStreamer is 
much lower than that of a Microsoft DirectShow filter in a 
pipeline. 

 
3) Plug-in scalability  

Figures 4, 5 and 6 above illustrate that Microsoft DirectShow 
was only able to process a maximum of 118 filters but 
GStreamer was capable of processing up to 145 elements in the 
pipeline without rejecting them. Therefore from these 
experiments, when using the scale filter (element), GStreamer 
was more scalable than Microsoft DirectShow. More processing 
functions could be carried out in succession with GStreamer 
than they could with Microsoft DirectShow. 

 
4) Plug-in (threading) overhead 

The difference in the number of threads actively involved in 
the processing of video in a Microsoft DirectShow (11 threads) 
and a GStreamer pipeline (10 threads) was measured using the 
Task Manager of the Windows OS and was found to be constant 
at 1 thread. This may be considered as negligible and therefore, 
the plug-in threading overhead of the two media pipeline plug-
in architectures was approximately the same. 

 

B. Qualitative measurement metrics: 
1) Programming interface complexity 

The programming complexity is a measure of the ease of 
designing and inserting new plug-ins into the host application. 
Microsoft DirectShow is based on the Component Object Model 
(COM) framework [8]. Therefore, before setting up the 
framework on which a filter can be built, several factors need to 
be considered. Some of these include: the different base classes 
from which each filter will inherit[7], locating the libraries that 
contain the different properties of the filter, the settings 
interfaces of each base class that are required to seamlessly 
integrate with the host application, the property pages needed 
for a particular functionality etc [6]. In addition, the threading 
model for DirectShow filters is complex. Thus the programming 
complexity of Microsoft DirectShow for developers building 
applications for this media pipeline plug-in architecture is high. 

 
GStreamer presented significantly lower programming 

interface complexity due to its simplicity of structure and 
encapsulation of most of the complicated setup tasks. A 
GStreamer element, once written and complying with all the 
requirements stipulated by the GStreamer Application 
Programmer’s Interface (API), is programmatically registered as 
a GStreamer element and is thus ready for use. The properties of 
each element that GStreamer expects to observe in order to 
recognize and register it as a GStreamer element are the same 
[5]. However, in order to make the distinction between different 
types of GStreamer elements, the basetransformclass is used. A 
“transform class” is a GStreamer pre-made class that consists of 



 

various C language structures that may be manipulated to 
actuate the unique functionality of the new GStreamer element 
under development. Manipulating the collection of C structures 
and implementing the desired function was the basic 
requirements to develop a simple GStreamer element [5]. It was 
deemed significantly simpler to design with than the COM 
architecture of Direct Show. 

V. CONCLUSIONS  

The main objective of this work was to design a set of 
measurement metrics on which to base the comparative 
performance analysis of the real-time capabilities of different 
media pipeline plug-in architectures. Experiments were 
developed, compiled and executed on the two selected 
architectures, Microsoft DirectShow and GStreamer. The 
following conclusions are a summary of the real-time 
performance comparison results represented by Table 1 below: 

 
TABLE I.  Real-time performance comparative analysis of 

Microsoft DirectShow and GStreamer 

Comparison 
parameter 

Microsoft 
DirectShow 

GStreamer 

Average 
Processing 
time of the 1st 
frame 

Remained constant 
at a value of 0.001s 
regardless of the 

number of filters in 
the pipeline. 

Increased as the 
number of elements in 
the pipeline increased 
with the 2nd order 
equation: y = x 
(0.00005x+0.0044) 

Average 
Processing 
time excluding 
the first frame 

Increased linearly at 
a higher  constant 

rate with the 
equation: 

y= 0.0065x + 0.002 

It increased linearly at 
a lower  constant rate 
with the equation: 
y = 0.0024x-0.0027 

Average 
Processing 
time per filter 
(excluding the 
1st frame) 

Higher average 
processing  time per 

filter (0.0065s) 

Lower average 
processing time per 

filter (0.0024s) 

Scalability Can only hold up to 
118 filters. 

Can hold up to 145 
elements. 

Plug-
in(threading) 
overhead 

11 threads actively 
involved. 

10 threads actively 
involved. 

Programming 
interface 
complexity 

More complex 
programming 

interface. 

Less complex 
programming 

interface. 
   
It may be concluded that each of the media pipeline plug-in 

architectures under test had different individual areas of better 
performance. Using the scaling tool, GStreamer was more 
scalable, exhibited less threading overhead and had less 
programming complexity than Microsoft DirectShow. However, 
Microsoft DirectShow had a lower overall average processing 
time than GStreamer. Selecting an appropriate media pipeline 
plug-in architecture would therefore depend on the trade-off that 
the application under development can accommodate.  

VI. RECOMMENDATIONS 

A few recommendations and suggestions of future work are 
listed here below. 

 
With the advent of multi-core processors, multi-threaded 

programming is becoming increasingly efficient. An 
investigation into how this can be used to reduce the average 
processing time and increase overall performance of the media 
pipeline plug-in architectures could provide significant 

improvement. 
 
A relatively simple video scaling tool was used for the 

purpose of this investigation. Future work needs to be 
conducted using a wider variety of plug-ins to investigate the 
effect of implementation of more complex tasks and the 
consequent effect on plug-in complexity and efficiency. 

 
For GStreamer, the initial overhead required for the first 

video frame passing through the pipeline is high particularly for 
pipelines with many serial elements. An investigation into the 
cause of this increase, as the number of elements in the 
measurement pipeline increases, needs to be conducted. In 
addition, further investigation can consider how this overhead 
may be reduced. Reduction of this overhead will significantly 
reduce the average processing time taken by the GStreamer 
media pipeline plug-in architecture. 

 
Other performance parameter metrics exist on which to base 

the comparison of the output video. These include memory 
management, processor utilisation, memory footprint, 
scalability of parallel filters (elements), output picture quality 
etc. Future work can focus on investigating these other metrics 
to give a more detailed overall comparison of the video 
processing performance of the different media pipeline plug-in 
architectures. 
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