

Abstract- Deployment of real-time applications has
become ubiquitous in recent years. These applications (e.g.
streaming video over the Internet) however, are processor-
intensive and require fast video-processing techniques for
more flexible, efficient operation. Media pipeline plug-in
architectures have been introduced to provide these
capabilities in form of extensible, integrated frameworks.
Several architectures are in existence and many future
designs are expected. This paper serves to design a set of
measurement metrics on which to base the comparative
performance analysis of the real-time capabilities of two of
the architectures; DirectShow and GStreamer. This
exemplifies the decision process through which a particular
architecture can be isolated as that best suited for a
specified real-time application. The metrics used are:
average processing speed, plug-in scalability, threading
overhead and programming complexity. Based on these
metrics, effective comparison of other plug-in architectures
can be made to determine their real-time performance in
relation to a particular application.

Index Terms— GStreamer; measurement metrics; media
pipeline plug-in architectures; Microsoft DirectShow; real-
time applications

I. INTRODUCTION

 Digital media is becoming more popular, with millions of
people streaming various forms of media including music and
videos over the Internet. In addition, real-time applications
similar to video conferencing using instant messaging platforms
(e.g. Skype), are now becoming a preferred means of long
distance interactive communication. More recently, the
increased demand for high definition television (HDTV) over
Internet Protocol (IP)-based networks has led to the demand for
more efficient, flexible and fast video processing techniques at
the broadcasting end. In light of these developments,
importance is drawn to the preparation of video for the encoding
process required for such bandwidth-intensive applications.
Raw captured multimedia needs to undergo various
transformations and enhancements before it is transmitted to the
receiver, with further quality improvements at the receiver end,
before being rendered to the screen as a video image. This
preparation is referred to as video processing and a few
examples of this are: scaling down a large video image,
compression, colour conversion after decompression etc.

 Traditionally, the computing resources required to perform

video processing functions were restricted to the domain of
dedicated hardware or Digital Signal Processing (DSP)
solutions. The current state of the art however, provides full
flexibility to assemble useful video processing functions into
media pipelines capable of real-time performance on standard
consumer Personal Computers (PCs). Open software-based

frameworks have been introduced for this purpose, the majority
of which are structured as plug-in architectures. These plug-in
architectures have been designed for software developers to
build applications that are modular, customizable and easily
extensible [1]. The basic structure of a plug-in architecture
consists of a collection of filters or elements linked to form a
pipeline. The basic class of objects for Microsoft DirectShow is
referred to as a ‘filter’ while that of GStreamer is referred to as
an ‘element’. Each plug-in filter or element implements a
distinct or specific video processing function [1].

Numerous media pipeline plug-in architectures are in

existence today and many more will be designed in future. A
few of these include: Microsoft DirectShow™, Microsoft Media
Foundation®, Open source GStreamer™, RealNetworks Helix.
Selecting which of the various media pipeline plug-in
architectures to use for a particular real-time application is
therefore of great interest. This selection can be based on
various criteria. A few of these typically include: the operating
system on which the application will run, the context in which
the application will be used (e.g. video editing, video
conferencing, live broadcasts etc.), the familiarity of the
software design engineer with the architecture etc. The current
selection process is often not based on the actual performance of
the given application. Therefore, there is need to design a
mechanism by which the most appropriate architecture can be
selected that would best suit the particular application.

This work seeks to address which is the best technology or
framework to use for a given application. This is performed by
defining measurement metrics that generalize a fair evaluation
of performance that can be applied to these and any new
frameworks that may become available in the future. The two
frameworks that were selected for comparison in this paper are:
Microsoft DirectShow and the open source GStreamer.
Microsoft DirectShow is a commercial proprietary framework
and Microsoft Windows is the most popular and widely
distributed operating system (OS) in the market to date [2].
Therefore due to its current widespread usage, Microsoft
DirectShow has been included in this comparison. To diversify
the comparison, a popular open source framework that could
also be implemented on the Microsoft Windows Operating
System (OS) was the criterion for selecting the GStreamer
framework. However, it should be noted that our primary
interest here is the measurement metrics themselves and not the
specific framework. The metrics defined here can also be
applied to all other frameworks.

The outline of the paper is as follows. Section II gives an

overview of the operation and benefit of using media pipeline
plug-in architectures. Section III describes the measurement
metrics that were used to make the analysis and outlines the
experiments that were carried out to investigate these metrics. In

Real-Time Performance Evaluation of Media Pipeline
Plug-in Architectures

V. N. Sentongo1, K. L. Ferguson1 and M. E. Dlodlo 2
Council for Scientific and Industrial Research1,

Meraka Institute, Pretoria, South Africa
Tel: +27 12 841 4266

and Department of Electrical Engineering
University of Cape Town2

email: {vsentongo, kferguson}@csir.co.za1; Mqhele.Dlodlo @uct.ac.za2

mailto:vsentongo%2C%20kferguson%7D@csir.co.za
mailto:thirdauthor@xxxxxx.ac.za2

Section IV, the experimental results are displayed and
discussed. Section V presents the performance comparison and
concludes on how a decision can be drawn on which media
pipeline plug-in architecture best suits an application. Finally,
recommendations for future work in this area are documented in
Section VI.

II. MEDIA PIPELINE PLUG-IN ARCHITECTURES

Media pipeline plug-in architectures have been designed to
allow third party developers to add features to a host application
that were not originally available to it without recompiling or
accessing the source code of that application [3]. These features
are modules referred to as “plug-ins” each with its own
specialized task. The plug-ins are designed to be seamlessly
plugged back into the host application in order to actuate the
required improvements. A media pipeline consists of a
succession of video processing filters (elements) such that the
output of one element becomes the input of the next element
based on their compatibility with one another as shown in figure
1 below.

Figure 1. Output of one element forms input of the next
to create a media pipeline [4]

The direct connection between the filters (elements) enables
data to be transferred continuously through the pipeline rather
than waiting for one video process to be terminated before the
next process can begin [9].

A typical plug-in model is illustrated in figure 2 below. It

consists of two basic parts, the plug-in host and the plug-in
itself. The plug-in host code is designed such that well-defined
areas of functionality can be provided by an external module of
code (i.e. the plug-in). When the host code is executed, it uses
the mechanism provided by the plug-in architecture to locate
compatible plug-ins and load them dynamically. As a result, the
benefit of using these plug-in architectures is that capabilities,
that were not previously available, are added to the host
application [3].

Figure 2. Plug-in host attached to three plug-ins [3]

III. REAL-TIME PERFORMANCE EVALUATION METRICS

Numerous video plug-ins exist. However, in order to
maintain consistency in the tests conducted, a single video

processing tool; the scaling tool, was chosen. This processing
tool can be easily modified to work seamlessly with comparable
efficiency on both pipeline architectures. A singe tool was also
chosen to be continuously concatenated for all the test processes
because our focus is on the application of the plug-in to the
performance of the architecture under test and not on the
functionality of the plug-in itself. Using the same base code, the
scale filter was designed for DirectShow and the scale element
designed for GStreamer mandating that the performance of the
two processing tools remained identical across both
architectures.

In order to evaluate fairly the performance of each of the

media pipeline plug-in architectures involved, various
performance parameters (measurement metrics) were isolated
and different experiments carried out based on these metrics.
The metrics used in this paper can be categorized as quantitative
and qualitative as discussed below:

A. Quantitative measurement metrics:
These refer to the measurement metrics that exist in a range

of magnitudes and can therefore be measured or quantified.
Different experiments were conducted on the DirectShow and
GStreamer pipelines and the general pipeline setup was shown
in figure 3 below:

Figure 3. Simple measurement pipeline on which
comparison of pipeline architectures is based

This pipeline included a video capture source (Logitech
webcam that produced a live feed) and an incremental number
of scale filters (elements) in the measurement pipeline that
repeatedly scaled a video up and down from 320x240 to
176x144 pixels. It also consisted of two timing measurement
filters at either ends of the pipeline and a video renderer to
render the video to the screen. The scaling up and down of the
video image was conducted with small values such that the
performance of the pipeline architecture could be analysed as it
performed a simple task. This ensured consistency across both
platforms without making a great impact on the overall
processing power utilised by the experiments.

The video from the webcam was rendered through the timing

filters and the measurement pipeline to the screen. The
experiments were run and measurements were taken and
recorded. The quantitative metrics defined for the purpose of
this comparative study include:

1) Experiment 1: Average processing time of the 1st frame

This is a measure of the average time in seconds that it takes
a single or collection of video processing tools (e.g. scale
filters/elements) within the pipeline to receive the very first
frame of the video sequence, carry out the video scaling and
transfer the first processed frame to the renderer. This metric
can be used as a measure of the correlation between the scaling

Element

Output (stdout) Input (stdin)

Element

Media Pipeline

size and the performance of the architecture. It is an important
metric because the average processing time of the 1st frame
varies significantly between plug-in architectures and
contributes to the total time taken to process all the remaining
frames in the sequence. This metric would therefore determine
which type of video application that the particular architecture
would best serve.

For the GStreamer and DirectShow pipelines, timing tools

were placed in each pipeline to measure the time at which a
video frame moved through each of the two timing tools A and
B located at either ends of the measurement pipeline as shown
in figure 3 above. The time measured at each timing tool is
referred to as the reference time. A single time measurement
represented the time taken for a single video frame to pass
through the pipeline from the first inserted timing tool A,
through the measurement pipeline to the second timing tool B.
The processing time was measured using the difference between
the reference times recorded by the timing tools for each video
frame. These measurements were averaged over 100 tests where
the video was played and the processing time of the 1st frame
recorded. To calculate the average processing time for the first
frame for each scale filter (element) combination, the following
equation was used:

The first timing measurement was taken with only one video
processing tool (scale filter/element) in the measurement
pipeline. Successive average timing measurements were
repeated on the pipeline after incrementing the number of filters
by one up until the point where the pipeline could no longer
sustain any further additions.

The main limitation of this metric was the interference caused

by the underlying OS processes. Despite the fact that all other
applications were turned off at the time of the experiments, the
underlying Central Processing Unit (CPU) processes still
contributed a small amount of interference or delay.

2) Experiment 2: Average processing time of successive
video frames

This metric is an extension of the previous experiment where
all the subsequent frames passing through the measurement
pipeline in the sequence were now included. The timing
measurements evaluated in Experiment 2 commenced with the
time taken for the 2nd video frame to move through the
measurement pipeline and continued to include the other
subsequent video frames that were sent through the pipeline.
For every filter added to the pipeline, 100 frame traversal times
were averaged and the measurement was recorded. The purpose
of this experiment was to determine the long term steady-state
performance of the pipeline under test.

The average processing time of the successive video frames

was calculated in the same way as in Experiment 1 above and
therefore had the same experimental limitations.

3) Experiment 3: Plug-in scalability

The scalability of the pipeline is a measure of how many
filters (elements) that the different plug-in architectures can
support while maintaining the required efficiency. The validity
of this metric is based on the fact that it is important to know the

maximum number of processing functions that a particular
architecture can support before the system fails. The yield point
at which the system fails completely is defined here as the
maximum scalability of the plug-in architecture. This
experiment was conducted by adding successive video scaling
tools to the pipeline and identifying the point at which no more
filters (elements) could be accommodated without rejection by
the pipeline.

The limitation of this metric is that it is directly tied to the PC

hardware resources available. Therefore the absolute value for
the maximum scalability indicates the point at which all the
CPU resources are consumed for a given PC. The relative
measure between architectures on the same PC was used for the
comparison and therefore still provided a good measure of
relative performance.

4) Experiment 4: Plug-in (threading) overhead

This is defined as the number of active threads that are
involved during the processing of the video frames. The number
of threads involved in a process was measured using the Task
Manager application of the Windows OS. This metric is
important because an increased number of threads doing similar
amount of work is indicative of an increase in overhead but can
be balanced with a gain from multi-core CPUs.

B. Qualitative measurement metrics:
These are the measurement metrics that are based on

subjective attributes that influence the software development
process. The qualitative measurement metric used in this
analysis was:

1) Experiment 5: Programming interface complexity

This is a measure of the degree of difficulty or complexity
that was involved in designing the filter (element), creating the
media pipeline, inserting the filters into the pipeline and taking
the measurements. This is an important metric because it is an
indirect measure of the cost of development. The comparable
programming complexity of developing software for a particular
plug-in architecture and also the ease with which third parties
can design additional plug-ins, determines the time required to
develop a given application.

The limitation of this metric though, is that it is based on the

opinion and experience of the developer. However, using the
same developer, designing the same task for the different
architectures justifies the reasonable validity of this subjective
metric.

IV. EXPERIMENTAL RESULTS

In order to make a comprehensive performance comparison
between the two media pipeline plug-in architectures
(GStreamer and Microsoft DirectShow), this section has been
sub-divided according to the measurement metrics stated above
that have been used in this paper as a basis of comparison.

A. Quantitative measurement metrics:
1) Average processing time of the 1st video frame

A comparison of the average processing times of the first
frame of both GStreamer and Microsoft DirectShow is
presented in figure 4 below:

Average Processing Time = ∑
=

−
100

1

)__(
1

i
ii timestarttimestop

N
 (1)

where: N = Total number of measurements taken (100),
start_time = time taken from Timing Filter (Element) A,
stop_time = time taken from Timing Filter (Element) B.

Figure 4. Average processing time vs. number of filters
(elements) of the 1st video frame in the measurement

pipeline for GStreamer and Microsoft DirectShow

 Figure 4 shows that, with DirectShow, the average
processing time for the 1st frame remained constant at a value
below 0.001s regardless of how many filters were added to the
pipeline. Hence the 1st video frame had no effect on the overall
average processing time of the architecture. However, with
GStreamer, the graph indicates a 2nd order polynomial increase
in the average processing times as the number of elements in the
pipeline was also increased. The equation of this curve of best
fit was:

Equation (2) illustrates that the number of elements in the
pipeline is a factor in the increase in overhead as more elements
are added to the pipeline. The graph was seen to lose its
linearity as more elements were added and hence its efficiency
since the 1st frame took longer to traverse through the pipeline.
As more elements were added to the pipeline, the architecture
overhead also increased going up to a value of 0.705s for 118
elements. Therefore the 1st frame processing time of GStreamer
had a significant impact on the overall processing time of the
plug-in architecture.

This indicates a major limitation with GStreamer for large

element bins and will impact the initial waiting period before
the successive frames begin to flow through the pipeline.

2) Average processing time of successive frames

In figure 5 below, the processing times of both GStreamer
and Microsoft DirectShow (excluding the first video frame) are
presented. Figure 5 shows that as the number of filters in the
DirectShow pipeline was increased (from 1 to 118 filters); there
was a corresponding linear increase in average processing time
(from 0.002s to 0.771s). The black trend line indicated a linear
line of best fit with the following equation:

This implied that the average processing time of this scale
filter could be predicted due to the linear relation between the
average processing time and the number of filters in the
measurement pipeline. The linear relationship further implied

that the architecture overhead did not increase with increase in
the number of filters in the pipeline.

Figure 5. Average processing time excluding the 1st
frame vs. number of filters (elements) in the measurement

pipeline for Microsoft DirectShow and GStreamer

With regards to GStreamer, figure 5 shows that as the number
of elements in the pipeline was increased (from 0 to 145
elements), the processing time values correspondingly increased
linearly (from 0s to 0.352s). The trend line of best fit has an
equation of best fit as shown below:

Equation (4) implies a smaller constant increase in the
average processing time of the GStreamer elements. Therefore,
using this equation, the average processing time of the
architecture could also be predicted using the number of scale
elements in the pipeline. The slope of the graph derived from
the equation of the line of best fit above is equal to a constant
(0.0024s). Therefore the number of elements in the pipeline can
be used as a direct measure of the average processing time of
the successive video frames passing through the pipeline.

As a result, considering the average processing time

(excluding the waiting time for the first frame) GStreamer
showed better performance. The implication of this is, despite
the fact that 1st frame processing time (time taken for first
frame to pass through the pipeline) with GStreamer was much
more than that of Microsoft DirectShow; the time taken for the
successive frames to move through the pipeline was less.

Consequently, a decision can be made on which architecture

to use depending on whether a long initial setup time would
greatly impact the overall efficiency of the application.

Average time per filter (element)

The average time per filter, is a measure of the gradient (slope)
of the graph in figure 5 above. Due to the linear nature of the
relationship it is also expected to be constant. To calculate the
average time per filter for each scale filter combination, the
following equation was used:

y = x (0.00005x+0.0044) +0.0003 (2)

y = 0.0024x-0.0027 (4)

y= 0.0065x + 0.002 (3)

Average Time per Filter =

pipeline)t measuremenin filters of(Number
 time)processing (Average (5)

A comparison of the average processing time per filter
(element) of video frames (excluding the 1st frame) that passed
through both GStreamer and Microsoft DirectShow pipelines is
presented in figure 6 below.

Figure 6. Average time per filter (element) vs. number of
filters (elements) in the measurement pipeline for

Microsoft DirectShow and GStreamer

The graph in figure 6 above shows that with DirectShow,
initially when it had a few filters in the measurement pipeline,
there was a high initial time per filter. This is because the first
filter involved in scaling down the image performed a copious
amount of work in scaling the live video image from the
webcam (320x240 pixels) to the first arbitrary scale value
chosen for this experiment (176x144 pixels). This work done
was much greater than that required by the successive filters to
scale the image from (176x144 pixels) up to (180x148pixels)
then scale it down again to (176x144 pixels) and so on. Thus the
influence of the first filter became less dominant on the average
time per filter of the successive filters added to the pipeline due
to the fact that the successive work done became relatively
constant. Consequently, as illustrated in the figure 6 above,
there was a marked difference in the average time per filter from
0.008s for the 1st filter to 0.0072s for the 2nd filter and then
further down to 0.0069s for the 3rd filters respectively added to
the pipeline.

However, with time, as more filters were added with more

regular scaling value patterns, the time per filter evened out and
began to show very slight variation as the number of filters
added to the pipeline increased from 0 to 118. The trend
fluctuated slightly above and below the value of 0.0066s. This
value coincides with the constant value previously derived from
the equation (3) of the graph in figure 5 above,

For GStreamer, figure 6 shows that once again initially, there

was a sharp reduction in work that was done to scale the live
video image received from the webcam from a value of
320x240 to a value of 176x144 pixels. The time taken to effect
this large initial pixel size reduction by the first element was
long (i.e. 0.0026s). With the immediate succeeding elements,
this large amount of work done by the first element dominated
the average time per element. The work done by the 2nd element
to increase the pixel size from 176x144 to 180x148 pixels in
comparison was quite small. Therefore the average time per

element in turn also dropped to 0.0019s. This time further
decreased to a value of 0.0018s as the image was now scaled
down again to 176x144 pixels.

However, as the number of elements in the pipeline

increased, the effect of the initial dominant element became less
significant and the average time per element evened out to an
approximate value of 0.00237s. The graph now began to show
very slight variation as the number of elements added to the
pipeline increased from 20 to 145. This average value of
0.00237s is approximately equal to the slope illustrated by the
line of best fit of the graph in figure 5 in the GStreamer equation
(4) above.

This graph therefore indicates that the average processing

time per element (excluding the first frame) for GStreamer is
much lower than that of a Microsoft DirectShow filter in a
pipeline.

3) Plug-in scalability

Figures 4, 5 and 6 above illustrate that Microsoft DirectShow
was only able to process a maximum of 118 filters but
GStreamer was capable of processing up to 145 elements in the
pipeline without rejecting them. Therefore from these
experiments, when using the scale filter (element), GStreamer
was more scalable than Microsoft DirectShow. More processing
functions could be carried out in succession with GStreamer
than they could with Microsoft DirectShow.

4) Plug-in (threading) overhead

The difference in the number of threads actively involved in
the processing of video in a Microsoft DirectShow (11 threads)
and a GStreamer pipeline (10 threads) was measured using the
Task Manager of the Windows OS and was found to be constant
at 1 thread. This may be considered as negligible and therefore,
the plug-in threading overhead of the two media pipeline plug-
in architectures was approximately the same.

B. Qualitative measurement metrics:
1) Programming interface complexity

The programming complexity is a measure of the ease of
designing and inserting new plug-ins into the host application.
Microsoft DirectShow is based on the Component Object Model
(COM) framework [8]. Therefore, before setting up the
framework on which a filter can be built, several factors need to
be considered. Some of these include: the different base classes
from which each filter will inherit[7], locating the libraries that
contain the different properties of the filter, the settings
interfaces of each base class that are required to seamlessly
integrate with the host application, the property pages needed
for a particular functionality etc [6]. In addition, the threading
model for DirectShow filters is complex. Thus the programming
complexity of Microsoft DirectShow for developers building
applications for this media pipeline plug-in architecture is high.

GStreamer presented significantly lower programming

interface complexity due to its simplicity of structure and
encapsulation of most of the complicated setup tasks. A
GStreamer element, once written and complying with all the
requirements stipulated by the GStreamer Application
Programmer’s Interface (API), is programmatically registered as
a GStreamer element and is thus ready for use. The properties of
each element that GStreamer expects to observe in order to
recognize and register it as a GStreamer element are the same
[5]. However, in order to make the distinction between different
types of GStreamer elements, the basetransformclass is used. A
“transform class” is a GStreamer pre-made class that consists of

various C language structures that may be manipulated to
actuate the unique functionality of the new GStreamer element
under development. Manipulating the collection of C structures
and implementing the desired function was the basic
requirements to develop a simple GStreamer element [5]. It was
deemed significantly simpler to design with than the COM
architecture of Direct Show.

V. CONCLUSIONS

The main objective of this work was to design a set of
measurement metrics on which to base the comparative
performance analysis of the real-time capabilities of different
media pipeline plug-in architectures. Experiments were
developed, compiled and executed on the two selected
architectures, Microsoft DirectShow and GStreamer. The
following conclusions are a summary of the real-time
performance comparison results represented by Table 1 below:

TABLE I. Real-time performance comparative analysis of

Microsoft DirectShow and GStreamer

Comparison
parameter

Microsoft
DirectShow

GStreamer

Average
Processing
time of the 1st
frame

Remained constant
at a value of 0.001s
regardless of the

number of filters in
the pipeline.

Increased as the
number of elements in
the pipeline increased
with the 2nd order
equation: y = x
(0.00005x+0.0044)

Average
Processing
time excluding
the first frame

Increased linearly at
a higher constant

rate with the
equation:

y= 0.0065x + 0.002

It increased linearly at
a lower constant rate
with the equation:
y = 0.0024x-0.0027

Average
Processing
time per filter
(excluding the
1st frame)

Higher average
processing time per

filter (0.0065s)

Lower average
processing time per

filter (0.0024s)

Scalability Can only hold up to
118 filters.

Can hold up to 145
elements.

Plug-
in(threading)
overhead

11 threads actively
involved.

10 threads actively
involved.

Programming
interface
complexity

More complex
programming

interface.

Less complex
programming

interface.

It may be concluded that each of the media pipeline plug-in

architectures under test had different individual areas of better
performance. Using the scaling tool, GStreamer was more
scalable, exhibited less threading overhead and had less
programming complexity than Microsoft DirectShow. However,
Microsoft DirectShow had a lower overall average processing
time than GStreamer. Selecting an appropriate media pipeline
plug-in architecture would therefore depend on the trade-off that
the application under development can accommodate.

VI. RECOMMENDATIONS

A few recommendations and suggestions of future work are
listed here below.

With the advent of multi-core processors, multi-threaded

programming is becoming increasingly efficient. An
investigation into how this can be used to reduce the average
processing time and increase overall performance of the media
pipeline plug-in architectures could provide significant

improvement.

A relatively simple video scaling tool was used for the

purpose of this investigation. Future work needs to be
conducted using a wider variety of plug-ins to investigate the
effect of implementation of more complex tasks and the
consequent effect on plug-in complexity and efficiency.

For GStreamer, the initial overhead required for the first

video frame passing through the pipeline is high particularly for
pipelines with many serial elements. An investigation into the
cause of this increase, as the number of elements in the
measurement pipeline increases, needs to be conducted. In
addition, further investigation can consider how this overhead
may be reduced. Reduction of this overhead will significantly
reduce the average processing time taken by the GStreamer
media pipeline plug-in architecture.

Other performance parameter metrics exist on which to base

the comparison of the output video. These include memory
management, processor utilisation, memory footprint,
scalability of parallel filters (elements), output picture quality
etc. Future work can focus on investigating these other metrics
to give a more detailed overall comparison of the video
processing performance of the different media pipeline plug-in
architectures.

REFERENCES

[1] On Plug-ins and Extensible Architectures, Dorian Birsan,
Eclipse, Vol. 3, Issue 2 (March 2005), ISSN: 1542-7730,
pp 40 - 46

[2] Operating system market share
http://marketshare.hitslink.com/operating-system-market-
share.aspx?qprid=8 (Retrieved: March 25, 2010)

[3] Introduction to Plug-ins, Apple Computer Inc.2003
http://developer.apple.com/documentation/CoreFoundation
/Conceptual/CFPlugIns/CFPlugIns.pdf (Retrieved: 23
May, 2008)

[4] Pipes: A brief Introduction.
http://www.linfo.org/pipes.html (Retrieved: 27 May, 2008)

[5] GStreamer Application Development Manual (0.10.23.1),
Wim Taymans, Steve Baker, Andy Wingo, Ronald S.
Bultje, Stefan Kost

[6] Direct Show MSDN http://msdn.microsoft.com/en-
us/library/ms783323(VS.85).aspx (Retrieved :January 15,
2010)

[7] Plug-in Architectures Jeffrey Stylos User Interface
Software, Fall 2004.

[8] Programming Microsoft DirectShow for Digital Video and
Television, Mark D. Pesce, Microsoft Press, 2003.

[9] A Pipeline Development Toolkit in Support of Secure
Information Flow Goals, Philip Tricca, April 2009 , 5th
Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information
Intelligence Challenges and Strategies, Article No.: 66

Veronica Sentongo �������� ��� ���	
�������
�
���������� ������ ������
�� ���	
�������
�
���������� �� ���� ���� ��� ���������� ���
�� ����
�� �� ��������� �������
� �� !" ���
�
 �����#�� �� ���!�
�$���� ����� ������ ���%���	 &�� ����
��� ��������� ����#�� ��
�$����
�����
�����" ����� ������
�� ����
����" ��
�� ����������"
�� ��������#���
�����
�����
�����	

http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFPlugIns/CFPlugIns.pdf
http://developer.apple.com/documentation/CoreFoundation/Conceptual/CFPlugIns/CFPlugIns.pdf
http://www.linfo.org/pipes.html
http://msdn.microsoft.com/en-us/library/ms783323%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms783323%28VS.85%29.aspx

	I. Introduction
	II. Media Pipeline Plug-in Architectures
	III. Real-Time Performance Evaluation Metrics
	A. Quantitative measurement metrics:
	1) Experiment 1: Average processing time of the 1st frame
	2) Experiment 2: Average processing time of successive video frames
	3) Experiment 3: Plug-in scalability
	4) Experiment 4: Plug-in (threading) overhead

	B. Qualitative measurement metrics:
	1) Experiment 5: Programming interface complexity

	IV. Experimental Results
	A. Quantitative measurement metrics:
	1) Average processing time of the 1st video frame
	2) Average processing time of successive frames
	Average time per filter (element)
	3) Plug-in scalability
	4) Plug-in (threading) overhead

	B. Qualitative measurement metrics:
	1) Programming interface complexity

	V. Conclusions
	VI. Recommendations
	References

