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Abstract
Spoken recordings that have been transcribed for human reading
(e.g. as captions for audiovisual material, or to provide alterna-
tive modes of access to recordings) are widely available in many
languages. Such recordings and transcriptions have proven to be
a valuable source of ASR data in well-resourced languages, but
have not been exploited to a significant extent in under-resourced
languages or dialects. Techniques used to harvest such data typ-
ically assume the availability of a fairly accurate ASR system,
which is generally not available when working with resource-
scarce languages. In this work, we define a process whereby an
ASR corpus is bootstrapped using unmatched ASR models in
conjunction with speech and approximate transcriptions sourced
from the Internet. We introduce a new segmentation technique
based on the use of a phone-internal garbage model, and demon-
strate how this technique (combined with limited filtering) can
be used to develop a large, high-quality corpus in an under-
resourced dialect with minimal effort.
Index Terms: speech recognition, under-resourced languages,
garbage modeling

1. Introduction
The limited availability of speech corpora is a major constraint
on the development of automatic speech recognition (ASR) in
under-resourced languages and dialects [1, 2]. Consequently,
there is significant interest in ways to develop such corpora
efficiently [3], and the efficient exploitation of limited cor-
pora [1, 4]. We investigate an alternative source of ASR data
for resource-scarce languages, namely speech transcribed ortho-
graphically for purposes other than ASR development. Such data
are quite common in many languages, since transcriptions are of-
ten compiled for purposes such as captioning (open or closed),
presentation in printed format, Internet searchability, etc.

The major challenge with transcriptions that were not pre-
pared for ASR purposes is that they are usually a somewhat loose
reflection of what was actually said. Disfluencies, repetitions,
grammatical errors and the like are generally not transcribed, and
errors (especially in technical terms and proper names) and in-
consistent transcription conventions are common. Large sections
of text may not be transcribed at all, and similarly, additional
text not found in the audio data may be included in the tran-
scriptions. We refer to these as “approximate transcriptions”,
even though they may be perfectly good for human consump-
tion. The benefit of using such corpora is that they are typically
quite large by ASR standards, since it is relatively inexpensive to
record and provide approximate transcriptions of many hours of
speech; and are often freely available, for example, being posted
on public Web sites.

For well-resourced languages, the task of corpus develop-
ment from approximately transcribed speech has received sig-

nificant attention, especially in the broadcast-news and lecture-
transcription domains [5, 6]. Much of this research builds on
the availability of a well-trained ASR system and a suitable lan-
guage model in the language of interest, an assumption which is
generally invalid for resource-scarce languages. The main goal
of our research is therefore to see whether it is possible to harvest
audio corpora from approximately-transcribed speech in the ab-
sence of a directly relevant ASR system. For practical reasons,
it is also important that the approach developed should not re-
quire extensive manual intervention, since the expertise for such
interventions can be lacking in under-resourced languages.

The particular task we focus on is the development of a
broadband recognizer in South African English (SAE). SAE is a
resource-scarce dialect, which is sufficiently distinct from major
dialects (such as those of the USA or UK) to present substantial
recognition challenges [4]. We base our research on a corpus
of recordings that are made available along with approximate
transcriptions on a public Web site. We investigate a number of
approaches requiring differing amounts of manual intervention
and insight into ASR development, and find that it is possible to
achieve good results with minimal manual processing and lim-
ited specialized (task-specific) ASR processing.

2. Background
The use of minimal or approximate transcriptions for ASR pur-
poses, also referred to as “lightly supervised acoustic training”
[7], typically consists of three general steps: (1) data segmenta-
tion, (2) word-based alignment and (3) filtering.

During data segmentation, heterogeneous data sources are
separated based on characteristics such as bandwidth, gender
and/or speaker [6, 7], and non-speech segments removed to the
extent possible [7]. While Moreno et al [8] did not perform
data segmentation, such an initial phase is typical to most ap-
proaches. Once data has been segmented into fairly homoge-
neous sub-parts, appropriate acoustic models are trained using
existing ASR corpora. In experiments reported on in literature,
these base corpora ranged from about 24 hours [6] to 150 hours
of speech [9]. In [7] an hour of manually corrected transcriptions
was used to bootstrap acoustic model training.

In all of the above cases, acoustic models are then used
to perform word-based alignment: audio is recognized using a
language model strongly biased towards the available transcrip-
tions [5, 6, 7, 9]. Additional cycles of acoustic model adaptation
based on earlier recognition results may be performed [9], result-
ing in a final set of ASR hypotheses. When sequences are very
long, a more complex multi-stage alignment process can be fol-
lowed, based on the identification of reliable anchor points [5, 8].

Finally, some form of data filtering is used, either during
alignment or upon completion to identify problematic segments
(for example, unmatched audio or transcriptions). Standard
word error rate is a popular confidence measure used for this
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purpose, with the ASR hypotheses matched against the approxi-
mate transcriptions [7, 6, 9]. Hazen goes one step further in [5],
and attempts to rectify problematic transcriptions automatically.

While not specifically utilized in the context of alignment of
approximate transcriptions, garbage models are frequently used
in ASR systems to model spontaneous events (both speaker- and
background noise-related). These models are either added to ab-
sorb non-speech events explicitly marked in a transcription, or
are added between any word pair as an optional event [10].

3. Approach
Our approach to the development of an ASR corpus from ap-
proximate transcriptions does not require a data segmentation
phase, and relies on an acoustic garbage model during align-
ment and filtering. (No word recognition is performed and no
language model required). Below, we describe our process in
more detail.

3.1. Harvesting data from the Internet

Since our goal was to develop a wideband recognizer for SAE,
we searched the Internet for publicly-available sources of tran-
scribed speech in that dialect, and contacted the owners of the
respective Web sites in order to obtain permission for the use
of their data. Of the options available, we selected Moneyweb,
a provider of South African business, financial and investment
news. Moneyweb provides daily radio broadcasts, which are
made available, along with approximate transcriptions and some
metadata, on their web site (www.moneyweb.co.za) soon after-
wards. These broadcasts contain news reports, interviews and
in-depth discussions of current topics. Besides the two main pre-
senters, four journalists make regular contributions, and a large
number of guest speakers (some in studio, others calling in) also
appear in the broadcasts. These speakers speak in a range of En-
glish dialects: the majority of the speech is in standard SAE, but
substantial portions are also in other dialect variants (e.g. Zulu-
accented or Afrikaans-accented SAE). We downloaded record-
ings (in mp3 format), along with their approximate transcrip-
tions, corresponding to about two years of broadcasts.

There are a number of challenges to using this data for
ASR development: (1) A wide variety of content, including dif-
ferent dialects and speaking styles, but also music and other
non-speech content, occurs in the recordings. The majority
of the speech is spontaneous in nature, ranging from well-
articulated spontaneous speech by professional journalists to
hesitant speech in broken English by some interviewees. (2)
Since much of the recorded material consists of dialogs, phe-
nomena such as speaker overlap, filled pauses and back-channel
communication are frequent. (3) Most of the content consists
of wideband speech (8 kHz or more), but telephone-bandwidth
recordings are also common; sampling rates range between 16
kHz and 44.1 kHz, and the encoding quality is also somewhat
variable; and (4) The transcriptions are of typical “professional”
quality: disfluencies, repetitions and filled pauses are omitted,
some grammatical errors have been corrected, transcription er-
rors occur and transcription inconsistencies (for example in tran-
scribing dates or abbreviations) are common. These phenomena
make it clear that the downloaded recordings are not directly
suitable as an ASR corpus. Fortunately, the amount of data avail-
able is substantial (we easily retrieved more than 100 hours of
speech), which makes it feasible to extract a portion of the data
that is suitable for use in ASR.

3.2. Bootstrapping a phoneme recognizer

Since we are not aware of the existence of any broadband SAE
corpus, we bootstrap an SAE recognizer while developing the
corpus, starting from a US English recognizer. For this pur-
pose, the widely-available Wall Street Journal (WSJ) corpus
was utilized. As a starting point, a standard tied-state, context-
dependent (triphone) Hidden Markov Model (HMM) recognizer
was trained using the HTK toolkit [11]. Each HMM consists of 3
states, with a Gaussian Mixture Model (GMM) with 8 mixtures
per state used to model the acoustic data. Models are trained on
39-dimensional Mel-frequency cepstral coefficients (13 static,
with their deltas and double deltas), with cepstral mean normal-
ization and semi-tied transforms applied.

In order to apply this recognizer to the SAE recordings,
a suitable phone set and dictionary were required. We based
our work on the dictionary described in [12], which was boot-
strapped from a British English dictionary, using simple rewrite
rules. To use this dictionary in conjunction with the WSJ-trained
recognizer, we developed a WSJ to SAE phone mapping. We
simplified both phone sets by merging phonemes where differ-
ences are not consistently modeled in the different source dic-
tionaries. Thus, all diphthongs were split into their constituent
monothongs, and diacritics related to stress and duration (or the
tense/lax distinction) were removed. All other phonemes were
manually mapped to their closest candidate. The resulting phone
set did not contain three phonemes that exist in SAE but not
in US English. Forced alignment with the WSJ-trained model
using this adjusted phone set formed the starting point for our
corpus-development process.

3.3. Iterative alignment, filtering and training

Given a set of acoustic models and a pronunciation dictionary,
our basic approach is to perform forced alignment of the ap-
proximate transcriptions to the recorded speech, also inserting
“garbage” markers as required in order to allow for inaccuracies
in the transcription. A simple metric is then employed to se-
lect portions of the speech that are aligned well; these are used
to retrain the acoustic models (using either MAP adaptation or
Baum-Welch training from scratch) and used as starting point
for additional cycles of the same process. During the first Baum-
Welch retraining cycle, the phoneme set is expanded to the full
SAE set and the initial bootstrapping models (using the reduced
phoneme set) are discarded.

The garbage model used during alignment is based on a
background model that can be inserted between any pair of
words. The garbage model is a 3-state global HMM, with 16
mixtures per state. Apart from the number of mixtures, it is
trained using the same parameters and features as models of the
general recognizer, but on all the data (that is, an independent
training cycle, using the same data as the general recognizer).
After initial training, this model is then extended by adding a
“short pause” model in parallel. This model is implemented as
an HTK tee-model (free transition from entrance to exit state),
with transitions allowed to, from and between the 3-state global
model and the 4th short pause state. The result is a general
model which can absorb large spoken sections and/or silence,
or can be skipped completely.

Because we were concerned about the relatively large mis-
match between the recordings and transcriptions, and realized
the inadequacy of our initial ASR system, we also experimented
with a pre-segmentation process. During this process, members
of our team manually segmented a small portion of the corpus by
speaker turns, removing non-speech portions of the recordings
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and marking salient phenomena (e.g. the presence of narrow-
band speech). In Section 4.3 we report on the effect of such
pre-segmentation on the quality of the corpus developed. Note
that the manually segmented data was not used during the main
alignment process discussed in section 4.2.

Once the alignments have been obtained, bad segments of
the corpus are identified and automatically removed. During
the alignment process HMM state information is retained: this
is used to differentiate between true silence (allowed to occur)
and garbage audio (removed), both of which are absorbed by
our garbage model. Audio sections between portions marked as
garbage are evaluated, and if very small (less than 500ms) these
are discarded. This is a quick and efficient way to filter the data.

3.4. Packaging the corpus

Once the alignment-selection-training cycles have stabilized, we
are able to select the portions of speech that align without any
difficulty, and use those as the basis for the final ASR corpus.
In particular, we carry out the following steps: (1) The most
reliable portions are identified; (2) these segments are labeled
using specialized classifiers trained to identify different types of
data; and (3) the selected portions of speech along with relevant
meta-data (such as detailed timing information, speaker identity
and channel identity) are added to the corpus.

In order to identify the most reliable portions of the corpus,
a more sophisticated confidence scoring algorithm is used than
the time-base filtering used during alignment. Specifically, we
decode the audio using our final model and a phone-loop gram-
mar, and also obtain a forced alignment of the same audio. On
a per segment basis, we then compare the two phone strings us-
ing dynamic programming (DP) and a variable cost matrix. This
cost matrix is derived from the confusion matrix and penalizes
mismatches less severely if phones tend to be confusable, but is
still heavily biased towards finding matched alignments. Since
the DP score (the cost of aligning the two strings) is a reliable
indicator of the extent to which the two strings match, we use
this as our confidence measure for filtering data. By adjusting
this threshold, more or less aggressive pruning of the corpus can
be obtained.

While it is not strictly necessary to tag the various types
of data available in the corpus, we want to isolate telephone-
bandwidth speech from the rest of the broadband corpus for
future use. (While the entire corpus is recorded as broadband
speech, there are telephone interviews contained in the record-
ings.) To do this, we train a GMM classifier on segments of
labeled broad- and narrowband speech. This classifier is then
used to classify all 25ms frames as either broad- or narrowband.
Complete segments are classified based on a majority vote from
the constituent frames. Audio segments are also attributed to
specific speakers. The speaker tags are obtained from the ap-
proximate transcriptions (where speaker changes are indicated),
with the time intervals obtained from the forced alignments.

4. Analysis
To compare the value of the various processing steps that were
employed, and to assess the performance of the overall process,
we now present a number of detailed results.

4.1. Measuring improvement

Our aim is to measure how well the aligned audio matches
the acoustic models, in order to determine the quality of both
our corpus and our acoustic models. Since we do not have a

gold standard (manually corrected transcriptions) for measuring
recognition accuracy, we use a number of proxy measures, both
during development and at final evaluation. This makes it possi-
ble to monitor the automated harvesting process without requir-
ing any manual intervention. Specifically we track:

• The acoustic likelihood of the data: We measure the im-
provement in the average acoustic log likelihood of the
sections of the corpus identified as containing speech, cal-
culated on a per-frame basis. (Note that an improvement
in acoustic likelihood is only meaningful if the amount
of data absorbed by the garbage model stays the same, or
decreases.)

• The amount of data considered to be non-speech: Since
any portion of the data that does not match the acous-
tic models is absorbed by the garbage model, we track
this percentage, both in order to validate changes in the
acoustic likelihood of the data (see above), and as a qual-
ity measure in own right.

• Dynamic programming scores: These scores (see section
3.4) provide a direct indication of how well the decoded
data match the approximate transcriptions; and

• Best alignment phone accuracy: We use the forced align-
ments from our best model as a proxy for manually cor-
rected transcriptions, and calculate conventional phone
recognition accuracy and correctness.

A 3-hour development set (used for testing during corpus
development) and a 6-hour evaluation set (used for final verifi-
cation) were selected and kept separate from the training data. A
statistical analysis of the corpus showed that the durations of the
audio data contributed by the various speakers are highly non-
uniform, being skewed heavily towards a few presenters and fre-
quent in-studio guests. When selecting subsets of the training
data (as in section 4.3), care is taken to restrict the amount of data
selected from these dominant speakers. Apart from limiting the
contributions from five over-represented speakers, further data
selection was randomized.

4.2. Bootstrapping and Alignment

The main corpus development process is very simple: apart from
resampling some of the audio to ensure a consistent sampling
rate, no further pre-processing is performed. The initial un-
matched WSJ models are used to bootstrap the first alignment-
selection-retraining cycle, and this cycle repeated until the vari-
ous measures stabilize. Results for three such cycles (‘retrain1’
to ‘retrain3’) are provided in Table 1. We report acoustic log
likelihoods (log P), percentage of data considered non-speech
(non-speech), dynamic programming scores (DPS), phone ac-
curacy percentage (phn acc) and phone correctness percentage
(phn cor) using the evaluation set.

Table 1: Improvements observed during bootstrapping and
alignment, reported on the evaluation set.
model log P non-speech DPS phn acc phn cor
WSJ -87.019 37.62 0.139 36.45 45.22

retrain 1 -79.109 32.78 0.337 53.85 60.93
retrain 2 -78.436 31.08 0.358 55.67 62.22
retrain 3 -78.264 30.76 0.359 56.40 62.84

All the measures are seen to stabilize quickly, resulting in a con-
verged corpus after only three iterations. The original corpus
(training data only) contained 99.85 hours of speech; after align-
ment with the final model a cleaned and aligned corpus of 68.01
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hours of speech was retained. Phone accuracy is within the range
expected for a corpus of spontaneous speech, and smaller subsets
of the corpus (with correspondingly higher recognition rates) can
be selected by increasing the quality control thresholds, as dis-
cussed in section 3.4. While the garbage model absorbs por-
tions of unnecessary audio (without matching transcriptions), the
DP scores identify portions of superfluous text (without match-
ing audio) as well as poorly recorded or articulated sections of
speech.

4.3. Effect of additional manual intervention

As mentioned earlier, we did not initially anticipate that a com-
pletely automated process would converge so easily. But how
good are the results really: could we have done better by using
at least a small portion of manually segmented data to improve
our initial models? We experiment with this by MAP adapting
our initial models with different amounts of manually segmented
data (developed as described in section 3.3) prior to retraining.

We find that the reliable data does assist initially, with the
amount of improvement over the original baseline models di-
rectly correlated with the amount of reliable data added. How-
ever, we also find that this improvement does not provide a ben-
efit beyond the first retraining cycle, with the simpler process
(described in section 4.2) able to achieve the same performance
after a further retraining cycle. Comparative results on the devel-
opment set are listed in Table 2: since the various quality mea-
sures remain strongly correlated (as in Table 1), we only report
on acoustic likelihoods (log P) and DP scores (DPS). We observe
the same trends when experimenting with additional filtering of
data (using DP scores), and find that the retraining process does
not require problematic sequences to be cut during alignment;
removing problematic sections at the end (when they can most
reliably be identified) suffice.

Table 2: Comparing results when bootstrapping with different
amounts of adaptation data.

initial retrain 1 retrain2
model log P DPS log P DPS log P DPS
WSJ -84.62 0.197 -77.23 0.402 -76.70 0.413

1
2

hr MAP -81.93 0.263 -77.27 0.403 - -
1hr MAP -81.17 0.298 -77.19 0.408 - -
2hr MAP -80.12 0.336 -77.14 0.410 - -
4hr MAP -79.17 0.365 -77.06 0.413 -76.56 0.416

Table 3: Comparing results when restricting the size of the data
set artificially during alignment.

initial retrain 1 retrain2
model log P DPS log P DPS log P DPS
10 % -84.62 0.197 -79.17 0.296 -78.47 0.323
20 % -84.62 0.197 -78.43 0.340 -77.67 0.378

100 % -84.62 0.197 -77.23 0.402 -76.70 0.413

4.4. Effect of corpus size

A final question we address relates to the size of the harvested
corpus. It was clear from the above results that the garbage-
based alignment process is able to recover very efficiently, even
if starting from a fairly poor acoustic model. To what extent
is this phenomenon reliant on the availability of a corpus of this
size? In order to investigate this, we repeat the process described
in section 4.2 for significantly smaller corpora (10% and 20% of
the full training corpus available) and list the results in Table 3.
We see that the same trends are observed, even though conver-

gence is slower. (The log P and DPS measures are only listed for
the two extreme points evaluated.)

5. Conclusion
We have shown that a sizable ASR corpus can be created from
publicly-available resources using a regular and efficient pro-
cess. This process requires no matching language model, and
only partially matching acoustic models. One of our most sig-
nificant results is finding that that the corpus-development pro-
cess as defined here does not benefit from the inclusion of any
additional manually labeled data. This holds great promise for
the development of corpora in under-resourced languages. In the
current work, the seed models used to bootstrap the process were
from a mismatched dialect, rather than from a different language:
we aim to extend this work to determine the extent of mismatch
between seed resources and target language that can be tolerated
in this fashion.
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