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Abstract—The orientation vector differential equation was first derived
by John Bortz to improve the accuracy of strapdown inertial navigation
attitude algorithms. These algorithms previously relied on the direct
integration of the direction cosine matrix differential equation. Here
a compact derivation of the Bortz equation using geometric algebra is
presented. Aside from being as simple and direct as any derivation in the
literature, this derivation is also entirely general in that it yields a form
of the Bortz equation that is applicable in any dimension, not just the
conventional 3D case. The derivation presented has the further advantage
that it does not rely on multiple methods of representing rotations and
is expressed in a single algebraic framework.

In addition to the new derivation, the validity of the notion that it
is the effect of the noncommutativity of finite rotations that necessitates
the use of such an equation in strapdown inertial navigation systems
(SDINS) is questioned, and alternative justification for using the Bortz
equation is argued.

I. INTRODUCTION

In strapdown inertial navigation systems (SDINS) the angular
velocity measured in a body frame is used to update a rotation
generator that relates the orientation of the body frame to some
reference frame. There is a problem with this method however in
that the angular velocity measurements are made in the rotating body
frame, and the plane, or axis, of rotation over a finite time interval is
not constant with respect to the reference frame. This results in the
direct integration of the direction cosine differential equation being an
unsuitable method for tracking attitude, an effect that has traditionally
been attributed to the noncommutative nature of finite rotations [3]—
[7]. This interpretation is however misleading, since while it is true
that finite rotations do not commute, the source of the error in this
case lies in the behavior of the measurement frame and the nature of
the measurement.

Bortz derived a method for accounting for this effect [3] by
representing the actual finite rotation by an orientation vector ¢(t)
and then obtaining an expression for ¢(t). Bortz showed that ¢ () has
two components, w(t) and &(t), where w(¢) is the inertially measured
rate vector, and & (¢) is what Bortz termed the non-inertially measur-
able non-commutativity rate vector. Bortz’s derivation is somewhat
lengthy and involved and a number of subsequent derivations have
been published [4]-[6], [8].

This paper supports a contrasting interpretation to that commonly
presented regarding the requirement for the Bortz equation (section II)
which is in line with the work of Jekeli [2]. Next a brief introduction
to geometric (Clifford) algebra is presented (section III). This serves
to introduce the mathematical formalism used in section IV to present
a concise derivation of the Bortz equation that is more general than
those that have been presented previously [3]-[6], [8]. The derivation
presented is as compact as Savage’s derivation in [8] but where
the dynamical equation in [8] is relatively complex to obtain [2],
obtaining the dynamical equation in the formalism presented here is
trivial [12].

Readers familiar with geometric algebra may wish to skip section
III.

We note that this same problem of updating rotations also occurs in
other fields, for example, mechanical finite element analysis where
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Fig. 1. A general rotation interval where the initial frame, et, rotates to the
final frame, ef , under the influence of w, where w® and w' are the time-
varying angular rate vectors in the e’ and ef frames respectively. For any
finite time interval, a rotation vector ¢ exists in the reference frame that will
achieve the same rotation as w acting over the interval.

other forms of the Bortz equation and its derivation can be found
[14].

II. FINITE ROTATIONS

The conventional method for tracking the orientation of the body
frame relative to the reference frame' in SDINS applications is
through the use of a rotation matrix C, or its quaternion counterpart,
which will take a vector from the body frame to the reference frame.
Before Bortz published his 1971 paper [3] the standard method for
computing C' from angular rate measurements was to integrate the
equation’

C = Clwx] (1)

where [wx] is the skew symmetric matrix form of the vector
representing the angular velocity of the body frame with respect to
the reference frame, expressed in the body frame, such that for any
vector a, [wx]a = w X a. This method of updating C, however,
leads to an attitude error that accumulates with time, an effect that
has historically been attributed to the noncommutative nature of
finite rotations. While it is demonstrable that finite rotations do not
commute [1], an explicit link between this effect and the errors
encountered in direct integration of equation 1 appears to be absent
in the literature.

In a standard inertial navigation system, three orthonormal gy-
roscope measurements are combined into a single angular velocity
vector which gives the angular rate of the body with respect to an
inertial reference frame. The rotation generated by integrating this
vector is a single rotation. In other words, there is no built-in ordering
assumed in terms of the roll, pitch and yaw gyroscope measurements,
they are handled simultaneously. Secondly, the series of rotations is
sequential in time and so can only be meaningfully applied in a set
order. Consequently, it is difficult to see how the non-commutative
nature of finite rotations is applicable, as there is no set of rotations
which may be applied ‘out of order’.

IThe reference frame may be any arbitrarily chosen inertial frame.

2Current algorithms rely on integrating one or another form of the Bortz
equation to compute ¢, and then use the fact that C = f(¢) to obtain C
without integrating equation 1 directly.



The fundamental problem with integrating equation 1 directly is
that gyroscopes (and SDINS algorithm implementations) have a finite
bandwidth and their measurement frame is rotating. The differential
equation derived by Bortz is no more ‘analytically exact’ than equa-
tion 1, but it achieves better results in discrete-time implementations
because it explicitly accounts for the fact that the measurement frame
is rotating via the ¢ term.

Consider a body rotating under the influence of the time-varying
(measured in the body frame) angular rate w shown in Fig. 1. Under
the influence of this measured rate the body axes e rotate to ef in
some finite time interval. Equation 1 will update C' by rotating it
about the axis defined by w fixed in the reference frame. This poses
a difficulty however, since while w is known in the body frame, and
the initial orientation of the body frame with respect to the reference
frame may be known, the orientation of the body frame with respect
to the reference frame is changing with time by definition (w # 0).
The result is an error which accumulates with every integration cycle,
since the orientation of w is not correct for the entire integration
interval. (Clearly this error is not present for special case where the
direction of w is fixed - i.e. where there is no coning motion [2].)

It is always possible to express the actual rotation in the scenario
above using a vector ¢, where a rotation of |¢| about q@ will take the e
frame to the e/ frame. Simply taking the derivative of ¢ and allowing
for the fact that %q@ is not necessarily 0 provides an equation for qb
that is dependent on the angular velocity about the vector ¢ as well as
the angular velocity of the axis defined by ¢ in the reference frame.
This is clear mathematically in equation 17, and all that is required
to derive the Bortz equation is to solve for these two quantities in
terms of the measured angular rate w.

Many authors [1], [3], [S]-[7], including Bortz himself, have
justified the use of the Bortz equation by claiming that it accounts
for the noncommutative nature of finite rotations. Given the above, it
would seem that labeling ¢ the noncommutativity rate vector or even
describing it as non-inertially measurable is somewhat misleading,
as not only is the complete angular rate of the body inertially
measurable, but the need to compensate for body rotation with &
does not arise from the fact that finite rotations do not commute.
Rather the ¢ term compensates for the motion of the w axis — this
is discussed further in section IV.

Jekeli [2] attributes the requirement for the Bortz equation as
arising from the fact that angular rate measurements are being made
in the rotating body frame and not as a result of the fact that finite
rotations do not commute. He still employs the term commutativity
error since it is possible to show that in a quaternionic formulation
of the attitude equations, in the case that AA = AA, where A is
a 4 x 4 skew symmetric matrix of the angular rates, we have no
coning which results in the elimination of the third order term in the
algorithm error. Stating that A commutes with its derivative is, as
Jekeli notes, simply a statement of the fact that %d} = 0, i.e. the
direction of w does not change.

III. GEOMETRIC ALGEBRA

This section provides a brief introduction to geometric algebra. Ge-
ometric algebra is a mathematical language that is rapidly finding new
application in engineering, physics and computer graphics [10]-[13].
The introduction that follows will be limited to a 3-dimensional space
with orthonormal basis [e1e2e3] and positive signature®, however, the
concepts introduced are applicable to spaces of any dimension and
signature.

3The signature of a space is positive if all of its basis vectors have positive
squares. An example of a space of mixed signature is Minkowski space-time,
where the three spatial dimensions have positive signature but the fourth basis
squares to —1, i.e. it has a negative signature.

We will begin our introduction to geometric algebra with a new
product for vectors; the outer product. The outer product of two
vectors, a and b, returns a directed area element a N b, called a
bivector. The bivector can be visualised by sweeping the vector b
along the length of the vector a to form a directed parallelogram
with area |a| |b] sin 6, where 6 is the angle between the vectors. This
idea of a directed area can be generalised to higher dimensions by
continued ‘wedging’; the bivector a A b and the vector ¢ can be
wedged to produce a directed volume, or trivector, a A b A ¢, and so
on. As the outer product of a vector with itself is zero, elements of
higher grade than the dimension of the space cannot exist. In the case
of the 3-dimensional space defined above, the only trivector, or grade-
3 element, up to scale, is e1 A ez A es. This highest grade element in
a space is known as the pseudoscalar and is denoted as /. Lastly, an
important property of the outer product is that it is anticommutative,
i.e. a Ab= —bA a. Note that for vectors, a Ab =1 (a X b).

We are now in a position to define the geometric product of vectors
as

ab=a-b+aAb ()

where a - b is the familiar vector dot product which we will call
the inner product. We regard the geometric product as a more fun-
damental product of vectors than the inner or outer products. Using
equation 2 and the fact that the outer product is anticommutative we
can redefine the inner and outer products in terms of the geometric
product as follows:

a-b:%(ab+ba) 3)
a/\b:%(ab—ba) )

Geometric algebra is a graded algebra, where the grade of an
element is equal to its dimension. So a scalar within the algebra
has grade-0, a vector has grade-1, a bivector has grade-2 and so on.
As the outer product of several vectors is called a blade, the bivector
aAb is an example of a blade of grade 2. The geometric product for
a vector and any blade of grade p can be generalised as

aAp=a-Ap+aNnA, )

from which we can obtain
a- Ay = 1 (ady — (1) Apa) ©)

1
ahAp = ) (adp + (—1)" Apa) @)

A multivector is a linear combination of elements of any grade.
While at first it seems odd to think of the sum of scalars, vectors,
directed areas and directed volumes, it is really no more odd than
the sum of a real and imaginary number forming a complex number.
In general, any product of two multivectors returns the sum of the
products of every blade in the first multivector with every blade in
the second. The grade of the inner and outer products of two blades
is given by the difference and sum respectively of the grades of the
blades involved. The inner product is therefore also known as the
grade-lowering product and the outer product as the grade-raising
product.

There are two other important operators to be introduced before
continuing. The first is the reversion operator, which has the effect
of reversing the order of vectors in a product and is denoted by a
tilde. In other words if c =ab=a-b+ a A b, then

c=ba=b-a+bAhNa=a-b—aAb 8)



It is easy to show that in the 3-dimensional case the effect of
reversion on a given multivector is to change the sign of the bivector
and trivector components of the multivector.

The second operator to introduce is the project operator, denoted
by (M).. This expression will return the grade-z blades of the
multivector M. The scalar component of M is denoted simply as

Using equations 5, 6 and 7, it is possible to form any product in
any vector space. It is possible to show, for example, that the product
of two bivectors is given by*

AB

A-B+AxB+ANB
= (AB)+ (AB), + (AB), )

where AxB = 1 (AB — BA). This product of bivectors reveals
a general property of the inner and outer products: the grade of the
inner product of two blades is the difference of the grades of the
blades, while the grade of the outer product of two blades is the sum
of the grades of the blades.

Geometric algebra allows for a very general method of representing
rotations, this comes from the fact it offers a naturally superior
quantity, when compared to vector algebra or matrix algebra [9], for
representing rotation angles and rotational velocities: the bivector. By
defining rotations in terms of a plane of rotation it is possible to avoid
the situation that arises in vector algebra where an axis of rotation is
undefined (for 2D) or ambiguous (for 4D and above). As a result we
have a method of handling rotations and specifying rotation angles
or angular velocities in n-dimensions.

It is easy to verify that all unit bivectors square to —1 in a space
with positive signature, that is their geometric product is —1. This
leads to a development analogous to the Euler representation of
rotations in the complex plane; rotations in general space can be
represented as exponentiated bivectors, termed rofors. A rotor that
will produce a counter-clockwise rotation of « in the unit plane B
is given by the expression

Ba

_Ba « e
R=¢e 2 :cosi—Bsm—

) 10)

The expression

a’ = RaR (1)

will then rotate a in the plane B, through an angle o to give
a’. Equation 11 will transform not only vectors, but any blade, while
preserving the grade. The form of 11 should look familiar, and indeed,
in the 3-dimensional case rotors can be shown to operate in exactly
the same way as quaternions. A further property of rotors is that
RR =1, just as q¢* = 1 for their quaternion counterparts and
CCT =1 for rotation matrices.

For the purposes of tracking the orientation of a rigid body with
respect to some reference frame, the time dependent rotor R(t) that
will take vectors from the reference frame to the body frame can be
obtained from [10]

. 1 .,
R= 759 R (12)
where " is the angular velocity of the rigid body with respect to
the reference frame, expressed as a bivector in the reference frame
(the bivector defines the plane of rotation and has a magnitude equal
to the speed of rotation). It is worth noting the similarity between
equation 12 and the quaternion counterpart of equation 1 [2].

4Clearly in a 3-dimensional case A A B = 0, so equation 9 becomes
AB =A-B+ AxB = (AB) + (AB),.

It is easy to show that if we express the angular velocity of the
body with respect to the reference frame as a bivector in the body
frame, Q°, then equation 12 becomes

. 1
R= —§RQ (13)

A second expression for R is obtainable via direct differentiation

of equation 10

R:_%sin%—Bsing—Bgcos% (14)

2 2

IV. A CONCISE DERIVATION OF THE BORTZ EQUATION

For the derivation that follows the superscript for Q° in equation
13 has been omitted, i.e. Q° = Q.

It is possible to specify any finite rotation in a unit plane, defined
by the unit bivector B, and through an angle o using a rotation
bivector;

o =

aB (15)

From this rotation bivector the corresponding rotor is easily ob-
tained via,

aB
2

vl

R=e¢e"2=¢" (16)
Differentiating equation 15 with respect to time gives,
® =aB +aB 17)

The reference frame equation 17 shows that the angular rate
that will result in the rotation ® over some finite time interval
consists of two components; one in the plane of rotation, @B, and a
second component, aB, perpendicular to the plane of rotation. Bis
‘perpendicular’ to B in the sense that B - B = 0; this can be seen
from the fact that |BQ| = 1 implies BB + BB = 0 and therefore
B-B=0.

In order to complete the derivation, expressions for B and & in
terms of the measured angular rate 2 are all that is required. This can
be achieved by simply equating the scalar and bivector components
of equations 13 and 14.

Finding an expression for ¢: Equating the scalar components of
13 and 14 gives:

(RQ) = dsin% (18)

Noting that (R2) = Q- (R)2, and substituting for the bivector

component of R:

a=-Q-B (19)

Finding an expression for B: Equating the bivector components of
13 and 14 gives:

RO 2:2Bsing—|—c'yBcosg
2 2

Using the fact that (RQ)2 = (R) Q+ ((R), Q>2, and substituting
for (R) and (R), from equation 10 and for & from equation 19:

(20)

2B sin 3 = Q cos 3~ (BSQ), sin 3~ aB cos 3
. 1 BQ
B = 5cot%[(H(Q-B)B]—% @21)

Completing the derivation: It is now possible to substitute the
expressions for B and ¢ into the expression for ¢ in equation 17:



. o [ [0}
<I>—Q+(§cot§fl> [+(Q-B)B] - $(BQ):2 (2
Or, alternatively, by substituting for B = % and @ = |P|, it
is possible to write equation 22 in terms of ¢ only:
- @ 12l (Q-2)0) (20>
=0 — — - Q — 2
+ ( 5 cot 2 + R B (23)

In the case where there is no coning motion the axis of rotation is
stationary — i.e. its direction is fixed in space — which implies B=0
and B and 2 lie in the same plane, and in turn, from equations 17,
19 and 23, ® = aB = Q.

Equation 23 is the final form for the Bortz equation expressed in
geometric algebra. It is interesting to note that the starting point of
the derivation, equations 17 and 13, are applicable to spaces of any
dimension and at no point in the above derivation was the limitation
of a 3-dimensional case assumed. While the work of Bar-Itzhack
[9] extends Eulers theorem to m-dimensions, the Euler analogue in
geometric algebra is given by equation 10, and is inherently general
in n-dimensions. The result in equation 23 extends the Bortz equation
to a form that is applicable to n-dimensions.

Equation 23 can be used directly in INS algorithms implemented
using geometric algebra. Alternatively, the traditional Bortz equation
can be obtained by substitution® of Q = Jw, ® = I ¢, multiplication
of both sides by the pseudoscalar, I, and simplification. For the sake
of completeness this is carried out below, bearing in mind that || =
|¢| by definition;

; Tw- T IpIw)oTl
¢ = w—l—(%cot%ﬂ—l) {w+(wl¢|2¢)¢}_<¢;>2
_ 9l ., 19l 9w —(w-9)¢] , ¢xw
= w+<7cot7—1){ |¢|2 }-&- 5
= w—i—%d)xw—l—ﬁ(l—%cot%)qﬂubxw (24)
as it is not hard to show that ¢ x (¢ X w) = — |¢\2w—|— (w- ).

Equation 24 is the familiar form of the Bortz equation.

V. CONCLUSION

Geometric algebra is shown to be a useful framework in which to
derive the Bortz equation. Aside from providing an extremely com-
pact derivation, the form of the equation derived is entirely general.
Regarding the requirement for the Bortz equation, the argument is
made that it is a consequence of performing rate measurements in a
rotating frame and not a consequence of the noncommutative nature
of finite rotations.
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