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Abstract 

Non-axisymmetric waves in a free homogeneous piezoelectric cylinder of transversely isotropic material with axial 
polarization are investigated on the basis of the linear theory of elasticity and linear electromechanical coupling. The 
solution of the three dimensional equations of motion and quasi-electrostatic equation is given in terms of seven 
mechanical and three electric potentials. The characteristic equations are obtained through the application of the 
mechanical and two types of electric boundary conditions at the surface of the cylinder. A convenient method of 
calculating dispersion curves and phase velocities is discussed, and  resulting curves are presented for propagating 
and evanescent waves for the piezoelectric ceramic material PZT-4 for non-axisymmetric modes of circumferential 
wave number m = 1. It is observed that the dispersion curves are sensitive to the type of the imposed boundary 
conditions as well as to the strength of the electromechanical coupling.
PACS: 43.20.+g ; 43.40.+s ; 77.65.-j 
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1. Introduction 

This paper is concerned with the analysis of harmonic wave propagation in an homogeneous circular cylinder of 

a transversely isotropic piezoelectric solid. The focus is on non-axisymmetric modes with non-zero circumferential 

wave number m=1. Such modes are of interest for a variety of reasons. It is well known that in the use of guided 

waves to non-destructively characterize defects in cylinders, the reflected modes from such defects are generally 

non-axisymmetric in nature. It is envisaged that results obtained in this paper can also serve as a basis in the design 

of piezoelectric transducers, for which standing wave modes resulting from reflections of travelling waves at cross-

section boundaries of the cylinder play an important role. Further, the broad development of the finite element 
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method (FEM) and boundary element method (BEM) is very much dependent for validation on reference results in

the form of exact model solutions, such as  those provided here.

The study of wave propagation in systems with cylindrical geometry traces back to the early work of

Pochhammer [1] and Chree [2], and is treated in standard texts such as Achenbach [3], Graff [4], and Rose [5].

Mirsky [6] investigated the problem of non-axisymmetric wave propagation in transversely isotropic circular solid

and hollow cylinders. Other contributors to the subject include Nayfeh and Nagy [7], Berliner and Solecki [8],

Niklasson and Datta [9] and Honarvar, et. al. [10]. Several papers have been devoted to numerical and finite element

investigations of piezoelectric cylinders, including Shatalov and Loveday [11] and Bai et. al. [12].

Our approach parallels that of Mirsky [6] and Berliner and Solecki [8], and is also similar to that of Winkel et. al.
[13]. In our approach the three dimensional equations of elastodynamics together with Gauss’ law for the electric

field are solved, and by imposing the mechanical and electric boundary conditions on the cylindrical surface, the

dispersion relation is obtained from the vanishing of a determinant of the fourth order. Our results coincide with the

classical results of Mirsky [6] and Berliner and Solecki [8] for a non-piezoelectric transversely isotropic cylinder.

2. Analytic formulation and solution

In this section we set out the equations of motion and boundary conditions, and obtain solution of the problem of

wave propagation in a transversely isotropic piezoelectric cylinder within the framework of the following

assumptions and approximations: linear elasticity, linear constitutional model of piezoelectricity, quasi-static

approximation of the electric field, axial polarization of the piezoelectric material, absence of free charges, boundary

and body forces. The axis Ozcoincides with the axis of the cylinder, , ,r z  are respectively the radius, polar angle 

and axial coordinate, and , ,u v w are the corresponding radial, tangential and axial displacements.

Navier’s equations of motion and Gauss’ law in cylindrical coordinates are:

6 51 11 u
r r z r

2 ,

6 62 4
21

r r z r
v ,

5 3 541 w
r r z r

,

31 1 21
0

DD D D
r r r z

, (1)

where  is the stress and Dthe electric displacement. The coupled constitutive equations of the system are: 

,
1 11 1 12 2 13 3 31

E E Ec S c S c S e 3E

3E ,
2 12 1 11 2 13 3 31

E E Ec S c S c S e

3 1 3 1 2 13 3 3 3

E Ec S S c S e 3E

Ec S e
5 44 5 1 5 1

Ec S e E

6 6 1 1 1 1

S

,

, ,4 44 4 15 2E

6 6

Ec S ,
1 5 5D E e 2 11 2 15 4

SS , D E e S ,

3 33 3 31 1 2 33

S
3D E e S S e S , (2)

474 A.G. Every et al. / Physics Procedia 3 (2010) 473–479



Arthur G. Every/ Physics Procedia 00 (2010) 000–000

where S is the strain, E  the electric field, 
11 66, ,E Ec c 15 31e e

33

S

 the elastic stiffnesses at constant electric field, e  the

piezoelectric constants and
33, ,

11 ,S  are the dielectric constants. The electric field is given by:

1E
r

,
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1E
r

, , (3)
3 z

E

where  is the electric potential.

We seek solutions to equations (1) to (3) in the form of harmonic waves  travelling along the - axis, and

expressed in terms of displacement and electric potentials. For an isotropic non-piezoelectric solid it is customary to 

invoke Helmholtz’s theorem and express the 3 component displacement field as the gradient of a scalar potential

z

plus the curl of a vector potential , and reduce the number of indepen ent potential functions from 4 to 3 with a 

constraint such as . For a  transversely isotropic solid, since the

d

0 x and  axes are equivalent to each other

but not to the z  axis, a separate scalar potential

y
is required for the z  displacement, and to keep the number of

potential functions at 3 it is expedient to set the x and  components of  to zero, retaining just a single

component

y
. In the case of a piezoelectric medium, there is also the electric potential  to consider. Inserting

these quantities in equations (1) to (3), one arrives at a set of PDE’s which decouple if one sets  and 

, the coefficients of proportionality  and  having three sets of values that emerge from the solutions of a 

cubic equation, and each associated with a different set of scalar potentials ,  and . There are thus 10 potential

functions altogether, but with only four being independen . Arm d with this knowledge in hindsight, we therefore

embark at the outset with the following  representation of 

t e
u, v, ,w  in terms of 10 potentials ,j j r :
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where  is the angular frequency, and k is the wave number (real for propagating and imaginary or complex for 

evanescent waves).

After substituting Eqn. (4) in (3) and further in (2) and (1), the following system of equations is obtained:

3 7 1
2 2 2

11 44 13 44 15 31

1 5 8

E E E E
j j j

j j j
c k c ik c c ik e e

r

0

j

2 2 2

66 4 44 4

1 E Ec k c
r

0 ,

3 7
2 2 2

11 44 13 44 15 31

1 5

1 E E E E
j j j

j j j
c k c ik c c ik e e

r

10

8

j

2 2 2

66 4 44 4 0E Ec k c
r

, (5)

3 7 10
2 2 2 2 2 2

13 44 44 33 15 33

1 5 8

0E E E E
j j j j

j j j
ik c c c k c e k e j

j

2

2 2 2

11 44 13 44 15 31

1 5

0E E E E
j j j

j j j
c k c ik c c ik e e

3 7 10
2 2 2 2 2

15 31 15 33 11 33

1 5 8

0j j j j
j j j

ik e e e k e k

where  is the 2D Laplacian in polar coordinates.

The first two equations of the system are satisfied if the quantities in the braces are zero, i.e.
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The second equation of (6) is a Helmholtz equation for
4
,

,2 2
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decoupled from the other potentials.

Compatibility between the first equation of (6) and the third and fourth equations of (5) can be achieved by

setting

4 4 5, 6, 7j j j j ,

, (8)
7 7 8, 9,10l l l l

from which it follows that that the potentials
j
 satisfy Helmholtz equations

, (9)2 2 0 ( 1, 2,3)j j j j

with the
j
 being determined by the bi-cubic  equation:
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where b  are simple functions of the materials constants,  and k.
1, 2 ,3

In the general case there are three roots to Eqn. (10) and
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where B  are simple functions of the materials constants.
6,7,8

Solutions of the Helmholtz equations (7) and (9) take the form:

, cos ,j j m jr A W r m j 1, 2,3 ,

4 4 4, smr A W r in m  , (12)

where for the solid cylinder we are considering,
m mW r J r  is a Bessel function of the first kind if  is real or 

complex, and
m mW r I r  is a modified Bessel function of the first kind if  is pure imaginary,  is the

integer circumferential wave number, and the
j

m
A  (real or complex) are amplitudes to be determined from the

boundary conditions. Solutions in the form of Bessel and modified Bessel functions of the second kind are

disregarded for a solid cylinder because of their singular behavior at the origin.

The mechanical boundary conditions we consider are the absence of external forces on the cylindrical boundary

at radius  : r a
1 5 6 0

r a r a r a
, (13)

and there are two types of electric boundary conditions:

1 r a
D 0 or 0

r a
, (14)

where the first expression corresponds to the open-circuit condition and the second expression  to the close-circuit

condition.

After substitution (12) into (4), (3), and (2) and then (13) and either of the two conditions (14), we obtain  a 

system of four linear homogeneous algebraic equations for the unknown amplitudes . The coefficients  of
1,A ija

,4
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these equations are functions of the materials constants, , ,  and k m a. These  equations have a non-trivial

solution if and only if their determinant vanishes:

11 12 13 14
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31 32 33 34
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0

a a a a
a a a a

Det
a a a a
a a a a

. (15)

In the limit of zero electro-mechanical coupling 
15 31 33 0e e e , this result reduces to that of Berliner and 

Solecki [8] for a non piezoelectric transversely isotropic cylinder.

3. Numerical results and discussion 

In this section we present dispersion curves for non-axisymmetric waves with circumferential wave number 1m

obtained from equation (15) for the piezoelectric ceramic. PZT-4. Rather than employing a traditional root finding

algorithm, we display the logarithm of the modulus of the determinant (15) on a 2D mesh of points ,i jk . At those

points where the real and imaginary parts of determinant (15) are close to zero,  negative spikes occur which provide

a good approximate representation of the dispersion curves. A problem encountered is that the roots of the

characteristic arguments 0, 1,...,j j 4  also show up in the plots as obvious artifacts, but these are readily removed.

Dispersion curves of bending waves 1m  in the cylinder with the short-circuit lateral (cylindrical) surface are

depicted in Fig. 1 for dimensionless frequency . / sa V  in the range 0,14 , where 
44 /EV cs , and a

is the outer radius of the cylinder, and for real values (propagating waves) and pure imaginary values (evanescent

waves) of the k  in the rangea Re , Im 0, 8k a k a .

Fig.1 (m = 1)  Dispersion relation for PZT-4 cylinder with short-circuit lateral surface conditions. 

The lowest dispersion curve for propagating waves (real k) tends asymptotically to the surface wave mode. It is

joined through the domain of evanescent waves (imaginary k) to the second propagating branch, which tends

asymptotically to the shear wave mode. These results are consistent with the finite element calculations of Bai et al.
[12] for wave propagation in a hollow piezoelectric cylinder. Dispersion curves of bending waves 1m  under
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open-circuit conditions for the cylindrical surface are shown in Fig. 2. It is obvious from comparison of the two 

figures, that the electric boundary conditions substantially influence both propagating and evanescent waves.

In Fig. 3 a conceptual case of greatly reduced electro-mechanical coupling coefficients  is shown. 

Fig.2 (m = 1)  Dispersion relation for PZT-4 cylinder with open-circuit

lateral surface conditions. 

Fig.3 (m=1) Dispersion relation for PZT-4 cylinder with reduced

electro-mechanical coupling 

1, 0, 0.001m e e e e

m

15 31 33 33 4PZT

It is observed from Figs. 1, 2 and 3 that the lowest fundamental branch for bending  waves is relatively

insensitive to the nature of the electric boundary conditions, and also not very sensitive to the strength of electro-

mechanical coupling of the material. The higher order modes are more sensitive to the nature of the electric

boundary condition and also to the strength of the electro-mechanical cross-coupling. The PZT-4 cylinder under

short-circuit conditions exhibits a negative slope in the fourth branch in quite a broad range of wave numbers (Fig. 

1).  Substantial dependence on electric boundary conditions  is obvious in the behavior of the dispersion curves for

the evanescent waves.

1

A more extensive treatment of this problem is to be published elsewhere. [14]
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