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Abstract—The quality of corpus-based text-to-speech (TTS)
systems depends on the accuracy of phonetic annotation (align-
ments) which directly influences the process of acoustic modelling.
In this paper we discuss the rapid development of accurate
alignments for new languages in an under-resourced context
based on an investigation of automatically obtained alignments
of an Afrikaans speech corpus. We show that certain classes
of inaccuracies can be effectively detected by acoustic analyses.
Furthermore we discuss systematically addressing identified in-
accuracies and evaluate the impact of such a process on synthesis
quality of a statistical parametric synthesiser in this context.

I. I NTRODUCTION AND MOTIVATION

Recently the development of tools enabling the efficient ma-
chine learning of pronunciation [1] and acoustic models [2] have
allowed the rapid development of robust and intelligible “baseline”
systems (implemented with few language-specific modules) in under-
resourced environments [3]. However, successful deployment isham-
pered by the lack of naturalness achievable by such basic systems
based on speech corpora of neutral prosody and careful pronunciation.
This is especially the case in contexts where users are not familiar
with TTS technology and its idiosyncrasies [4].

The rapid development of systems based on small speech corpora
(comparable in size to [5]) of more naturally read speech raises
additional considerations not only related to increased prosodic
variation, but also increased phonetic variation (i.e. the possible
realisations of specific phonemes). Examples of such variation are
natural phonological processes such as assimilation and deletion
(which is often language- and speaker-specific). In the ideal case
well estimated context-specific acoustic models based on phonemic
transcriptions are essentially appropriate phonetic models, however
when the corpus size is limited and more contexts are shared between
models, more phonetic variation may degrade synthesised speech
quality in certain contexts.

Furthermore, additional concerns (typical in under-resourced con-
texts) that have the potential to affect acoustic modelling success
include:

• Source text often lacks sufficient coverage from different do-
mains and/or exhibit quality problems such as code switching
and large amounts of unpronounceable (by standard spelling
rules) tokens. This compromises phonetic coverage and poten-
tially also fluency during recording.

• Language-specific knowledge and/or implementations are usu-
ally not immediately available and thus systems often rely on
generic text analysis and pronunciation prediction modules (see
Section II for more details).

• Practitioners and voice talents involved in recordings are often
not familiar with the technological constraints or are inexperi-
enced, making the reduction of phonetic variation at this stage
impractical.

In this paper we investigate the above concerns starting with an
analysis of automatically obtained phonetic alignments of a typical
corpus (Section II). In Section III we explore the possibility of auto-
matically detecting potential problems (discrepancies) in alignments
based on acoustic analysis. Sections IV and V discuss a systematic
way of addressing discrepancies and the details of the intervention
on our corpus. This is followed by an analytical and perceptual
evaluation on the resulting acoustic models, a discussion on the
contribution of this work and proposal of future work (Sections VI
and VII).

II. SPEECH CORPUS AND ERROR ANALYSIS

A single speaker Afrikaans speech corpus carefully recorded in a
professional studio environment for the purpose of TTS development
is presented here. It is based on text consisting of 1005 sentences
selected for diphone unit coverage [6]. The corpus was automati-
cally aligned using a Hidden Markov Model-based (HMM) forced-
alignment process (as described in [7]) to the output of our system’s
natural language processing (NLP) front-end, resulting in the corpus
statistics presented in Table I. The front-end currently implements
basic tokenisation, phrase break insertion based on punctuation,
pronunciation prediction via grapheme-to-phoneme (G2P) rewrite
rules and rule-based syllabification. The G2P rules, trained using
the Default&Refine algorithm [1] from a phonemic pronunciation
dictionary, is the sole source of pronunciation prediction, resulting
in exactly one possible pronunciation for each word. This repre-
sents a “baseline” TTS system and reflects a typical scenario when
developing TTS for under-resourced languages. Components that
are notably absent compared to more advanced systems are part-
of-speech tagging, morphological analysis and sophisticated phrase
break prediction.

Utterances Phrases Words Syllables Phones

1005 1134 9225 15153 40451

TABLE I
ORIGINAL CORPUS STATISTICS

The corpus was manually inspected using Praat [8] with word,
syllable and phone alignments visible. During this process, the
following set of discrepancies were identified and labelled according
to the source of the discrepancy:

A: Pronunciation mismatches due to under-articulation in con-
tinuous speech (e.g. deletions, assimilation or reduction).

B: Gross alignment errors (i.e. alignment errors that are clearly
visible during inspection).

C: Alignment discrepancies due to unexpected pauses.
D: Mispronunciations (usually due to speaker error or extreme

dialectal variation from expected case).



E: Label or alignment discrepancies due to transcription mis-
matches (usually due to uncaught reading mistakes).

F: Pronunciation mismatches due to foreign words.
G: Pronunciation mismatches due to G2P inaccuracies.

Discrepancies falling into these classes were marked on the word
level. With the exception of A and C, all classes could be consistently
identified but due to the tediousness of the manual process it is likely
that a certain number of existing cases were overlooked. In the case of
A, the phenomena occur in varying degrees making it only possible to
consistently identify extreme cases. Table II contains frequencies of
affected speech units (cases are not necessarily mutually exclusive):

Class Utterances Words

A > 105 > 122

B 39 60
C 272 352
D 12 12
E 59 85
F 52 68
G 95 104
Total > 493 > 791

TABLE II
DISCREPANCY FREQUENCIES

Having no discrepancies in these classes would be ideal in the
sense that it would mean that the corpus is both error free and
that the TTS front-end is perfectly predicting all relevant aspects
(pronunciation, phrasing, etc.) of the specific speaker’s speech. This
would allow the acoustic modelling to proceed optimally given
features that can be predicted from the text and thus effectively used
during synthesis.

Based on the frequency of occurrence of discrepancies (conserva-
tively about 49% of utterances and 9% of words), it is fair to assume
that the quality of acoustic models will be significantly affected.
Moreover, our experience is that this is a typical example when
working in an under-resourced environment (due to the difficulties
listed in Section I).

The following section explores the possibility of automatically
detecting the discrepancy classes presented in this section.

III. D ETECTING DISCREPANCIES

In order to flag the most significant discrepancies we evaluated a
few features directly obtainable from the process of alignment and
acoustic modelling.

Alignment log-likelihoods: using the log-likelihoods obtained from
the forced-alignment process performed in Section II. Mean word
scores are calculated from scores output by HTK [9].

Mel-cepstral distance: comparing synthetic speech samples with
original instances from the corpus (similar to the distortion measure
used in [10]). We evaluated two approaches: firstly simply training
HTS [2] models (see Section V) on the full corpus and synthesizing
all the training utterances and secondly in a 10-fold cross validation
fashion where 10% test-sets where held out for comparison. The
comparison of individual speech samples were attempted using both a
dynamic time warping (DTW) approach as well as using the durations
of the original speech alignments to allow direct frame-by-frame
comparisons (as done in [10]). For the feature extraction we followed
the convention used in [11] (in the section on DTW for alignment),
simply using the Euclidean distance between static and delta (without
energy; 24 coefficients in total) Mel-Frequency Cepstral Coefficients
(MFCCs extracted with Edinburgh Speech Tools [12] every 5ms,
using 25ms Hamming windows). We also experimented with the Ma-
halanobis distance (with the covariance in each experiment calculated
on the training set) without additional success (results are not reported
here).

Absolute duration differences: calculating the duration difference
between synthesised samples and aligned original samples from the
corpus.

A. Results

By examining detection rates of words identified in Section II using
these features, we identify which of the features are most effective at
highlighting discrepancies from the different classes defined above,
but also gain insight into how these discrepancy classes are potentially
affecting the acoustic modelling process. Figures 1 to 7 show receiver
operating characteristic (ROC) curves when using basic statistics (the
mean distance or absolute duration difference) on the word level to
flag potential discrepancies.
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Fig. 1. ROC curves for class A for the features described in Section III

As mentioned in Section II, class A discrepancies were the most
difficult to mark consistently, ranging from assimilation and deletions,
to vowel reduction and voicing changes in some consonants. Con-
sidering the non-homogeneous nature (acoustically) of this class, the
shape of the best ROC curve is understandable. It is also noted that
none of the features based on comparison with TTS acoustic models
are effective here. This is not unexpected, as the “full-context” TTS
models can be expected to model these effects more effectively than
simple triphone models used during alignment.
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Fig. 2. ROC curves for class B for the features described in Section III



Class B discrepancies most often co-occurred with other problems
(especially class E) to the extent that for the purposes of troubleshoot-
ing alignments, almost all of these cases might be reclassified into
other classes based on underlying cause.
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Fig. 3. ROC curves for class C for the features described in Section III

In class C, there is again more than one exact cause for pauses (or
silences) that are not modelled by the TTS front-end. Two of the most
prevalent being: undetected phrase breaks and glottal closures (which
occurs before some vowels and often between two vowels that do not
flow into each other). The best curve (based on the duration difference
measure) presumably detects the longer pauses due to missed phrase
breaks (which are not predictable from phonological context) well,
but is less effective in the case of glottal closures which are shorter
and phonologically more predictable.
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Fig. 4. ROC curves for class D for the features described in Section III

The remaining classes all present clear (easily identifiable) dis-
crepancies between the audio and predicted labels (and associated
alignments), with class E being the easiest to detect and G relatively
difficult (presumably because of the fact that G2P errors occur in a
more consistent/predictable way).

Comparison of the alignment log-likelihood with the cepstral
distance features in general seems to suggest that the cepstral distance
is more effective at detecting the identified discrepancies in this
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Fig. 5. ROC curves for class E for the features described in Section III

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

train_linear_euclidean
10fold_linear_euclidean
train_dtw_euclidean
10fold_dtw_euclidean
alignlogl
train_absdurdiff
10fold_absdurdiff

F

Fig. 6. ROC curves for class F for the features described in Section III

context. The exception is A discussed above. In the case of class
C, the duration difference is clearly a sensible measure.

These results should allow us to design automated or machine-
assisted corpus refinement processes or may be applied during
the synthesis process (similar to the way in which alignment log-
likelihoods are used in some unit-selection systems [13]), especially
when corpora of similar nature are used.

In the following section we consider how such refinements can be
efficiently effected.

IV. A DDRESSING IDENTIFIED DISCREPANCIES

Technically, the simplest idea is to discard parts of the data exhibit-
ing large discrepancies. We briefly experimented with this approach
by systematically removing utterances based on the mel-cepstral
distance measure without succeeding in improving the perceivable
quality of HMM-based synthesis or measured cepstral difference (as
in section VI-A).

An alternative is to resolve discrepancies before acoustic mod-
elling. Manual correction of alignments might result in a more
accurately annotated corpus, but would lead to a disconnect between
the labels predicted by the TTS front-end and acoustic models
which might lead to a degradation in synthesis quality, especially
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Fig. 7. ROC curves for class G for the features described in Section III

for contexts where consistent mismatches (such as class A) might
have allowed acoustic models to compensate for discrepancies [14].

Given these considerations and the analysis presented in Sections
II and III, we evaluate a framework for resolving discrepancies based
on allowing multiple pronunciation variations during the alignment
stage, similar to what is described in [13], but additionally allowing
us to include pronunciation variation that only occurs in certain
utterance contexts (e.g. deletions due to cross-word contexts). This
framework (depicted in Figure 8) allows us to resolve difficult cases
automatically (relying on alignment models to select an appropriate
transcription) and capture relevant variation (e.g. speaker-specific
pronunciations) for possible use at synthesis time.

By multiplexing predictions from complete TTS front-ends via a
context-specific pronunciation dictionary (where different instances
of a word occuring in different contexts are allowed to have distinct
pronunciations), one is afforded flexibility to implement speaker-
specific pronunciation variation using the most compact or appropri-
ate mechanism available (e.g. speaker-specific lexicon, phonological
rules, etc.) which is then presented to the alignment stage as a set of
straightforward context-specific pronunciation variants (on the word
level). Training of HMM models for alignment follows the standard
recipe (see [9] Chapter 3), using the “standard front-end” for initial
pronunciations and selecting more appropriate alternatives during
the “re-alignment” stage prior to final embedded re-estimation and
forced-alignment.

In the final sections of this paper we investigate the impact of
addressing identified discrepancies, in the way described in this
section, on HMM-based acoustic models. The next section starts by
describing the details of intervention and acoustic modelling on our
corpus.

V. A FRIKAANS VOICE

For alignment of our corpus we decided to address the problem
classes within the framework defined in the previous section, using
our original TTS front-end as the “standard-frontend” and one
additional “speaker-specific front-end”. The letters in parentheses
in Figure 8 indicate where each of the discrepancy classes were
addressed and a description follows.

Our speaker-specific front-end starts out by inheriting all processes
and resources from the original front-end. We then specialise this
implementation to addressclass A and D discrepanciesby applying
phonological rules occurring in continuous speech after initial pro-
nunciation prediction (described in section V-A) and a pronunciation
addendum which overrides the standard pronunciations respectively.
Class C and E discrepanciesare addressed in the orthographic

. . .

. . .

Fig. 8. Alignment and acoustic modelling process

transcriptions by inserting commas (our original front-end inserts
phrase breaks based on punctuation) and correcting any transcription
errors. The remainingF and G discrepanciesare addressed in the
original front-end in the pronunciation addendum and main lexicon
respectively. We did not explicitly address issues marked asclass
B, believing that resolving other classes would generally lead to
resolution of these problems (see discussion in Section III). However,
if these were to be addressed, a logical way would be to edit
alignments directly, assuming that any remaining cases of this nature
are simple failures of the automated alignment process. Table III
quantifies the extent of manual intervention as described in this
paragraph.

Original front-end
Additional pronunciation entries 98

Speaker-specific front-end
Additional pronunciation entries 111
Phonological rules 3

Transcriptions
Sentences edited 317

TABLE III
MANUAL INTERVENTION

Although we also implemented optional insertion of pauses (as



done in [13]) between words, this resulted in 1208 insertions (com-
pared to the 352 manually identified - see Table II). Thus, in order
to handle this information automatically we would need to further
investigate the accurate classification of phrase breaks as done in
[15].

A. Phonological rules
As stated, phonological rules generating alternative word pronun-

ciations in certain contexts were implemented. No attempt was made
to define an exhaustive list of known rules for Afrikaans, but rules
were based on inspection of the lowest scoring words (based on the
alignment log-likelihoods and cepstral distances described in Section
III). This led to the implementation of 3 phonological rules addressing
deletion of phones in different contexts of continuous speech:

1) Where the first sound of a word can be deleted (e.g. the word
sequence “van die” is often realised [fAni] instead of [fAndi]).

2) Where the last sound of a word can be deleted (e.g. “met die”
is often realised [mEdi] instead of [mEtdi]).

3) Where the [r] can be deleted at the end of the first syllable [f@r]
in a polysyllabic word (e.g. in the word “verklaar”).

B. Acoustic modelling
In this section we describe the acoustic modelling process for

the purpose of evaluation. Re-aligning the corpus with the above
amendments (Section IV) resulted in the corpus statistics in Table
IV. HMM-based acoustic models were trained using the standard
demonstration script available as part of the HMM-based Speech
Synthesis System (HTS) version 2.2 [2]. Model labels (features)
similar to [16] were used (as far as these features were available
- recall details of the TTS front-end implementation described in
Section II). For the model tying decision tree, phone and word
contexts as well as phonetic classes defined in the phone set (e.g.
broad phonetic classes and features such as plosives, nasals, vowels,
voicing, etc.) were used to define questions.

Utterances Phrases Words Syllables Phones

1005 1428 9216 15094 40233

TABLE IV
NEW CORPUS STATISTICS

For the experiments in Section VI-A we randomly selected a small
set of utterances to serve as a test set. Alignments for the test set were
manually corrected by checking all segment labels, phrase breaks
and in some isolated cases moving segment boundaries. This process
resulted in the corpus statistics as shown in Table V.

Set Utterances Phrases Words Syllables Phones

Train 955 1356 8772 14351 38263
Test 50 69 444 741 1949

TABLE V
TRAINING AND TEST SET STATISTICS

VI. RESULTS

In the following sections we evaluate the effects of the work
presented in Section V on resulting synthetic speech.

A. Mel-cepstral distance
Firstly, we measure the mel-cepstral distance between the synthe-

sised test utterances (Table V) and original speech samples, using
the phone label sequences as corrected. The original and updated
alignment procedures are compared in this way by complete re-
alignment and re-training of acoustic models for subsets of the
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Fig. 9. Results: Mean mel-cepstral distance on the held-out test set. The
solid line represents the mean distance when using the original alignments
and the dashed line when using the updated alignments.

training utterances ranging from 1% to 100%. The result is presented
in Figure 9.

We observe consistently lower distances over the test set when
using the updated alignments (based on the process in Figure 8),
suggesting that the process is robust and results in a positive effect
(as defined by our test set) on acoustic models.

B. Perceptual evaluation
Ultimately, we would like determine whether the improvement

in spectral quality suggested by results in the previous section
combined with the expected improvement in phrase prosody (due
to the clarification of phrase breaks in the training corpus) translates
into an overall improvement in perceived quality of the synthesised
speech in our context.

While the alignment process (Figure 8) is able to select different
pronunciations for different instances of the same word, our current
implementation requires selecting a consistent strategy (i.e. we have
to choose either the original or speaker-specific front-end) during
synthesis time.

For this evaluation we choose to use the original front-end to
determine the effect of enforcing this style (of pronunciation) from
the given corpus. Our preliminary informal trials confirmed that the
synthesis of contexts covered by the implemented phonological rules
(e.g. “van die”) using the original front-end results in noticeably
clearer realisations of phones compared to acoustic models based
on the original alignments.

To test overall preference we asked 11 respondents to indicate
preference between 13 single-phrase sentence pairs synthesised with
the original front-end, but using acoustic models based on the differ-
ent alignment sets (Tables I and IV). For each sentence comparison
we also invited respondents to list specific words in the utterances
that influenced their decision as well as general comments.

The results of this evaluation (143 utterance comparisons) is
presented in Table VI, showing the number of utterances preferred
according to alignment set (or no preference). According to McNe-
mar’s test statistic using the chi-squared distribution with 1 degree
of freedom, the 95% confidence level is given by:

(|b− c| − 0.5)2

b+ c
≥ 3.841 (1)

A chi-squared value of 1.894 implies that the perceptual difference
on our sample of short sentences is not significant.



Original New No preference Total χ2

48 63 32 143 1.894

TABLE VI
PERCEPTUAL PREFERENCE

We discuss our results in the following section, followed by
conclusions drawn from the work presented.

C. Discussion
Based on the results presented in VI-A and the inspection of

synthesised examples of contexts covered by the implemented phono-
logical rules, we argue that the work presented in Section V results
in clearer phonetic models (i.e. models that are acoustically closer in
nature to their phonetic labels). In Section I we argued why this might
be beneficial in the case of acoustic modelling in sparse contexts.
Furthermore, a more phonetically (as opposed to phonemically)
labelled corpus could ease research and development of polyglot
systems or systems based on resource sharing where phone sets from
different languages need to be combined or compared.

In Section VI-B we asked respondents to indicate general pref-
erence, inviting them to comment on aspects of the speech that
influenced their decisions. According to these comments decisions
were most often made based on prosodic differences and respondents
were less sensitive to under-articulation in samples based on the
original alignments. Though we suspect that the clarification of phrase
breaks in the updated alignments had a positive effect on prosody
and phone durations in some samples, the lack of information (such
as word emphasis) included in the front-end implementations could
explain some of the variable results. Another point worth noting is
that the modelling of fundamental frequency (f0) in HTS is tied
to the phone identity and thus the process of training followed by
application of acoustic models in a different context (e.g. by using
the original front-end during synthesis) might affect f0 generation
negatively.

A more extensive perceptual experiment including multi-phrase
sentences (including evaluation of unit-selection voices) could result
in significant further insight.

In the following section we present our conclusions.

VII. C ONCLUSION

In this paper we considered the rapid development of accurate
alignments for new languages in an under-resourced context based on
an investigation of automatically obtained alignments of an Afrikaans
speech corpus.

Here we highlight contributions and conclusions:
• An analysis of automatically obtained alignments for our corpus

resulted in the definition of classes of discrepancies in align-
ments according to underlying cause.

• Methods of acoustic analysis were presented and evaluated for
their utility in detection of identified discrepancies. We show
that a number of problems can be effectively detected and
that the mel-cepstral distance measure is more effective than
the alignment log-likelihood scores for detecting a number of
problem classes.

• We described an alignment framework and demonstrated how
the identified problem classes can be addressed effectively. It
was shown that following such a process on our corpus led to
synthesised speech that is closer to natural speech (in terms of
mel-cepstral distance on our manually aligned test set).

• A perceptual evaluation has highlighted further aspects that need
to be considered in order to improve the quality of synthesised
speech in this context.

To summarise, the work in this paper has taken a step in the
direction of rapidly developing a more phonetic (as opposed to

phonemic) annotation of a speech corpus. Future work could focus
on further automation of this process, for example by applying the
information obtained in Section III to propose phonological rules
and alternative pronunciations (as implemented in Section V) without
manual intervention, as well as incorporating phrase break detection
as done in [15].

Towards the ultimate goal of improved synthesis quality, further
work on automatically adapting the TTS front-end predictions based
on acoustic analyses (similar to [17]) is needed. Improved prosodic
modelling and synthesis also needs to be addressed in our Afrikaans
system in particular.
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