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Abstract—Platform pose (localization and orientation) infor-
mation is a key requirement for autonomous mobile systems. The
severe natural conditions and complex terrain of underground
mines diminish the capability of most pose estimation systems,
especially GPS. Our research interest is focused on using a low-
cost off-the-shelf inertial measurement unit (IMU) to improve
the Active Beacon Positioning System (ABPS) developed here
at the CSIR. This paper proposes a novel pose estimator, for
underground mines, that fuses together data from the ABPS and
a low-cost MEMS based inertial navigation system (INS). This
pose estimator uses an unscented Kalman filter (UKF) to fuse the
data together. The method is evaluated by building a complete
system in a lab.

I. INTRODUCTION

South Africa plays a major role in the international mining
fraternity. Mining employs 495 000 workers directly and a
similar amount indirectly, providing a daily subsistence for
approximately 5 million South Africans [1]. Robotics could aid
the mining industry to achieve government safety standards.
Some of the main challenges were discussed by Green and
Vogt in [2].

Navigation systems that integrate measurements from In-
ertial Navigation Systems (INS) and the Global Positioning
Systems (GPS) are widely used in outdoor navigation systems
[3]. INS provides accurate navigation data (position, velocity
and attitude) over very short time intervals. INS based on low-
cost inertial measurement units (IMUs) suffers from accuracy
degradation over time, due to the combined effect of its sensor
errors causing drift problems. GPS provides absolute data
which is used to restrict the error of the INS.

Navigation in GPS deprived environments requires new
absolute localization systems to be developed. This paper
provides an introduction to a statistical positioning algorithm
of an ultrasonic time-of-flight (TOF) based system. It further
discusses the fusion of this system with an INS using an
unscented Kalman filter (UKF).

II. PREVIOUS WORK

A vital operation performed in all Kalman type filters is the
propagation of a Gaussian random variable (GRV) through
the system dynamics. In the extended Kalman filter (EKF),
the system state distribution and all relevant noise densities are
approximated by GRV. These GRV are propagated analytically
through a first-order linearization, or sometimes second-order
estimation, of the nonlinear system. The estimation can intro-
duce large errors in the true posterior mean and covariance

of the transformed GRV, which may lead to sub-optimal
performance and occasionally divergence of the filter.

Van der Merwe and Wan [4] presented a dynamic process
model for a loosely coupled GPS/INS integrated system which
includes time varying bias terms. They begin by pointing out
the inherent shortcomings in using the EKF for data fusion and
present, as an alternative, a family of improved derivativeless
nonlinear Kalman filters called the sigma-point Kalman fil-
ters (SPKF). They demonstrate the improved navigation state
(position, velocity and attitude) estimation performance of the
SPKF by applying it to navigate a small-scale helicopter. Per-
formance metrics indicate an approximate 30% error reduction
in both attitude and position estimates relative to the baseline
EKF implementation.

Zhang et al [5] focused on using some low-cost off-the-shelf
sensors, such as an IMU and inexpensive single GPS receiver,
for autonomous navigation. They present an autonomous ve-
hicle navigation method by fusing data measurements from
an IMU, a GPS, and a digital compass. Two key steps were
adopted to overcome the low precision of the sensors. The
first was to establish sophisticated dynamics models which
consider Earth self rotation, measurement bias, and system
noise. The second was to use a sigma-point Kalman filter
for the system state estimation, which has higher accuracy
compared with the extended Kalman filter, as shown in [4].
The method was evaluated by experimenting on a land vehicle
equipped with IMU, GPS, and digital compass.

The contribution of this paper includes the use of the
active beacon positioning system (ABPS), designed and build
within the CSIR, and fusion of this system with an inertial
measurement unit. The UKF is used to fuse the data from the
ABPS and the IMU.

The next section discusses the square-root unscented
Kalman filter algorithm. Section IV describes the ABPS. It
further describes the process of statistical estimation of posi-
tion, given the distances between receivers and beacons and
the positions of the relative beacons. Section V describes the
state vector, process model and measurement model. The final
two section discuss the results and provides the conclusion.

III. THE SQUARE-ROOT UKF

In this document we used a sigma-point Kalman filter
called the square-root UKF as the main data fusion algorithm
[6]. Sigma-point filters pass a set of points representing the
input distribution through the non-linear functions, and then



approximate the output statistics. The square-root UKF was
first introduced by van der Merwe and Wan [4] and uses
a Cholesky factor updating instead of the actual covariance
matrix.

Algorithm 1 Square-Root UKF [4]
Initialization:

x̂0 = E[x0] (1)

S0 = chol
{
E[(x0 − x̂0)(x0 − x̂0)T ]

}
(2)

The Cholesky factorization decomposes a symmetric, positive-
definite matrix into the product of a lower-triangular matrix
and its transpose.
For k = 1, · · · ,∞:

1) Calculate sigma-points: The Cholesky triangular matrix
is used directly to calculate the sigma points as follows:

χk−1 =
[
x̂k−1 xk−1 + ηSk−1 xk−1 − ηSk−1

]
.
(3)

2) Time-update equations:

χk|k−1 = f(χk−1) (4)

x̂−k =

2L∑
i=0

wm
i χi,k|k−1 (5)

S−xk
= qr

{
[
√
wc

1(χ1:2L,k|k−1 − x̂−k )]
}

(6)

S−xk
= cholupdate · · ·{
S−xk

, χ0,k|k−1 − x̂−k , w
(c)
0

}
(7)

Yk|k−1 = h(χi,k|k−1) (8)

ŷ =

2L∑
i=0

wm
i yi,k|k−1 (9)

3) Measurement-update:

Sŷk
= qr

{
[
√
wc

1(Y1:2L,k|k−1 − ŷ−k )]
}

(10)

S−ŷk
= cholupdate · · ·{
S−ŷk

,Y0,k|k−1 − ŷ−k , w
(c)
0

}
(11)

Pxk,yk
=

2L∑
i=0

(χi,k|k−1 − x̂−k )(Yi,k|k−1 − ŷ−k )T (12)

Kk = (Pxk,yk
/ST

ŷk
)/Sŷk

(13)

x̂k = x̂−k + Kk(x̂k − x̂−k ) (14)
U = KkSŷk

(15)

Sxk
= cholupdate

{
S−xk

,U,−1
}

(16)

Algorithm 1 provides the generic square-root UKF. It is
important to note the following:
• Weights & parameters: η =

√
L+ λ, wm

0 = λ/(L+ λ),
wc

0 = wm
0 + (1 − α2 + β), wc

i = wm
i = 1/[2(L + λ)]

for i = 1, · · · , 2L. λ = α2(L + κ) − L is a compound
scaling parameter, L is the dimension of the augmented

state-vector, 0 < α ≤ 1 is the primary scaling factor
determining the extent of the spread of the sigma-points
around the prior mean. β is a secondary scaling factor
used to emphasize the weighting on the 0th sigma-
point for the posterior covariance calculation. β can be
used to minimize certain higher-order error terms based
on known moments of the prior random variable. For
Gaussian priors, β = 2 is optimal. κ is a tertiary scaling
factor and is usually set to zero. For more detail on the
selection procedure can be seen in [6].

• Linear-algebra operators:
–
√
·:matrix square-root using lower triangular Chole-

sky decomposition.
– qr(A): lower-triangular part of R matrix resulting

from economy qr decomposition of data-matrix A.
– cholupdate {R,U,±ν}: N consecutive rank-1 Cho-

lesky up(down)dates of the lower-triangular Chole-
sky factor R by the N columns of

√
νU.

– /: Efficient least-squares pseudo inverse impleme-
nted using triangular QR decomposition with pivot-
ing.

The SR-UKF is used to fuse data from two sensors, an
inertial navigation system (INS) and a time-of-flight based
beacon localization system. The described application is for a
loosely coupled configuration of the navigation systems. The
INS is developed using a Analog Devices ADIS16364 inertial
measurement unit. The data from the IMU is transformed
to the inertial frame position, velocity and attitude using the
process described in Figure 1. The equations are described in
Section V-A. The ABPS was developed at the CSIR in South
Africa. The ABPS is described in the next section.

Fig. 1: The strapdown INS in the inertial reference frame

IV. ACTIVE BEACON POSITION SYSTEM

The localization system described is a 2D positioning sys-
tem and mainly finds its application within excavations of the
order of 30m × 3m × 1m in tabular ore bodies. The vertical
height in the application environment is limited to 1m and no
significant value is added by determining this coordinate.

The system consists of a number of beacons with known
locations and a number of receivers that need to localize
themselves within a shared reference grid. An receiver can
only localize itself within coverage of a sufficient number of
beacons, in this case at least three. The system is required to



resolve coordinates with 10cm accuracy for useful application
in geo-stamping measurement data for sensors designed at the
CSIR, such as the autonomous sounding device defined in [7],
and navigation of a mobile platform.

Localization is achieved by implementing a trilateration
algorithm with an ordinary least squares (OLS) estimator [8].
With this approach, the receiver only requires the distance
between itself and the beacons, and know the associated
beacons locations in order to localize itself. The OLS estimator
is used (as opposed to analytical methods), because only
approximate distances can be measured as a result of noise
inherent in the system.

Receivers determine the distance to a given beacon by
measuring the time-of-flight (TOF) of an ultrasonic signal
emitted by a beacon. The TOF is related to the distance
between the beacon and the receiver by the speed at which
the wave travels. In order to measure TOF, the receiver has to
know when the signal was transmitted. To accomplish this,
a beacon periodically emits the ultrasonic signal, together
with an electromagnetic signal at the same instant, so that
the TOF upon reception by the receiver is given by the
difference between the arrival times of the two signals. The
technique assumes the TOF of the electromagnetic signal
to be zero, allowing the electromagnetic signal to act as a
synchronization mechanism. Over time, an receiver acquires
distance measurements from different beacons covering it and
localizes itself after the sufficient number of distances has been
measured.

Fig. 2: Example of a localization network

A. Building a linear model

Consider a system of four beacons and a single receiver,
as shown in Figure 2. Let n denote the total number of
measurements taken at all beacons combined. Let δ = (x, y, z)
denote the spatial coordinates of the target point. Let Bi =
(xi, yi, zi) be the exact location of the beacon at which the
ith measurement is taken. Also let ri be the measured distance
from the ith beacon to the target point and ri = di(δ) + εi.
Define the regression equations as

di(δ) = E(ri|x, y, z)
=
√

(xi − x)2 + (yi − y)2 + (zi − z)2 (17)

as the true distance from the ith beacon to the target point
which are non-linear in the unknowns x, y, z.

Let (xr, yr, zr) be the coordinates of any point in real space
R3, which we will refer to as the reference point. We can
rewrite Eq. 17, to include this reference point, as

di(δ)
2 = (xi − xr + xr − x)2 + (yi − yr + yr − y)2

+ (zi − zr + zr − z)2 (18)

Let the true distance between the reference point and the
location of the beacon at which the ith measurement was taken
be

dir =
√

(xi − xr)2 + (yi − yr)2 + (zi − zr)2 (19)

and also let

dr(δ) =
√

(x− xr)2 + (y − yr)2 + (z − zr)2 (20)

be the true distance between the reference point and the target
point (x, y, z). Expanding and regrouping terms in Eq. 18,
using the cosine rule [8],

di(δ)
2 = (xi − x)2 + (yi − y)2 + (zi − z)2 (21)

= (xi − xr + xr − x)2 + (yi − yr + yr − y)2

+ (zi − zr + zr − z)2 (22)

= (x− xr)2 + 2(xi − xr)(x− xr) + (xi − xr)2

+ (y − yr)2 + 2(yi − yr)(y − yr) + (yi − yr)2

+ (z − zr)2 + 2(zi − zr)(z − zr) + (zi − zr)2 (23)

A closer look at the final double product terms above gives

2((xi − xr)(x− xr) + (yi − yr)(y − yr) + (zi − zr)(z − zr))

= (x− xr)2 + (y − yr)2 + (z − zr)2

+ (xi − xr)2 + (yi − yr)2 + (zi − zr)2

= dr(δ)2 + d2
ir − di(δ)2 (24)

where i = 1, 2, · · · , n and n ≥ 4.
If one of the beacons (say B1) is chosen as a reference point,

the exact distance can be replaced by a measured distance. This
special case yields,

(x2 − x1)(x− x1) + (y2 − y1)(y − y1) + (z2 − z1)(z − z1)

≈ 1

2
[r2

1 − r2
2 + r2

21] = b21

(x3 − x1)(x− x1) + (y3 − y1)(y − y1) + (z3 − z1)(z − z1)

≈ 1

2
[r2

1 − r2
3 + r2

31] = b31

... (25)
(xn − x1)(x− x1) + (yn − y1)(y − y1) + (zn − z1)(z − z1)

≈ 1

2
[r2

1 − r2
n + r2

n1] = bn1 (26)

(27)

where bi1 is the measured distance. This is a linear system of
(n− 1) equations with 3 unknowns.



B. The ordinary least-squares estimator

The linear system of equations given by Eq. 27 can be
written in matrix form as Ax ≈ b, with

A =


2(x1 − x1) 2(y1 − y1) 2(z1 − z1)
2(x2 − x1) 2(y2 − y1) 2(z2 − z1)

...
...

...
2(xn − x1) 2(yn − y1) 2(zn − z1)

 (28)

consisting of the beacon positions from beacon 1 to n and the
parameter vector

x =

x− x1

y − y1

z − z1

 (29)

and b as

b =


b21

b31

...
bn1

 (30)

the matrix of measured distances.
Minimizing the sum of the squares of the residuals can be

written as

S = (b−Ax)T (b−Ax) (31)

This requires the solution of the normal equation ATAx =
AT b. The solution method depends on the condition number
ATA. If ATA is non-singular and well-conditioned then the
linear/ordinary least squares (OLS) is given by

x = (ATA)−1AT b (32)

If ATA is nearly-singular (which means that it is poorly
conditioned) then:
• It is necessary to compute A = QR. Where

– Q is the orthonormal matrix, and
– R is the upper-triangular matrix.

• It is then possible to solve for Rx = QT
→
b by back

substitution when A is full rank.

V. SR-UKF BASED ABPS/INS INTERGRATION

An IMU driven kinematic process model formulation, that
comprises of an INS mechanization component [9] and an
IMU error model component, will be used. The IMU sensor
error model components are added to the state vector because
low-cost IMU have large bias and scale factor errors which
can lead the filter to diverge. The estimated values of these
errors are used to correct the raw IMU acceleration and
gyro-rate measurements before they are used inside the INS
mechanization of the process model [6], which is sufficient to
model the combined effect of the bias and scale error terms.
The 16 dimensional state vector, x, of our system is defined
as follows:

x =
[
p v q ba bω

]
, (33)

where p = [x, y, z]T , v = [vn, ve, vd]T , and q =
[q0, q1, q2, q3]T represents the position, velocity, and attitude
in quaternion of the navigation vehicle in the navigation frame
(n-frame). ba is the IMU acceleration biases, and bω is the
IMU gyro rate biases. van der Merwe [6] states that a time-
varying bias term is sufficient to model the combined effect
of the bias and scale error terms and therefore eliminates the
need to include the scale factor in the state vector.

A. Process Model

The continuous time kinematic navigation equations, INS
mechanization equations and error model discussed above,
oparating on this state vecor and driven by the error corrected
IMU measurements can be established as follows:

ṗ
v̇
q̇

ḃa

ḃω

 =


v

Cn
b (ā− ar̄imu

) + gn

− 1
2Ω̃ω̄q
Wba

Wbω

 . (34)

In Equation 34, the Cn
b is the direction cosine matrix (DCM)

transforming vectors from the b-frame to the n-frame. The
DCM is a nonlinear function of the current attitude quaternion
and is given by

Cn
b = (Cb

n)T

= 2

0.5− q2
2 − q2

3 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 0.5− q2
1 − q2

3 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 0.5− q2
1 − q2

2

 .

(35)

The gn is the gravity vector in the n-frame, which is expressed
by

gn =

0
0
g

 , (36)

where g is the local gravity, which is decided by the co-
ordinates in the geodetic coordinate system [10]. The IMU
readings in equation 34 is defined as

ā = ã− ba − na, (37)

ω̄ = ω̃ − bω −Cb
nωc − nω. (38)

In the above equations, ā and ω̄ are the raw measurements
of acceleration and gyro-rates coming from the IMU, and na

and nω are the IMU acceleration and gyro-rate measurement
noise, and ωc is the rotation rate of the earth as measured
in the navigation frame (Coriolis effect) relative to the earth
frame and hence is time-varying [6] as the navigation frame
moves relative to the earth frame. For terrestrial navigation, we
assume the navigation frame is stationary relative to the earth
frame resulting in a constant ωc for a given origin location,
latitude and longitude, of the navigation frame.



Ω̃ω̄ is a 4×4 skew-symmetric matrix composed of the error
corrected IMU gyro-rate measurements, i.e.,

Ω̃ω̄ =


0 ω̄p ω̄q ω̄r

−ω̄p 0 −ω̄r ω̄q

−ω̄q ω̄r 0 −ω̄p

−ω̄p −ω̄q ω̄p 0

 (39)

In Equation 34, ar̄imu is the IMU-lever-arm coupling com-
ponent due to the IMU not being located at the center of
gravity of the vehicle. This component can be ignored if
the navigation filter computes the state estimate at the IMU
location [6]. This IMU centric navigation solution can then
simply be transformed to the center of gravity location after
the fact as needed by the control system.

One of the most common properties of IMU, despite their
quality, is that the acceleration and gyro-rate output are known
to be in error by an unknown slowly time-varying bias [5].
The turn-on bias can be modelled as a zero-mean, stationary,
first-order Gauss-Markov process [11].

Since the bias and scale factor of low cost MEMS based
IMU sensors exhibit non-zero mean and non-stationary be-
haviour, the residual time-varying bias error is modelled as a
random-walk process [10] in order to improve the tracking of
these time-varying errors by the navigation filter. This does,
however, require that the effect of these errors be observable
through the specific choice of measurement model. Therefore,
Wba , and Wbω in Equation 34 are white noise of acceleration
and gyro rate respectively in the IMU.

Equation 34 has to be linearized for implementation in
the embedded system. The position and velocity discrete-time
updates are calculated by the following simple first-order Euler
updates [6]

pk+1 = pk + ṗk · dt (40)
vk+1 = vk + v̇k · dt, (41)

where ṗk and v̇k are calculated using Equation 34 and dt
is the integration time-step of the system, usually dictated by
the IMU data rate. The quaternion propagation equation can
be discretized with an analytical calculation of the exponent of
the skew-symmetric matrix given by Horn [12]. The discrete-
time update can be written as

qk+1 = exp(−1

2
Ω̃ · dt)qk. (42)

If we further denote

∆φ = ω̄p · dt (43)
∆θ = ω̄q · dt (44)
∆ψ = ω̄r · dt, (45)

as the effective rotations around the body frame or roll, pitch
and yaw axes undergone by the vehicle during the time period
dt, assuming that the gyro-rates ω̄p, ω̄q and ω̄r remained
constant during that interval, we can re-introduce the 4 × 4

skew-symmetric matrix

Φ∆ = Ω̃ · dt (46)

=


0 ∆φ ∆θ ∆ψ
−∆φ 0 −∆ψ ∆θ
−∆θ ∆ψ 0 −∆φ
−∆ψ −∆θ ∆φ 0

 . (47)

Using the definition of the matrix exponent and the skew
symmetric property of Φ∆, we can write down the following
closed-form solution:

exp(−1

2
Φ∆) = I cos(s)− 1

2
Φ∆

sin(s)

s
, (48)

where

s =
1

2

∥∥[∆φ ∆θ ∆ψ
]∥∥

=
1

2

√
(∆φ)2 + (∆θ)2 + (∆ψ)2. (49)

Proof of this closed-form can be found in [6]. Theoretically,
Equations 42 and 48 ensure that the updated quaternion qk+1

has a unit norm. It is common to add a small Lagrange
multiplier term to the first component of Equation 48 to further
maintain numerical stability and the unity norm of the resulting
quaternion [6]. The resulting final solution for the time-update
of the quaternion vector is given by

qk+1 = [I(cos(s) + η · dt · λ)− 1

2
Φ∆

sin(s)

s
]qk, (50)

where λ = 1 − ‖qk‖2 is the deviation of the square of
the quaternion norm from unity due to numerical integration
errors, and η is the factor that determines the convergence
speed of the numerical error. These factors serve the role
of the above mentioned Lagrange multiplier that ensures that
the norm of the quaternion remains close to unity [13]. The
constraint on the speed of convergence for the stability of the
numerical solution is η · dt < 1 [14]

Finally, the discrete time random-walk process for the IMU
sensor error terms are given by

bak+1
= bak

+ dt ·Wba (51)
bωk+1

= bωk
+ dt ·Wωa

, (52)

where Wba and Wωa are zero-mean Gaussian random vari-
ables.

B. Measurement Model
The position obtained from ABPS is considered as the

measurement set in a Kalman filter. This can be expressed
in the following formulation.

zk = pk + Cn
b rABPS + νABPS (53)

where rABPS is the vector from the origin of the b-frame
to the ABPS mounting position. νABPS is the ABPS mea-
surement noise, which is white with normal probability dis-
tribution p(ν) ≈ N(0, R). The measurement noise matrix
R = diag(σ2

x, σ
2
y, σ

2
z) can be calculated by statistics from a

set of data which is obtained from the ABPS in a fixed point
in its working environment.



VI. EXPERIMENTAL RESULTS

A single-board computer was used to collect data from the
IMU and the ABPS, and processing the data. The configuration
is shown in Figure 3. The filter was implemented in MATLAB.
Sensor data was streamed from the single-board computer to
a PC over a RS232 serial cable. In the current configuration
the data is read from the COM port and saved in a text
file. A number of visualizations were developed to aid in the
debugging process.

Fig. 3: Experimental Setup with IMU, ABPS and a single
board computer (Green Mamba from CSIR)

The MATLAB implementation was tested by comparing
simulated data to the result of ŷ−k of the measurement pre-
diction step of the SR-UKF. The position results shown in
Figure 4. The estimate closely resemble the measured data.
Further work still has to be done in filter initialization to have
a more accurate initial estimation.

Fig. 4: Position Estimation in Matlab

VII. CONCLUSION AND RECOMMENDATIONS

We present a navigation method for GPS deprived environ-
ments by integrating the measurements of IMU and ABPS.
The measurement of an IMU is based on the inertial frame (i-
frame) while the measurements of the ABPS is based on the
n-frame. So the standard IMU driven kinematic model used
for the system include the associated transformations from the
i-frame to the n-frame. The system state estimation is imple-
mented using the SR-UKF for its computational advantage
against the UKF.

This system was evaluated in a lab at the CSIR. It was
shown that the estimated state can generate measurement
predictions that closely match the position data. The next
phase of the research is to implement the SR-UKF on the
single-board computer. It has not been evaluated if the single
board computer can handle the processing speed necessary to
complete a SR-UKF cycle which is less than 10ms.
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