
Proceedings of the 2011 ORSSA Annual Conference

pp. 19–28

http://www.orssa.org.za/XXXXX

ORSSA Proceedings

ISBN

978-0-7972-1351-7

©2012

Constructive heuristics for the Residential Waste

Collection Problem

EJ Willemse∗ JW joubert†

Abstract

The Residential Waste Collection Problem (RWCP) is a realistic extension of the classical Ca-

pacitated Arc Routing Problem (CARP), with application in municipal waste collection. Surpris-

ingly, the problem with its extensions have not been solved in literature. This paper presents two

heuristics that are capable of solving the RWCP. The heuristics are based on modifications of the

classical Path-Scanning and Augment-Merge heuristics for the CARP. The modified heuristics

are tested on new benchmark problems for the RWCP, and results show that the algorithms are

capable of quickly solving the problem.
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1 Introduction

Solid waste collection and transportation consists of the collection, transportation and disposal
of waste at landfill sites, usually through waste collection vehicles. It is well recognised as being
the most costly component of the waste management function and can account for between
50-80% of a municipality’s solid waste management budget [14, 21, 22]. Of the different types
of waste collected by municipalities, residential waste forms the biggest percentage [15]. As
such it consumes the largest part of the municipal budget, making it a promising area to
target for cost reductions.

The state of practice method of residential waste collection is through curb side collection.
Municipalities have to collect the waste of each household at least once a week. Households
place their generated waste, which are stored in either bins or bags, on the designated days in
front of their properties where waste collection vehicles can then collect the waste. This process
is highly repetitive and performed throughout the year, therefore even a small improvement
in waste collection and transfer operations can lead to significant savings in costs.

∗Corresponding author: CSIR Built Environment, South Africa, email: ejwillemse@gmail.com
†University of Pretoria, South Africa, email: johan.joubert@up.ac.za

19



Constructive heuristics for the Residential Waste Collection Problem 20

A promising improvement area is to design better waste collection routes. In this paper
we show that designing collection routes can be modelled as an extension of the classical
Capacitated Arc Routing Problem (CARP). Two constructive heuristics that are capable of
solving the problem are developed and tested on benchmark problems, created to mimic waste
collection in residential areas.

The remainder of this paper is organised as follows. The next section gives a brief overview
of previous work, related to the RWCP. The two heuristics are presented in Section 3 with
computational results provided in Section 4. The paper concludes with Section 5 in which we
summarize our main findings.

2 Related work

Residential waste collection requires waste to be collected on a street-by-street basis. As such,
the problem of designing collection routes can be modelled as an Arc Routing Problem (ARP).
Its aim is defined by Eiselt et al. [6] as determining a least-cost traversal of a specified subset
of a graph, with or without constraints. Other ARP application areas include, for example,
winter gritting [5, 17], postal delivery [13], security guard routing [23], street sweeping [2]
and railway maintenance [12]. For a comprehensive review of ARPs the reader is referred to
[3, 4, 6, 7].

As most practical routing applications contain capacity restrictions, the Capacitated Arc
Routing Problem, first proposed by Golden and Wong [11], is probably the most important
problem in the area of arc routing [7]. With the CARP a fleet of homogeneous vehicles are
based at a depot and are tasked with serving all the street segments with waste. The problem
consists of designing vehicle routes for the fleet of total minimal length so that each route
starts and ends at the depot, each road segment with demand is serviced exactly once by a
single vehicle, and the sum of demand on any route does not exceed vehicle capacity.

Two CARP extensions inspired by waste collection have been proposed in literature. The
Mixed Capacitated Arc Routing Problem, studied by Lacomme et al. [16], Mourão and Amado
[18], Mourão et al. [19] and Belenguer et al. [1], allows the modelling of more realistic street
networks, containing one and two way streets. The extension further allows for streets that re-
quire each side to be serviced separately. The second extension, referred to as the Arc Routing
Problem with Intermediate Facilities under Capacity and Length Restrictions (CLARPIF),
accounts for intermediate facilities and dumpsites. The extension, first proposed by Ghiani
et al. [8], allows for the collection vehicle to unload its cargo at a nearest Intermediate Facility
(IF), including dumpsites, and then resume its collection route. A length (or cost) restriction,
independent from capacity and typically presenting the number of working hours in a day, is
also placed on each vehicle’s route.

Both extensions contain elements fundamental to residential waste collection. In response
we combine the CARP and CLARPIF into a new problem termed the Residential Waste
Collection Problem (RWCP). The RWCP entails designing vehicle routes of total minimum
length, so that each route starts and ends at the depot, each road segment with a demand
(waste) is serviced exactly once by a vehicle, and the total cost of a vehicle route does not
exceed a maximum allowed trip length or cost. Each route contains visits to IFs, which may
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or may not include the depot, and the sum of demand on the sub-route between dumpsite
visits does not exceed vehicle capacity. Lastly, at the end of each route each vehicle must visit
a dumpsite before returning to the depot.

To our knowledge the RWCP is new and has not been formally studied or solved in literaure.
Various solution approaches have, however, been developed for the MCARP and CLARPIF.
Since both problems, and by extension the RWCP, are N P-hard, the most effective methods
for the solving the problems are based on heuristic techniques. The main studies on the
problems are by Belenguer et al. [1], Lacomme et al. [16], Mourão and Amado [18] and
Mourão et al. [19], all whom develop heuristics for the MCARP; and the works of Ghiani
et al. [8], Ghiani et al. [9], and Polacek et al. [20], whom develop heuristics for the CARP
with IFs. In all the studies on the MCARP, except the work of Mourão and Amado [18], one
of two classical CARP heuristics are modified, namely Path-Scanning and Augment-Merge.
The focus of this paper is to further modify the two heuristics to deal with IFs, thus making
them capable of solving the RWCP.

3 Constructive heuristics for the RWCP

Formally defined, the RWCP consists of a mixed graph GGG = (VVV ,EEE ∪AAA) where VVV represents
the set of vertices, EEE represents the set of edges and AAA represents the set of arcs. A subset
of required edges and arcs, EEEr ⊆EEE and AAAr ⊆AAA, must be serviced by a fleet of K homogenous
vehicles with limited capacity Q that are based at the depot vertex v1. The fleet size, K, may
be fixed or left as a decision variable. The vehicles are allowed to unload their waste at any
IF at a cost of λ. The set of IFs are modelled by ΓΓΓ where ΓΓΓ ⊂ VVV . Unless v1 ∈ ΓΓΓ, a vehicle has
to visit an IF before returning to the depot.

Before presenting the modified heuristics for the RWCP, we first show how the mixed graph
GGG can be transformed into a directed graph and we introduce the algorithm encoding scheme
used in the remainder of this section.

3.1 Graph transformation and encoding scheme

Consistent with the work of Belenguer et al. [1] and Lacomme et al. [16], the mixed graph GGG

is transformed into a fully directed graph GGG∗
= (VVV ,AAA∗) by replacing each edge (vi, vj) ∈EEE by

two opposite arcs {(vi, vj), (vj , vi)} ∈ AAA∗. Arcs in AAA∗ are indentified by indices from 1 to m

where m = ∣AAA∗∣. Each arc u ∈ AAA∗ has a beginning vertex b(u) and an end vertex e(u). If arc
u represents (vi, vj) then b(u) = vi and e(u) = vj . Lastly, each arc u has a deadheading cost
c(u). Lastly, the total cost of any route must not exceed the maximum allowed trip cost, L.

The required arcs, AAAr, and edges, EEEr, of GGG correspond in GGG∗ to a subset RRR ⊆ AAA∗ of required
arcs, such that ∣RRR∣ = 2∣EEEr ∣ + ∣AAAr ∣. Each arc u ∈ RRR has a demand q(u), a collection cost w(u)
and a pointer inv(u). Each required arc in the original graph GGG is coded in RRR by one arc u

with inv(u) = 0, while each required edge is encoded as two opposite arcs u and v, such that
inv(u) = v, inv(v) = u, q(u) = q(v), c(u) = c(v) and w(u) = w(v). An arc task u represents
an edge if inv(u) ≠ 0. The depot is modelled by including in AAA∗ a fictitious loop σ = (v1, v1),
with b(σ) = e(σ) = v1, inv(σ) = 0 and q(σ) = w(σ) = c(σ) = 0. Similarly, the set of IFs are
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modelled in AAA∗ as a set of dummy arcs III, such that each IF in ΓΓΓ is modelled as a fictitious
loop Φi ∈ III, and Φi has the same start and end vertex, and zero cost and demand.

For the RWCP a solution TTT is a list (TTT 1, . . . ,TTTK) of K vehicle trips. Each trip, TTT i, is a list of
subtrips (TTT i1,TTT i2, . . . ,TTT i,∣TTT i∣) which then consists of a list of tasks (TTT ij1,TTT ij2, . . . ,TTT ij,∣TTT ij ∣). The
first subtrip, TTT i1, starts at the depot, and the last subtrip, TTT i,∣TTT i∣, ends with an intermediate
facility and depot visit. All other subtrips start and end with IF visits whilst taking care
that the starting IF of a subtrip coincides with the end IF of the previous subtrip. It is
assumed that the shortest path, which can be efficiently calculated using a modified version
of as Dijkstras’ algorithm [16], is always followed between consecutive tasks. Lastly, denote by
DDD(u, v) the cost of the shortest path from arc u to arc v, excluding the costs of deadheading
u and v.

The best IF to visit after servicing arc u and before servicing arc v can be easily pre-calculated,
as shown by Ghiani et al. [8]. The best IF to visit is given by dump(u, v) and the cost of
the visit, including unload and deadheading costs, is given by term(u, v). Lastly we define
load(TTT i) as the total demand of trip TTT i, and cost(TTT i) as the total cost of the trip. The same
terms are also used to define the demand and cost of subtrips.

3.2 Path-Scanning

The first heuristic that we modify for the RWCP is the Path-Scanning heuristic developed
by Golden et al. [10]. Our modification is based on the algorithm of Belenguer et al. [1]
for the MCARP. Path-Scanning systematically builds a vehicle trip by adding the closest
unserviced arc to the end of the trip. If there are multiple closest arcs one of seven rules
(Table 1) is used to break the tie. The algorithm adds the closest unserviced arc to a vehicle

Table 1: Tie-break rules used with the Path-Scanning heuristic to choose arc u ∈AAAc, where AAAc is

the set of closest arcs.

Rule Description

1 Maximise the distance to the depot; max{DDD(u,σ) ∶ u ∈AAAc}

2 Minimise the distance to the depot; min{DDD(u,σ) ∶ u ∈AAAc}

3 Maximise the arc yield; max{q(u)/w(u) ∶ u ∈AAAc}

4 Minimise the arc yield; min{q(u)/w(u) ∶ u ∈AAAc}

5 Use Rule 1 if the vehicle is less than half-full, else use Rule 2

6 Randomly use any of the five rules

7 Do not use any rule and randomly choose u from AAAc

trip until the vehicle is full, at which point the trip is closed by adding a depot arc visit. A
new empty trip is created and the process repeats until all required arcs are serviced.

Our RWCP version of Path-Scanning sees the introduction of subtrips resulting from IF
visits. Instead of starting with a trip, the algorithm starts with a subtrip. The first subtrip
starts at the depot and the algorithm adds the closest unserviced arc to the end of the subtrip.
When the subtrip is full the algorithm closes it by adding an IF visit, and a new subtrip is
then created starting at this IF. The process repeats until no unserviced arcs can be added
without exceeding the maximum allowed trip length. At this point the subtrip is closed by
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adding a visit to an IF and a depot. The combined subtrips now form a single vehicle trip
whose cost does not exceed the maximum allowed trip length. The process is repeated until
all arcs are serviced. Algorithm 1 summarises our RWCP version of the Path-Scanning

algorithm.

Algorithm 1: Path-Scanning for the MCARP

Input : The directed transformed graph GGG∗.

Output: A feasible solution TTT for the RWCP.

Step 0: Set GGG′
←GGG∗, i← 1 and j ← 1.

Step 1: Let the first task in TTT i1 be the depot arc σ and set GGG′′
←GGG′.

Step 2: Let u be the last task in subtrip TTT ij . Remove from GGG′′ all arcs v with

costIF (TTT i) +DDD(u, v) + term(v, σ) − λ > L. If GGG′′ is empty, close TTT ij by adding

dump(u,σ) and σ to the end of the trip; let i ← i + 1 and return to Step 1. If GGG′′

is not empty go to Step 3.

Step 3: Set GGG′′′
←GGG′′ and remove from GGG′′′ all arcs v with load(TTT ij) + q(v) > Q. If GGG′′′

is empty find the arc v in GGG′ that minimises term(u, v); close the subtrip by adding

a visit to dump(u, v) to the end of the subtrip; set j ← j + 1; create a new subtrip

TTT ij that starts at dump(u, v) and return to Step 2. If GGG′′′ is not empty go to Step

4.

Step 4: From the last subtrip task u, find the closest arc v in GGG′′′. If there are more

than one closest arc, choose an arc according to a tie-break rule. Add the closest

chosen arc v to the end of TTT ij and remove v and inv(v), if it exists, from GGG′ and

GGG′′. If all edges in GGG are covered, thus GGG′ is empty, go to Step 5, else return to

Step 2.

Step 5: Close TTT ij with a trip to dump(v, σ) and the σ and stop the algorithm. The

solution TTT is a feasible solution for the RWCP.

Traditionally the Path-Scanning algorithm is executed five times using one of Rules 1-5
(Table 1) in each execution to break closest arc ties. The best of the five solutions is then
chosen for implementation. A similar approach can be followed using Rule 6 or 7 of the
table with the advantage that an arbitrary number of solutions can be generated, owing to
randomness of the rules. We test both the deterministic scheme (Rules 1 to 5) and random
schemes (Rules 6 and 7) on the RWCP. The first scheme is the default scheme and is just
referred to as Path-Scanning, or PS for short. The second and third schemes, using Rule 6
and 7, are referred to as PS Random Rule 200 and PS Random Arc 200, respectively,
where 200 refers to the number of solutions generated.
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3.3 Augment-Merge

The second algorithm that we modify for the RWCP is the Merge algorithm of Belenguer
et al. [1] for the MCARP. The algorithm starts by creating a solution that contains a vehicle
trip for each required arc. The trips are then systematically reduced through mergers. Initially
trips containing only one arc task are merged, but as the process continues, trips with multiple
tasks start to develop and these are also merged. As the algorithm progresses the trips become
fuller. The algorithm stops when all the trips are full, or near full, and no more mergers are
possible.

The merger of two trips, TTT i and TTT j , is performed through the Merge-Trips-Procedure.
Before merging the trips the procedure first checks that the combined load of the two trips
does not exceed vehicle capacity. The procedure then merges the trips by splicing them
together. The merge procedure also considers adding TTT i to the end of TTT j . The procedure
also considers the reversal and then merger of trips, resulting in an additional six possible
mergers. Merge-Trips-Procedure evaluates all eight possible mergers between TTT i and TTT j

and returns the best merge as S̃SSij , and the best saving as ∆S̃ij .

TheMerge algorithm performs one merger per iteration. During each iteration the algorithm
evaluates all feasible trip mergers and the one with the best saving is implemented. The two
original trips are replaced with the merged trip and the algorithm proceeds to the next
iteration. This process is repeated until no more mergers are possible. Our implementation
of Merge for the MCARP is described in Algorithm 2.

Algorithm 2: Merge

Input : The directed transformed graph GGG∗

Output: A feasible solution TTT for the MCARP.

Step 0: Set RRR′
←RRR. For each arc v ∈RRR′ create a vehicle trip servicing only that arc. If

inv(v) ≠ 0 then remove inv(v) from RRR′, thus inv(v) will not be assigned to a trip

in a latter iteration.

Step 1: For the unique trips TTT i and TTT j in TTT check that their merger does not violate

the capacity constraint, i.e., load(TTT i) + load(TTT j) ≤ Q. If the merger is possible

then determine the best merger S̃SSij and cost saving ∆S̃ij through Merge-Trip-

Procedure. If no mergers are possible then go to Step 3, else go to Step 2.

Step 2: Using min∆SSSij , find the best merge S̃SSkl and replace trips TTT i and TTT j in TTT with

S̃SSkl. If TTT now consists of only one trip then stop, else return to Step 1.

Step 3: Since no more mergers are possible stop the algorithm and return TTT as a solution

for the MCARP.

To apply Merge to the RWCP we execute Merge twice, with minor modifications to the
algorithm in each execution. During the first execution each vehicle trip consists of only
one vehicle subtrip, with an IF visit before returning to the depot. A merger between
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two trips is then performed as with the MCARP. Let TTT i = (σ, a1, a2, . . . , am,Φi, σ) and
let TTT j = (σ, b1, b2, . . . , bn,Φj , σ), where Φi and Φj are calculated as Φi = dump(am, σ) and
Φj = dump(bn, σ). A new merged trip SSSij is created such that

SSSij = (σ, a1, a2, . . . , am, b1, b2, . . . , bn,Φj , σ).

Before merging the trips the procedure first checks that the combined load of the two trips
does not exceed vehicle capacity. The algorithm evaluates all feasible trip mergers and the
one with the best saving is implemented. As with the MCARP the algorithm checks all eight
possible merge orientations. The first Merge execution terminates when no more mergers
are possible without violating the vehicle capacity restrictions.

The algorithm then proceeds with the second Merge execution in which vehicle subtrips are
merged into vehicle trips. Again let TTT i = (σ, a1, a2, . . . , am,Φi, σ) and let TTT j = (σ, b1, b2, . . . , bn,Φj , σ).
A new merged trip, SSSij , is now created such that

SSSij = ((σ, a1, a2, . . . , am,Φs), (Φs, b1, b2, . . . , bn,Φj , σ)).

Before merging the trips the procedure checks that the combined cost of the two trips does
not exceed the maximum trip length restriction. The algorithm evaluates all feasible trip
mergers and the one with the best saving is implemented. The algorithm again checks all
eight possible merge orientations. The second Merge execution terminates when no more
mergers are possible without violating the maximum trip length restriction. Since the general
structure of the two executions of Merge for the RWCP is the same as with the MCARP,
we do not give a formal description of our implementation.

4 Computational results

To evaluate and compare the heuristics, both are tested on a new set of benchmark problems.
The new problems were created by extending the lpr problem set of Belenguer et al. [1] by
including IFs at vertices ⌊∣VVV ∣/2⌋ and 2⌊∣VVV ∣/2⌋. For each problem we introduce a max trip
length of 28 800 seconds, which corresponds to an eight hour working day, and the vehicle
capacity remains fixed at 10 000kg. Lastly, the number of vehicles required to service the area
is not fixed but left as a decision variable. The new RWCP benchmark problems are referred
to as the lpr-IF problem set.

The heuristics are evaluated on three criteria: total fleet travel time minimisation, vehicle
fleet size minimisation and running time. All the algorithms were coded in Python version
2.6 and run on a 3Ghz Intel(R) Core(TM)2 Duo CPU with 3.25GB of RAM.

The results of the three Path Scanning heuristics and the Merge heuristics on the lpr-IF

problem set are shown in Table 2. The table shows the total cost of each solution generated,
the number of vehicles that the solution requires and the total time required to generate
the solution. Results show the random versions of Path Scanning to produce slightly better
solutions than the deterministic versions, which is expected since they generate more solutions
from which to choose the best. The results further show that the Path-Scanning heuristics
outperforms Merge on all but four of the problems. Merge faired particularly poorly in
minimising the vehicle fleet size and required an extra route with eight of the fifteen solutions.
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In terms of the computational time, Path-Scanning significantly outperformed Merge on all
the problem instances. On all the lpr-IF problems the Path-Scanning variants are capable of
generating up to 200 solutions in less than one minute, making them very efficient, even on
large problems. Based on the tests for the lpr-IF, we conclude that Path-Scanning is better
suited than Merge to solve the RWCP.

Table 2: Computational results for Path-Scanning and Merge on the lpr-IF problem set, with the

best solutions for each problem underlined. All time values are given in seconds.

PS PS RA 200 PS RR 200 Merge

File K Cost Time K Cost Time K Cost Time K Cost Time

a-01 1 13783 0.1 1 13678 0.3 1 13659 0.4 1 13954 0.9

a-02 2 29687 0.1 1 28647 1.1 1 28605 1.1 1 28791 6.9

a-03 3 80261 0.2 3 79545 9.0 3 79748 9.1 4 78695 173.4

a-04 5 134027 0.6 5 133434 26.2 5 133779 26.4 6 141678 802.8

a-05 8 213707 1.6 8 212208 66.2 8 212489 66.8 9 218128 3339.1

b-01 1 15049 0.1 1 14911 0.3 1 14868 0.3 1 15261 0.8

b-02 2 29955 0.1 2 29684 1.1 2 29715 1.1 2 29119 6.3

b-03 3 81708 0.2 3 80779 8.7 3 80912 8.7 4 80302 174.9

b-04 5 134580 0.6 5 133351 22.8 5 133567 23.0 6 136897 793.0

b-05 8 222874 1.5 8 221952 63.2 8 222502 62.5 9 228057 3227.5

c-01 1 18837 0.1 1 18783 0.5 1 18814 0.5 1 18973 0.9

c-02 2 36903 0.1 2 36796 1.6 2 36808 1.6 2 37345 8.2

c-03 4 114763 0.4 4 114593 16.3 4 114179 16.5 5 116422 219.4

c-04 7 177011 1.0 7 175819 41.2 7 176366 41.1 7 172506 916.4

c-05 10 276976 2.1 10 276876 89.2 10 276239 89.7 11 276447 3370.1

Acronyms: PS - Path Scanning, RR - Random Rule, RA - Random Arc, K - Number of routes

5 Conclusion

The RWCP is a new problem combining key elements of the MCARP and CLARPIF consis-
tent with actual waste collection and transportation activities. Two heuristics were developed
and tested to solve the RWCP, of which Path-Scanning performed the best on fifteen newly
developed benchmark problems. The heuristic also proved efficient and is capable of gen-
erating multiple solutions within minutes on large problems. The developed constructive
heuristics forms an important first step in studying the RWCP as its starting solutions can
be used with developing and testing improvement heuristics and metaheuristics for RWCP.
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