Dependence of photoluminescence (PL) emission intensity on Eu³⁺ and ZnO concentrations in Y₂O₃:Eu³⁺ and ZnO·Y₂O₃:Eu³⁺ nanophosphors

G.H. Mhlongo^{a,b}, M.S. Dhlamini^{a,c}, H.C. Swart^b, O.M. Ntwaeaborwa^b, K.T. Hillie^{a,b,*}

ABSTRACT

 Y_2O_3 :Eu³⁺ and ZnO·Y2O₃:Eu³⁺ nanophosphor powders with different concentrations of Eu³⁺ ions were synthesized by a sol–gel method and their luminescence properties were investigated. The red photoluminescence (PL) from Eu³⁺ ions with the main emission peak at 612 nm was observed to increase with Eu³⁺ concentration from 0.25 to 0.75 mol% and decreased notably when the concentration was increased to 1 mol%. The decrease in the PL intensity at higher Eu³⁺ concentrations can be associated with concentration quenching effects. The red emission at 612 nm was shown to increase considerable when ZnO nanoparticles were incorporated in Y_2O_3 :Eu³⁺ while green emission from ZnO was suppressed. The increase is attributed to energy transfer from ZnO to Eu³⁺.

^a National Centre for Nano-structured Materials, Council for Scientific and Industrial Research, 1-Meiring Naude Road, Brummeria, PO Box 395, Pretoria 0001, South Africa

^b Department of Physics, University of Free State, Bloemfontein ZA9300, South Africa

^c Department of Physics, University of South Africa, Pretoria, South Africa

^{*}Corresponding author. Fax: +27 12 841 2229; e-mail address: thillie@csir.co.za (K.T. Hillie).