Accepted version of: C.J. Venter, H. Grobler and K.A. AlMalki,
“Implementation of the CA-CFAR Algorithm for Pulsed-Doppler Radar on
a GPU Architecture,” 2011 IEEE Jordan Conference on Applied Electrical
Engineering and Computing Technologies, 6-8 December 2011, pp. 233-
238. Published version available online:
http://ieeexplore.ieee.org/arnumber=6132514

©2011 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.



2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)

Implementation of the CA-CFAR Algorithm for
Pulsed-Doppler Radar on a GPU Architecture

CJ. Venter'2, H. Grobler? and K.A. AlMalki®
Email: cventer@csir.co.za, hans.grobler@up.ac.za, kalmalki @kacst.edu.sa
IDefence, Peace, Safety and Security, Council for Scientific and Industrial Research, South Africa
2Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa
3Electronics, Communications and Photonics, King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Abstract — The Cell-Averaging Constant False-Alarm Rate
(CA-CFAR) algorithm was implemented and optimized in soft-
ware on the NVIDIA Tesla C1060 GPU architecture for appli-
cation in pulsed-Doppler radar signal processors. A systematic
approach was followed to gradually explore opportunities for
parallel execution and optimization by implementing the algo-
rithm first in MATLAB (CPU), followed by native C (CPU) and
finally NVIDIA CUDA (GPU) environments. Three techniques
for implementing the CA-CFAR in software were identified
and implemented, namely a naive technique, sliding window
technique and a new variant which employs the Summed-Area
Table (SAT) algorithm. The naive technique performed best
on the GPU architecture. The SAT technique shows potential,
especially for cases where very large CFAR windows are required.
However, the results do not justify using the GPU architecture
instead of the CPU architecture for this application when data
transfer to and from the GPU is taken into consideration.
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I. INTRODUCTION

A Constant False-Alarm Rate (CFAR) detector in a radar
system detects targets in varying interference by adjusting
detection thresholds dynamically. The computational workload
of calculating the interference estimate for every radar data
sample in order to adjust the detection threshold can be
very high. High throughput and low latency is required for
radar applications, where the latter is especially important in
tracking systems which need to maintain a tight tracking loop.

CFAR processing in modern radar signal processors is
typically performed with Field-Programmable Gate Arrays
(FPGAs) or Digital Signal Processors (DSPs) due to the
processing and I/O performance that they provide. Current
generation many-core GPUs can deliver massive computa-
tional performance on a single chip. The memory bandwidth
between a GPU chip and its own high-speed memory is also
very high as a result of very wide data bus widths and high
memory clock rates. Although GPUs were originally designed
to perform graphics processing, recent generations make pro-
vision for General Purpose Computing on the GPU (GPGPU).
GPUs could therefore potentially be used to perform CFAR
processing in pulsed-Doppler radar systems.
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An algorithmic optimization of the Cell-Averaging CFAR
(CA-CFAR) algorithm was performed in an attempt to find
an efficient algorithmic structure for software implementation
on the GPU architecture. Three techniques were identified,
implemented, optimized and evaluated using a systematic
approach to move from high-level computing languages to the
target GPU architecture. The GPU results were compared to
results of our own implementations in native C, as well as
another CA-CFAR software reference implementation.

The results shows that, in terms of kernel throughput and
latency, the GPU implementations generally perform better
than comparative CPU implementations for larger input sizes.
However, in terms of total throughput and latency, which
includes data transfer to and from the GPU, the performance
results do not justify using the GPU architecture for the range
of input sizes that were evaluated.

II. CA-CFAR FOR PULSED-DOPPLER RADAR

A 2D data matrix is generally used to represent the sampled
data for pulsed-Doppler radar systems with a single receiver
front-end element. The 2D data matrix is called a burst and
it has range and Doppler dimensions. The range dimension
contains “fast-time” samples of the echo of a single received
pulse. The Doppler dimension contains “slow-time” samples
which represent the echo received from successive transmitted
pulses in the burst.

A Constant False-Alarm Rate (CFAR) detector adjusts the
detector threshold in real-time in order to maintain a constant,
design-specific false-alarm rate with corresponding probability
of Pyq. The threshold is determined by estimating the interfer-
ence around the target. A Cell-Averaging CFAR (CA-CFAR)
detector estimates the interference power for a Cell Under Test
(CUT) by averaging the sample values of adjacent cells, under
the assumption that interference statistics are homogeneous in
a localized area.

A. CA-CFAR Algorithm

The maximum likelihood estimate for the interference
power, 32 is obtained from the average of N samples in the
vicinity of the CUT [1] as shown in equation 1.
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A CFAR window is the set of IV cells around the CUT that
are included in the estimation of the interference power. The
CFAR window excludes a set of guard cells in the immediate
vicinity of the CUT, since energy from a target in the CUT
might occupy multiple cells around the CUT as well. In
this case the energy in the cells immediately adjacent to the
CUT do not represent interference alone and will cause the
detector threshold to be raised artificially if included in the
calculation. The threshold, 7" is then calculated as a function
of the estimated interference power and the desired false-alarm
probability ?fa [1] as shown in equation 2 and 3.
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B. Existing CA-CFAR Software Implementations

The High Performance Embedded Computing (HPEC)
Challenge Benchmark Suite [2] includes a CFAR benchmark
for CPUs. The assessment in [3] compared their CA-CFAR
GPU implementation to the HPEC CFAR benchmark CPU
implementation. The implementation in [3] favours parallelism
by minimizing communication and synchronization between
elements. The problem effectively turns into an embarrassingly
parallel problem using this approach.

A speedup factor of between 2.6 and 166 was achieved
with the GPU implementation in [3] over the HPEC CPU
reference implementation [4]. The strict kernel latency metric,
as described in the HPEC Challenge benchmark guidelines
[2], is used. The conclusion in [3] is that the overall run time
is limited by global memory bandwidth.

The HPEC Challenge benchmark code for CPUs is publicly
available, which allowed us to compile and run the code on
the same platforms that were used to obtain our own results.
No code is available for the other implementations that were
found and we could therefore not do comparisons with these
implementations on the target hardware platforms.

III. HIGH-LEVEL ALGORITHMIC OPTIMIZATION

Performance optimization is typically performed on differ-
ent levels ranging from high-level algorithmic optimization, to
medium-level implementation optimization, down to low-level
instruction and other other architecture-specific optimizations.
The structure of an algorithm that is implemented in software
can have a major impact its performance, based on how
well-suited the chosen structure is for the target hardware
architecture.

A process of optimizing the algorithmic structure of the
CA-CFAR algorithm for software implementation on the GPU
architecture was followed. The aim was to optimize the
computational performance on the GPU architecture in order
to increase throughput and reduce latency. Three techniques
with different algorithmic structures were identified, namely
naive, sliding window and Summed-Area Table (SAT).
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Figure 1. Calculation of BE cur from CFAR window for naive technique.

A. Naive Technique

One of simplest and most intuitive ways of implementing
the CA-CFAR is to simply sum the values for all cells in the
CFAR window for each CUT given by
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where CW (i, 4, k) is the kth CFAR window cell of cell (3, j)
as shown in figure 1. We refer to this technique as the naive
technique due to the potential drawbacks associated with using
such a simple, brute-force approach. Redundant summation
will be performed, since there is a large overlap in the CFAR
window cells for adjacent cells under test in the range-Doppler
map. The computational complexity increases as the dimen-
sions of either the input data or the CFAR window increases.
The naive technique provides an embarrassingly parallel struc-
ture which means that each cell can be evaluated independently
without requiring synchronization with any other cells.

The time complexity for the naive technique with a range-
Doppler map of N, range bins by N,y Doppler bins and with
leading and lagging CFAR windows of N,.,in by Ngwin cells
each, is given by

O(Nrd X charWin)a (5)
where Nrd = Nr X Nd’ charWin =2 x Nrwz'n X Ndwivv

B. Sliding Window Technique

The CA-CFAR can also be implemented in software using

a sliding window technique, which capitalizes on the redun-

dancy in the calculation of the local noise estimate for adjacent
cells [2] as given by

52(i+1,j):ﬁ2(i,j)—|—A, (6)

where A is calculated as shown in figure 2. It is more

computationally efficient to slide the CFAR window by one

cell at a time and only account for the difference in the local

interference estimate, instead of naively performing redundant

summation. Computational complexity is reduced at the cost

of reducing the parallelism of the algorithm, as a result of the
inherent data dependencies that are created.
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Figure 3. Calculation of @CUT using Summed-Area Table generated from
range-Doppler map.

The time complexity for the sliding window technique with
a range-Doppler map of NN, range bins by Ny Doppler bins
and with leading and lagging CFAR windows of N, by
Ngwin cells each, is given by

O(Nrd X 4/ charWin)a (7)

where N,.q = N, X Ny, charWin =2 X Nywin X Nawin.

C. Summed-Area Table Technique

A Summed-Area Table (SAT) [5] or Integral Image [6], once
generated, can be used to obtain the sum of values inside any
sub grid of the original input data matrix by doing lookup and
summation of 4 data elements. This technique can be applied
to CA-CFAR by generating a SAT from the input range-
Doppler map sample values. Once generated, the SAT can
be used to compute the local interference estimate efficiently,
by optimizing the summation calculation as shown in figure 3.
The summation is performed in constant time, regardless of
the size of the CFAR window. No evidence was found of this
technique being used for CFAR in radar applications.

The time complexity for the SAT technique with a range-
Doppler map of N, range bins by N, Doppler bins and an
arbitrary CFAR window size, is given by

O(N;q), ®)
where N,.g = N, X Ng.

IV. Low-LEVEL OPTIMIZATION FOR GPU ARCHITECTURE

Following the high-level algorithmic optimization of the
CA-CFAR algorithm, additional lower-level optimizations
were performed for the target GPU architecture. The opti-
mizations that were made are based on known techniques
in GPGPU and computer vision fields for improving perfor-
mance.

A. Precision

FPGA and DSP implementations typically use 16-bit or
32-bit fixed-point representation for sample values. Single-
precision floats were used instead for the GPU implementa-
tions. On the target GPU architecture that was used, the single-
precision floating point performance for typical operations
exceed performance that is obtained when using integer or
double-precision formats. Single-precision floats also provide
sufficient resolution for the application under consideration.

B. Apron Generation

When Doppler ambiguities are present, the cells around the
edges of the Doppler dimension of a range-Doppler map are
adjacent in terms of velocity. As a result, CFAR algorithms
often implement wrapping instead of clipping of the CFAR
window in the Doppler dimension around the edges of the
range-Doppler map. Given that GPU performance can degrade
when conditional branches diverge, the need to check for
all cases where wrapping can occur is a potential problem.
A standard technique used for GPUs to avoid branching in
similar situations, is to pad an image with an apron of pixels.
For all GPU implementations an apron of redundant cells is
replicated around the edge of the range-Doppler map, which
mirrors the opposite edge, to allow for wrapping without
divergent branching.

C. Shared Memory Implementation

The target GPU architecture provides a large off-chip
memory which is referred to as device memory or global
memory. A small amount of on-chip shared memory is also
available which needs to be explicitly loaded with data by the
programmer. The shared memory is shared by and limited to
the scope of the processor cores in the particular symmetric
multiprocessor unit. Once data has been loaded into shared
memory, the read latency is typically in the order of 100 times
less than reading from global memory.

The basic naive implementation reads all cells in the CFAR
window of a particular CUT from global memory. A variation
of the naive technique was also implemented which uses
shared memory to reduce the read latency for redundant
data reads. The shared memory implementation also segments
the summation into two stages where rows and columns are
summed separately, allowing for more optimal use of the
limited shared memory that is available on the target GPU.
With this two-stage process the overlap only increases linearly
with increases in the range and Doppler dimensions of the
CFAR window, instead of in two dimensions simultaneously
as with the global memory implementation.
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The shared memory implementation has a limitation in
terms of the maximum CFAR window size as a result of the
limited amount of shared memory available on the target GPU.
The maximum CFAR window size in both range and Doppler
dimensions is limited to a maximum of 33 cells.

V. IMPLEMENTATION

The optimization of the CA-CFAR algorithm was an iter-
ative process which included implementation and evaluation
cycles. The process, environment and methods that were used
to develop, verify and benchmark the implementations is
discussed in this section.

A. Development Process

A systematic approach was followed by moving gradu-
ally from initial implementations in high-level computing
environments to native implementations on the target GPU
architecture.

Implementations were performed and verified in MATLAB
[7], which was used as a rapid prototyping platform. Native
C implementations for the CPU were then performed as a
stepping stone to the final GPU target architecture. The initial
native C implementations were single-core CPU implementa-
tions. Multi-core optimizations were then made for the native
C implementations on the CPU architecture. The techniques
were then implemented and optimized on the target NVIDIA
GPU architecture.

A comparable level of optimization was performed for
the native C and GPU implementations on the respective
architectures for each technique.

B. Environment

A GPGPU system with an NVIDIA Tesla [8] C1060 GPU
was used as the development, test and benchmarking platform
for all the GPU implementations. The CPU implementations
were benchmarked on a system with dual Intel Xeon X5355
quad-core CPUs which yields a total of 8 processor cores.

OpenMP [9] was utilized to optimize the native C code in
order to use multiple cores of the processor. Restructuring of
the code was necessary in some cases in order to obtain max-
imum benefit of using OpenMP. Opportunities for exploiting
parallelism in the algorithms were exposed using this approach
and it also served as a stepping stone towards an efficient
parallel implementation for the GPU.

NVIDIA Compute Unified Device Architecture (CUDA)
[10] was utilized for all the GPU implementations. The CUDA
Data Parallel Primitives (CUDPP) [11] library was used to
generate the SAT for the GPU implementation that uses the
SAT technique.

C. Verification

The output produced by the MATLAB implementation for
a particular test data set or test burst was used as a baseline
to verify other implementations against.

NVIDIA provide a CUDA Visual Profiler [10] (com-
puteprof) as part of the standard CUDA Toolkit release.

The profiler utilizes hardware counters that are built into the
NVIDIA chip sets for debugging and profiling purposes. The
GPU kernels were profiled and analyzed during development
using this profiler.

CUDA also provides access to hardware timers via GPU
events in the API. These events can be used do accurate timing
of GPU code relative to the internal GPU clock. These GPU
events were utilized to obtain all the timing information for
the results.

All implementations process a single burst of synthetic radar
data which is placed in host (CPU) memory before timing
begins. During execution this burst of data is transferred to
the GPU, processed and transferred back to the host.

VI. RESULTS

The results show the throughput that was achieved, which is
derived from the measured latency of processing a single burst
and the data size of the burst. For the GPU implementations,
both the kernel and total latency were measured and used
to derive the kernel and total throughput statistics. Total
latency is the time required to transfer the input data from
the host memory to the GPU memory, perform the CA-CFAR
processing on GPU and transfer the output data back from the
GPU memory to the host memory. Kernel latency excludes
the data transfer to and from the GPU memory in order to
isolate processing and I/O performance results to some extent.
Speedup graphs are not shown since they only show relative
performance which is of limited use for the radar application,
where actual throughput and latency are of primary concern.

A. GPU Implementations

A CFAR window size of N = 40 cells was used as a
typical value for the CFAR window size for the initial GPU
implementation benchmarks. A CFAR window size of around
N = 32 cells is suggested as being a typical size by [12] and
[13]. The value of N = 40 was used instead to allow for a
symmetrical CFAR window around the CUT, which is required
for our implementations. The results for all three techniques
on the GPU architecture are shown in figure 4.

1) Effect of input size: The sliding window technique per-
forms the worst over the entire range of parameters, which is
expected since this technique reduces parallelism in exchange
for reduced computational complexity. The SAT technique per-
forms better than the sliding window technique, but is still out-
performed by the naive technique in general for typical CFAR
window sizes. The SAT technique has increased complexity
and more overhead since it first needs to generate the SAT be-
fore it can subsequently benefit from the constant-time lookup.

2) Effect of CFAR window size: The basic naive imple-
mentation, which uses global memory (GMEM), degrades
markedly as the CFAR window size increases. The degradation
be can attributed to the growth of the CFAR window in two
dimensions as N increases and the fact that both dimensions
are summed simultaneously in a single phase. The overlap
of CFAR windows for neighboring cells increases in both
dimensions, which introduces significant read contention.
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Figure 4. Kernel Performance of GPU Implementations using a 2D CFAR window.

This effect is still present in the shared memory (SMEM)
implementation, even though it segments the processing into
a rows and columns. However, the effect only manifests
itself in a single dimension at a time. For larger N the
performance trend for this implementation is better than the
naive implementation which uses global memory. Again, note
that this version is limited to a maximum CFAR window size
of 33 cells in both range and Doppler dimensions.

The result for the Summed-Area Table implementation
shows that it is essentially unaffected by the CFAR window
size. The SAT requires a constant time to generate the SAT
table according to the input size of the range-Doppler map.
The SAT technique can therefore be particularly useful where
window sizes become very large.

B. Performance Comparison with C Implementations

The performance of our GPU and CPU implementations are
compared with the HPEC CFAR Benchmark [2] in figure 5.
The HPEC CFAR Benchmark only uses a 1D CFAR window,
which acts only in the range dimension. Our implementations
are optimized for a 2D CFAR window, but can be run in a
1D CFAR window mode by setting the Doppler dimension
of the CFAR window to 1. The results were obtained using
this configuration. The standard datasets for the HPEC CFAR
Benchmark also uses a data cube, which has range, Doppler
and beam dimensions. Multiple beams can be obtained by
using multiple receiver elements in a radar system. Our

implementations are designed for a data matrix which has
range and Doppler dimensions only. Datasets were therefore
generated for the HPEC CFAR Benchmark where the number
of beams are set to 1. The HPEC CFAR Benchmark CPU code
was also compiled and run on the target CPU platform.

C. Data Throughput

For GPU implementations the throughput generally de-
creased as the input burst size decreases, which can be
attributed to some extent to the fixed overheads associated with
transferring data between the host to the device. The subopti-
mal occupancy, in terms of parallel units on the GPU that are
utilized, for input burst sizes below a certain threshold also
contributes to the trend that is observed for the throughput.

VII. CONCLUSION

The results showed that optimized GPU implementations
that favour reduced algorithmic complexity and increased
parallelism over reduced computational complexity performed
the best. The GPU implementation for the naive technique,
which uses shared memory performed better, in terms of
kernel throughput and latency, than comparable CPU reference
implementations for larger input burst sizes (greater than 8K
cells) and typical CFAR window sizes. Even though the SAT
technique is outperformed by the optimized naive techniques
for typical CFAR windows sizes, there is a crossover point
where the SAT technique will perform better with increasing
CFAR window size.
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In terms of the total time required to transfer the input
data to the GPU, perform the processing and transfer the
output data back to the host, the results show that it is
generally not worthwhile to use the GPU architecture for the
CA-CFAR algorithm instead of a CPU based approach. The
trend does however indicate that throughput increases as input
size increases, the implication being that the use of the GPU
architecture may still be viable for larger input sizes than
investigated here. This conclusion is based on the assumption
that a single burst of data is transferred and processed at a time
in order to keep overall latency through the system reasonable.
In this investigation the CA-CFAR processing was performed
in isolation and not as part of a typical radar signal processing
pipeline. In such a pipeline one could potentially amortize the
cost of transferring the data to and from the GPU.

Further optimization could also be performed on the SAT
technique by using shared memory, amongst other, given the
improvement seen in case of the naive techniques. Another
aspect of the SAT technique that needs to be investigated
further is the potential for loss of precision that can occur as a
result of the increasing monotonic function associated with the
generation of a SAT. There are techniques for compensating
for this effect, such as subtracting an estimated or calculated
mean from all cells prior to generating the SAT.
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